Digitális technika VIMIAA02 1. EA
|
|
- Árpád Miklós Halász
- 6 évvel ezelőtt
- Látták:
Átírás
1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT
2 Digitális Rendszerek Számítógépek Számítógép központok Asztali számítógépek Hordozható számítógépek ~ Az adatfeldolgozó egység neve CPU Beágyazott rendszerek Autó ECU Kapu kódzár Vérnyomásmérő ~ Az adatfeldolgozó egység neve mikrovezérlő
3 Digitális Rendszerek CPU MIKROPROCESSZOR Mikrovezérlő Széles teljesítményskála, szinte folytonos átmenet Méret, műveletvégzési képesség, magok száma A technológiai háttér közös: Félvezető technológia Óriási fejlődési ütem Moore törvény: tranzisztorok száma 1965: évente 2x 1975: 2 évente 2x Órajelsebesség Energiafogyasztás
4 Digitális Rendszerek Összetett rendszerek tervezése Hierarchia Részekre osztás, majd újabb szintek bevezetés Modularitás Jól definiált funkciók és interfészek, építkezhetőség Egységesítés, szabványosítás Közös funkciók uniformizálása Erőteljes újrahasznosítás A digitális technika tárgyban a tervezési feladatok végrehajtása során is ezeket az elveket fogjuk felhasználni, alkalmazni
5 Digitális technika Beágyazott rendszerek A környezetből analóg és digitális jelek Hagyományos feldolgozás analóg elemekkel Korszerű feldolgozás digitális módon Az analóg jelek konverziója szükséges Analóg-digitális átalakító (ADC) Digitális-analóg átalakító (DAC)
6 Digitális technika Közvetlen digitális jelek Nyomógomb Billentyűzetek Kódolás Leolvasás Képérzékelők Léptető motor Kijelzők
7 Digitális technika Adatábrázolás Numerikus értékek Külső jelek A/D konverzió után Temp = 26,5 C Belső adatok reprezentációja π = 3,1415 Memória cím értéke (32 biten) 0x8000_FA14 Egyéb jelek, kódok ON-OFF, egyéb diszkrét állapotok Karakterek, kódtáblák Speciális kódok (pozíció kód, tömörített, stb.)
8 Digitális technika Számábrázolási módszerek Pozícionális számábrázolás, n helyiértéken, tetszőleges számrendszerben D = nn 11 ii=00 dd ii rr ii ahol r a számrendszer alapja (radix) d i a számrendszer egy számjegye (digit) Akár tekