A TMS320C50 és TMS320C24x assembly programozására példák

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák"

Átírás

1 A TMS320C50 és TMS320C24x assembly programozására példák A TMS320C50 processzor Ez a DSP processzor az 1.3. fejezetben lett bemutatva. A TMS320C50 ##LINK: egy 16 bites fix-pontos, módosított Harvard architektúrájú, digitális jelfeldolgozó processzor, amelyet a Texas Instruments ##LINK: cég az 1990-es évek elején fejlesztett ki. A felépítése és szolgáltatásai a maga idejében és nemében ipari szabvánnyá emelték. A hardverben megvalósított újításai a mai modern DSP proceszorokban is használatosak. A processzor két évtizedes kora ellenére, ezen forradalmi újítások lényegét és assemblyben való használatát, az oktatásban kivállóan lehet demonstrálni az ezzel a processzorral szerelt DSK platformon és fejlesztőkörnyezetben (lásd 2.2 fejezet). Az utasításkészlet és a DSK részletes leírása segítséget nyújt a kódrészletek megértéséhez: (1) A teljes assembly utasításkészlet részletes leírása a TMS320C5x Users Guide.pdf található meg, ##LINK: (2) A DSK fejlesztőlap leírása: TMS320C5x DSK Users Guide.pdf ##LINK: ## Az `5x és a CALU Az elődök felépítéséhez képest a TMS320C50 legjelentősebb hardveres újítása a központi aritmetikai logikai egység CALU ##Central Arithmetical Logical Unit központi aritmetikai logikai egység## (1. ábra), amely a következő elemeket tartalmazza: 16 bit x 16 bites, hardveres, párhuzamos szorzó (Multiplier), 32 bites, kettes komplemensű aritmetikai logikai egység (ALU), 32 bites akumulátor (ACC), 32 bites puffer akumulátor (ACCB), szorzat skálázó: 0, 1 vagy 4 bitet balra avagy 6 bitet képes egy órajel alatt jobbra léptetni (P-SCALER), adat előskálázó: 0-tól.. 16 bitet képes balra mozgatni (PRESCALER SFL), visszacsatolt eredmény előskálázó: 0-tól.. 16 bitet tud jobbra mozgatni (PRESCALER SFR), eredmény utóskálázó: 0-tól.. 7 bitet tud balra léptetni (POSTSCALER) Megjegyzés: az 1. ábrán a jelölés nélküli sínek és regiszterek mind 16 bitesek!

2 1. ábra az `5x DSP, központi aritmetikai egységének felépítése A CALU tulajdonságai: a szorzó egység 1 órajel alatt állítja elő a 32 bites szorzatot, a szorzóegység előjeles és kettes komplemensben ábrázolt számokat kezel, az ALU 1 órajel alatt állítja elő a 32 bites eredményt, minden skálázó 1 órajel alatt végzi el a teljes bitmozgatást (barrel shift),

3 A CALU és a MAC A valósidejű jelfeldolgozó algoritmusok szempontjából a legfontosabb mérőszám a feldolgozó egység (DSP) által egységnyi idő alatt elvégezhető műveletek száma. A jelfeldolgozó algoritmusok zömében nagyszámú szorzási és összeadási műveletből áll. Ezek a műveletek gyakran felírhatóak a következő alakban: A = B * C + D (1) Az összeadás egyszerű feladat és egy órajel alatt el tudja végezni szinte minden processzor. A kivonás visszavezethető az aritmetikai negálás és összeadás kombinációjára, ez szintén egyszerű feladatnak számít a processzorok számára. A szorzás sokkal összetettebb feladat, az általános célú processzoroknak amelyek összeadás sorozatával valósítják meg a szorzást erre több száz órajelet kell elhasználniuk. Az `5x DSP volt egyike az első proceszoroknak amely a 16x16 bites, előjeles szorzás elvégzésére hardveres szorzóegységet alkalmazott. Ez a szorzóegység a 32 bites előjeles eredményt egyetlen órajel alatt állítja elő. A hardveres szorzó és ALU egység összekapcsolásával lehetővé vált az (1) képlet által előírt műveletsor egyetlen órajel alatt való elvégzésére. Ez az utasítás a MAC (Multiply and Accumulate) mnemonikus nevet kapta az `5x asszemblyben. A CALU és a skálázók Az 1. ábrán megfigyelhető, hogy az CALU-ba (##Central Arithmetical Logical Unit központi aritmetikai logikai egység##) tartó, abban mozgó és onnan távozó adatoknak, változatos léptetésekre képes skálázókon kell áthaladniuk. Ilyen elemeket az általános célú processzorok ALU-jában (##Arithmetical Logical Unit aritmetikai logikai egység##) nem lelünk. A bitek balra léptetése esetén a bitek az eggyel nagyobb helyiértékű helyre íródnak be. A bitek jobbra léptetése esetén a bitek az eggyel kisebb helyiértékű helyre íródnak be. Általános esetben, egy adat 1 bittel való balra léptetése kettővel való szorzást, míg 1 bittel való jobbra léptetése kettővel való osztást jelent. A léptetések során kitüntetett figyelmet kap a legmagasabb helyiértékű bit MSB (##Most Significant Bit##) és a legkisebb helyiértékű bit LSB (##Least Significant Bit##). Ez alapján két féle léptetés létezik: logikai ebben az esetben (a léptetés irányától függően) az LSB vagy MSB oldalon 0 érték lép be, míg a másik oldalon levő bit elveszik, úgymond kiesik a regiszterből, aritmetikai ilyenkor az előjel megőrzése céljából, az MSB értéke visszamásolódik az MSB-be; az LSB pedig elveszik (jobbra léptetés) vagy 0-val töltődik fel (balra léptetés). Az `5x DSP skálázó egységei, az előrelátott szerepüktől függően, programozhatóan képesek logikai és aritmetikai léptetésre is. Ezek a különleges skálázó egységek az `5x DSP számára, hozzáadott processzoridő felhasználása nélkül teszik lehetővé a(z): aritmetikai skálázást ez fix pontos aritmetikai műveleteknél és előjeles számoknál jelent előnyt,

4 bit kiemelést előjeles szorzásnál megduplázódik az előjelbit, ezt szükséges lehet eltávolítani, megnövelt pontosságú aritmetikát szoftveres eljárások hozhatók létre a 32, 64 vagy akár több bites összeadás, kivonás és szorzás megvalósítására, túlcsordulás megelőzést jelfeldolgozás esetében ez a telítés, levágás és torzítás megakadályozását jelenti.

5 Példák az `5x CALU használatára Megoldások a ##7.2.2 filehez tartozo programreszek## nevű alkönyvtárban találhatók meg. 1. példa aritmetikai logikai egység## végezhető alapműveleteket 16bites előjeles egészek esetében. A bemutatásra kerülő műveletek: összeadás, kivonás, maradékos osztás valamint hardveres és léptetős szorzás. 2. példa aritmetikai logikai egység## elvégezhető, bővített aritmetikát. Ebben az esetben két 64bites szám összeadását. (forrás: (3)). W = X + Y, ahol mindhárom szám négy 16 bites adatként van tárolva a memóriában. 3. példa aritmetikai logikai egység## elvégezhető, bővített aritmetikát. Ebben az esetben két 64bites szám kivonását. (forrás: (3)). W = X - Y, ahol mindhárom szám négy 16 bites adatként van tárolva a memóriában. 4. példa aritmetikai logikai egység## elvégezhető, bővített aritmetikát. Ebben az esetben két 32bites előjeles szám szorzását. (forrás: (3)). W = X + Y, ahol a szorzandók 32 bitesek, így két 16 bites adatként vannak tárolva, míg a szorzat 64 bites, így négy 16 bites adatként van tárolva a memóriában. Az eredményt több művelet egymásutáni elvégzése (2. ábra) útján kapjuk. Ez a szorzási algoritmus egy előjeltelen 16x16 bites szorzást, három előjeles 16x16 bites szorzást és öt 32+ bites összeadást foglal magában. Az összeadások zöme a szorzással egyidőben történnek a CALU-ban, ami az APAC és MPYA assembly mnemonikus utasítások használatával válik lehetségessé.

6 5. példa 2. ábra két előjeles 32 bites szám szorzásának menete A 16 bites számok osztásának menete megtekinthető a (3) irodalom fejezetében. 6. példa Összeadás, kivonás és szorzás műveletek q15 alakú előjeles valós számokkal. Az `5x DSP processzor egész számokkal való műveletekre van előrelátva, de a gyakorlatban szükség van a valós számokkal való munkára. Ennek elősegítésére, a processzorhoz kapott fordító- és fejlesztő programok támogatják a fixpontos valós számokkal való munkát. Az adatmemóriában deklarálva lett három-három pozitív és negatív valós szám. Az olvashatóság kedvéért váltakozva színezett programrészletek a következőket mutatják be: A1 egy nagy pozitív és egy kis negatív valós szám összeadása, A2 egy kis pozitív és egy nagy negatív valós szám összeadása, S1 egy negatív és egy pozitív valós szám különbsége, S2 két negatív valós szám különbsége, M1 két pozitív valós szám szorzása, M2 egy pozitív és egy negatív valós szám szorzása.

7 Amint látható a qxx alakban ábrázolt előjeles valós számokkal való összeadás és kivonás esetén nincs szükség semmilyen külön előkészületre vagy utólagos munkálatokra. A CALU ##Central Arithmetical Logical Unit központi aritmetikai logikai egység## azonosan kezeli ezeket és az előjeles számokat. A szorzás esetében (M1 és M2 kódrészlet) viszont látható, hogy a fixpontos számok szorzására jellemző előjelbit kétszereződés lép fel, úgy pozitív mint negatív szorzat esetében is. Az előjel kétszereződést egy aritmetikai balra léptetéssel lehet elhárítani, amit az utóskálázó végez el. Erre a két kódrészletnél a mnemonikus kód után írt,1 operandus ad utasítást a skálázónak.

Fixpontos és lebegőpontos DSP Számrendszerek

Fixpontos és lebegőpontos DSP Számrendszerek Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos

Részletesebben

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata 7.2.1. A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata A valósidejű jel- és képfeldolgozás területére eső alkalmazások esetében legtöbbször igény mutatkozik arra, hogy

Részletesebben

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006 Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2004/2005 tanév 4. szemeszter A PROCESSZOR A processzorok jellemzése A processzor felépítése A processzorok üzemmódjai Regiszterkészlet Utasításfelépítés,

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

1. Az utasítás beolvasása a processzorba

1. Az utasítás beolvasása a processzorba A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez

Részletesebben

FPGA áramkörök alkalmazásainak vizsgálata

FPGA áramkörök alkalmazásainak vizsgálata FPGA áramkörök alkalmazásainak vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Raikovich Tamás, 2012. 1 Bevezetés A programozható logikai áramkörökön (FPGA) alapuló hardver gyorsítók

Részletesebben

Bevezető előadás Mikrórendszerek összahasonlítása.dsp bevezető

Bevezető előadás Mikrórendszerek összahasonlítása.dsp bevezető Bevezető előadás Mikrórendszerek összahasonlítása.dsp bevezető A DSP (Digital Signal Processor) mikrórendszer a világon a legelterjedtebb beágyazott rendszerben használt processzor. A DSP tulajdonságok

Részletesebben

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben

Részletesebben

Az INTEL D-2920 analóg mikroprocesszor alkalmazása

Az INTEL D-2920 analóg mikroprocesszor alkalmazása Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan

Részletesebben

DSP architektúrák dspic30f család

DSP architektúrák dspic30f család DSP architektúrák dspic30f család A Microchip 2004 nyarán piacra dobta a dspic30f családot, egy 16 bites fixpontos DSC. Mivel a mikróvezérlők tantárgy keretén belül a PIC családdal már megismerkedtetek,

Részletesebben

Digitális technika II. (vimia111) 5. gyakorlat: Mikroprocesszoros tervezés, egyszerű feladatok HW és SW megvalósítása gépi szintű programozással

Digitális technika II. (vimia111) 5. gyakorlat: Mikroprocesszoros tervezés, egyszerű feladatok HW és SW megvalósítása gépi szintű programozással Digitális technika II. (vimia111) 5. gyakorlat: Mikroprocesszoros tervezés, egyszerű feladatok HW és SW megvalósítása gépi szintű programozással Megoldás Elméleti anyag: Processzor belső felépítése, adat

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

A számítógép alapfelépítése

A számítógép alapfelépítése Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán

Részletesebben

Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet

Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei Kutató Intézet kisszámítógépes rendszerekben Tudományos számításokban gyakran nagy mennyiségű aritmetikai művelet elvégzésére van

Részletesebben

XXI. Országos Ajtonyi István Irányítástechnikai Programozó Verseny

XXI. Országos Ajtonyi István Irányítástechnikai Programozó Verseny evopro systems engineering kft. H-1116 Budapest, Hauszmann A. u. 2. XXI. Országos Ajtonyi István Dokumentum státusza Közétett Dokumentum verziószáma v1.0 Felelős személy Kocsi Tamás / Tarr László Jóváhagyta

Részletesebben

A MiniRISC processzor

A MiniRISC processzor BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT

Részletesebben

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa

Részletesebben

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

DDS alapú szinusz jelgenerátor fejlesztése

DDS alapú szinusz jelgenerátor fejlesztése SZEGEDI TUDOMÁNYEGYETEM Természettudományi Kar KÍSÉRLETI FIZIKAI TANSZÉK Informatikus-fizikus DIPLOMAMUNKA DDS alapú szinusz jelgenerátor fejlesztése Készítette: Mellár János Zsolt Témavezető: Dr. Gingl

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Assembly Programozás Rodek Lajos Diós Gábor

Assembly Programozás Rodek Lajos Diós Gábor Assembly Programozás Rodek Lajos Diós Gábor Tartalomjegyzék Ábrák jegyzéke Táblázatok jegyzéke Előszó Ajánlott irodalom IV V VI VII 1. Az Assembly nyelv jelentősége 1 2. A PC-k hardverének felépítése 4

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

1. ábra: Perifériára való írás idődiagramja

1. ábra: Perifériára való írás idődiagramja BELÉPTETŐ RENDSZER TERVEZÉSE A tárgy első részében tanult ismeretek részbeni összefoglalására tervezzük meg egy egyszerű mikroprocesszoros rendszer hardverét, és írjuk meg működtető szoftverét! A feladat

Részletesebben

Központi vezérlőegység

Központi vezérlőegység Központi vezérlőegység A számítógép agya a központi vezérlőegység (CPU: Central Processing Unit). Két fő része a vezérlőegység (CU: Controll Unit), ami a memóriában tárolt program dekódolását és végrehajtását

Részletesebben

Processzor (CPU - Central Processing Unit)

Processzor (CPU - Central Processing Unit) Készíts saját kódolású WEBOLDALT az alábbi ismeretanyag felhasználásával! A lap alján lábjegyzetben hivatkozz a fenti oldalra! Processzor (CPU - Central Processing Unit) A központi feldolgozó egység a

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) 1 Előadás Bevezetés az informatikába Adatszerkezetek Algoritmusok, programozási technológiák Számítástudomány alapjai

Részletesebben

12.1.1. A Picoblaze Core implementálása FPGA-ba

12.1.1. A Picoblaze Core implementálása FPGA-ba 12.1.1. A Picoblaze Core implementálása FPGA-ba A Picoblaze processzor Ebben a fejezetben kerül bemutatásra a Pikoblaze-zel való munka. A Picoblaze szoftveres processzort alkotója Ken Chapman a Xilinx

Részletesebben

11.3.1. Az MSP430 energiatakarékos használata

11.3.1. Az MSP430 energiatakarékos használata 11.3.1. Az MSP430 energiatakarékos használata A Texas Instruments ##LINK: www.ti.com## által fejlesztett MSP430 ##Mixed Signal Processor## család tagjai létrehozásakor a tervezők fontos célja volt a rendkívül

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Elágazás jövendölés ok gép megjövendöli, hogy egy ugrást végre kell hajtani vagy sem. Egy triviális jóslás: a visszafelé irányulót végre kell hajtani (ilyen van a ciklusok végén), az előre irányulót nem

Részletesebben

Máté: Számítógép architektúrák 2010.12.01.

Máté: Számítógép architektúrák 2010.12.01. Máté: Számítógép architektúrák... A feltételes ugró utasítások eldugaszolják a csővezetéket Feltételes végrehajtás (5.5 5. ábra): Feltételes végrehajtás Predikáció ió C pr. rész Általános assembly Feltételes

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,

Részletesebben

Digitális rendszerek. Utasításarchitektúra szintje

Digitális rendszerek. Utasításarchitektúra szintje Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) 1 Előadás Bevezetés az informatikába Adatszerkezetek Algoritmusok, programozási technológiák Számítástudomány alapjai

Részletesebben

Jelfeldolgozó processzorok (DSP) Rekonfigurálható eszközök (FPGA)

Jelfeldolgozó processzorok (DSP) Rekonfigurálható eszközök (FPGA) Beágyazott elektronikus rendszerek (P-ITEEA_0033) Jelfeldolgozó processzorok (DSP) Rekonfigurálható eszközök (FPGA) 5. előadás 2015. március 11. Analóg jelfeldolgozás Analóg bejövő jelek (egy folyamat

Részletesebben

Boundary Scan. Új digitális áramkör-vizsgálati módszer alkalmazásának indokoltsága

Boundary Scan. Új digitális áramkör-vizsgálati módszer alkalmazásának indokoltsága Boundary Scan Elméleti alapok Új digitális áramkör-vizsgálati módszer alkalmazásának indokoltsága A peremfigyelés alapelve, alapfogalmai Néhány alapvetõ részlet bemutatása A peremfigyeléses áramkörök vezérlése

Részletesebben

A mikroszámítógép felépítése.

A mikroszámítógép felépítése. 1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Programozott soros szinkron adatátvitel

Programozott soros szinkron adatátvitel Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.

Részletesebben

Számítógép architektúra kidolgozott tételsor

Számítógép architektúra kidolgozott tételsor Számítógép architektúra kidolgozott tételsor Szegedi Tudományegyetem Szeged, 27. Tartalomjegyzék. Fordítás, értelmezés... 4 2. Numerikus adatok ábrázolása: fixpontos ábrázolás, konverzió számrendszerek

Részletesebben

E-Laboratórium 1 Kombinációs digitális áramkörök alkalmazása Elméleti leírás

E-Laboratórium 1 Kombinációs digitális áramkörök alkalmazása Elméleti leírás E-Laboratórium 1 Kombinációs digitális áramkörök alkalmazása Elméleti leírás 1. Bevezetés A gyakorlat elvégzésére digitális integrált áramköröket alkalmazunk és hardver struktúrát vezérlő szoftvert is.

Részletesebben

3. Az elektronikus számítógépek fejlődése napjainkig 1

3. Az elektronikus számítógépek fejlődése napjainkig 1 2. Az elektronikus számítógépek fejlődése napjainkig Vázold fel az elektronikus eszközök fejlődését napjainkig! Részletesen ismertesd az egyes a számítógép generációk technikai újdonságait és jellemző

Részletesebben

VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK

VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Operációs rendszerek 1. 8. előadás Multiprogramozott operációs rendszerek

Operációs rendszerek 1. 8. előadás Multiprogramozott operációs rendszerek Operációs rendszerek 1. 8. előadás Multiprogramozott operációs rendszerek Soós Sándor Nyugat-magyarországi Egyetem Faipari Mérnöki Kar Informatikai és Gazdasági Intézet E-mail: soossandor@inf.nyme.hu 2011.

Részletesebben

Egyszerű RISC CPU tervezése

Egyszerű RISC CPU tervezése IC és MEMS tervezés laboratórium BMEVIEEM314 Budapesti Műszaki és Gazdaságtudományi Egyetem Egyszerű RISC CPU tervezése Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013. február 14. Nagy Gergely

Részletesebben

4. KOMBINÁCIÓS HÁLÓZATOK. A tananyag célja: kombinációs típusú hálózatok analízise és szintézise.

4. KOMBINÁCIÓS HÁLÓZATOK. A tananyag célja: kombinációs típusú hálózatok analízise és szintézise. . KOMBINÁCIÓS HÁLÓZATOK A tananyag célja: kombinációs típusú hálózatok analízise és szintézise. Elméleti ismeretanyag: Dr. Ajtonyi István: Digitális rendszerek I. 2., 5., 5.2. fejezetek Elméleti áttekintés..

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

erettsegizz.com Érettségi tételek

erettsegizz.com Érettségi tételek erettsegizz.com Érettségi tételek Az informatika fejlődéstörténete, jogi ismeretek Információ és társadalom Az informatika fejlődéstörténete a XX. Században, napjainkban Jogi ismeretek, szerzőjog, szoftver

Részletesebben

Digitális hangtechnika. Segédlet a Kommunikáció-akusztika tanulásához

Digitális hangtechnika. Segédlet a Kommunikáció-akusztika tanulásához Digitális hangtechnika Segédlet a Kommunikáció-akusztika tanulásához Miért digitális? A hangminőség szempontjából: a minőség csak az A/D D/A átalakítástól függ, a jelhordozó médiumtól független a felvételek

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális

Részletesebben

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA A PC FIZIKAI KIÉPÍTÉSÉNEK ALAPELEMEI Chip (lapka) Mikroprocesszor (CPU) Integrált áramköri lapok: alaplap, bővítőkártyák SZÁMÍTÓGÉP FELÉPÍTÉSE

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix 2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Előadás Bevezetés az informatikába Adatszerkezetek Algoritmusok, programozási technológiák Számítástudomány alapjai Számítógépek

Részletesebben

C programnyelv 1. Kedves Kollegina, Kolléga!

C programnyelv 1. Kedves Kollegina, Kolléga! C programnyelv 1 Kedves Kollegina, Kolléga! A jegyzetet Önnek készítettem azért, hogy referencia anyaga legyen a Programnyelv és a Programfejlesztés tárgyakhoz. Szeretném a segítségét igénybe venni abból

Részletesebben

INFORMATIKA MATEMATIKAI ALAPJAI

INFORMATIKA MATEMATIKAI ALAPJAI INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.

Részletesebben

ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul

ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul Matematika A 4. évfolyam ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN 9. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 9. modul ÍRÁSBELI

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

Összeadás BCD számokkal

Összeadás BCD számokkal Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok

Részletesebben

11.2.1. Joint Test Action Group (JTAG)

11.2.1. Joint Test Action Group (JTAG) 11.2.1. Joint Test Action Group (JTAG) A JTAG (IEEE 1149.1) protokolt fejlesztették a PC-nyák tesztelő iapri képviselők. Ezzel az eljárással az addigiaktól eltérő teszt eljárás. Az integrált áramkörök

Részletesebben

Közlekedés gépjárművek elektronikája, diagnosztikája. Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai

Közlekedés gépjárművek elektronikája, diagnosztikája. Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai Közlekedés gépjárművek elektronikája, diagnosztikája Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai TÁMOP-2.2.3-09/1-2009-0010 A Széchenyi István Térségi Integrált Szakképző

Részletesebben

12. tétel. Lemezkezelés

12. tétel. Lemezkezelés 12. tétel 12_12a_1.5 Lemezkezelés (Particionálás, formázás, RAID rendszerek) A partíció a merevlemez egy önálló logikai egysége, amely fájlrendszer tárolására alkalmas. Alapvetően két esetben hozunk létre

Részletesebben

Objektumorientált Programozás I.

Objektumorientált Programozás I. Objektumorientált Programozás I. Algoritmizálási alapismeretek Algoritmus végrehajtása a számítógépen Adattípusok Típuskonverziók ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok,

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Aritmetikai utasítások

Aritmetikai utasítások Aritmetikai utasítások Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példát. A 8086/8088-as processzor memóriája és regiszterei a little endian tárolást követik,

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Számítógép Architektúrák Utasításkészlet architektúrák 2015. április 11. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tsz. ghorvath@hit.bme.hu Számítógép Architektúrák Horváth

Részletesebben

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos

Részletesebben

Előadás_#06. Előadás_06-1 -

Előadás_#06. Előadás_06-1 - Előadás_#06. 1. Holtpont, Éheztetés [OR_04_Holtpont_zs.ppt az 1-48. diáig / nem minden diát érintve] A holtpont részletes tárgyalása előtt nagyon fontos leszögezni a következőt: Az éheztetés folyamat szintű

Részletesebben

Az integrált áramkörök kimenetének kialakítása

Az integrált áramkörök kimenetének kialakítása 1 Az integrált áramörö imeneténe ialaítása totem-pole three-state open-olletor Az áramörö általános leegyszerűsített imeneti foozata: + tápfeszültség R1 V1 K1 imenet V2 K2 U i, I i R2 ahol R1>>R2, és K1,

Részletesebben

Véletlenszám generátorok

Véletlenszám generátorok Véletlenszám generátorok Bevezetés Nincs elfogadott megközelítése a témának Alapvetően 2 fajta generátor: Szoftveres Hardveres Egyik legjobb szoftveres generátor: Mersenne Twister 2^19937 1 periódusú,

Részletesebben

4-1. ábra. A tipikus jelformáló áramkörök (4-17. ábra):

4-1. ábra. A tipikus jelformáló áramkörök (4-17. ábra): 3.1. A digitális kimeneti perifériák A digitális kimeneti perifériákon keresztül a számítógép a folyamat digitális jelekkel működtethető beavatkozó szervei számára kétállapotú jeleket küld ki. A beavatkozó

Részletesebben

A Szekszárdi I. Béla Gimnázium Helyi Tanterve

A Szekszárdi I. Béla Gimnázium Helyi Tanterve A Szekszárdi I. Béla Gimnázium Helyi Tanterve Négy évfolyamos gimnázium Informatika Készítette: a gimnázium reál munkaközössége 2015. Tartalomjegyzék Alapvetés...3 Egyéb kötelező direktívák:...6 Informatika

Részletesebben

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika

Részletesebben

Műveletek lebegőpontos adatokkal

Műveletek lebegőpontos adatokkal Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Műveletek lebegőpontos adatokkal Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Műveletek az IEEE 754

Részletesebben

Számítógép Architektúrák (MIKNB113A)

Számítógép Architektúrák (MIKNB113A) PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 4. előadás: Utasítás végrehajtás folyamata: címzési módok, RISC-CISC processzorok Előadó:

Részletesebben

Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT

Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint 25.5.5. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐDÁS: LOGIKI (OOLE) LGER ÉS LKLMÁSI IRODLOM. ÉS 2. ELŐDÁSHO rató könyve2-8,

Részletesebben

Digitális technika VIMIAA02 1. EA

Digitális technika VIMIAA02 1. EA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek

Részletesebben

A számítástechnika története

A számítástechnika története 27 A számítástechnika története A jegyzet a PHARE támogatásával készült. Összeállította: Markó Tamás Janus Pannonius Tudományegyetem Alkalmazott Matematika és Informatika Tanszék 1996 PDF formátum: Tipográfia,

Részletesebben

Verilog HDL ismertető 2. hét : 1. hét dia

Verilog HDL ismertető 2. hét : 1. hét dia BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Verilog HDL ismertető 2. hét : 1. hét + 15 25 dia Fehér Béla, Raikovich

Részletesebben

DSP architektúrák dspic30f család memória kezelése

DSP architektúrák dspic30f család memória kezelése DSP architektúrák dspic30f család memória kezelése Az adatmemória Az adatmemória 16 bites, két külön memóriazóna van kiépítve, az X és az Y memória, mindkettőnek címgeneráló egysége és adat sínrendszere

Részletesebben

BEÁGYAZOTT RENDSZEREK TERVEZÉSE Részletes Hardver- és Szoftvertervezés

BEÁGYAZOTT RENDSZEREK TERVEZÉSE Részletes Hardver- és Szoftvertervezés BEÁGYAZOTT RENDSZEREK TERVEZÉSE 1 A beágyazott szoftver- és hardver integrálásának a folyamata jól felkészült szakemberek munkáját igényli, amelyek gyakorlottak hibakeresési és felderítési metódusok alkalmazásában.

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

Nemzeti Alaptanterv Informatika műveltségterület Munkaanyag. 2011. március

Nemzeti Alaptanterv Informatika műveltségterület Munkaanyag. 2011. március Nemzeti Alaptanterv Informatika műveltségterület Munkaanyag 2011. március 1 Informatika Alapelvek, célok Az információ megszerzése, megértése, feldolgozása és felhasználása, vagyis az információs műveltség

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák

Digitális Rendszerek és Számítógép Architektúrák Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 4. előadás: Aritmetikai egységek - adatkezelés Előadó: Dr. Szolgay Péter Vörösházi Zsolt Jegyzetek,

Részletesebben

1.1. Általános áttekintés

1.1. Általános áttekintés 1.1. Általános áttekintés A mesterséges intelligencia megjelenésének az alapja a számítógép első működő eszköz az ENIAC számítógép volt amit a Manhattan-terv keretében fejlesztették ki 1946-ban. A memóriakezelő

Részletesebben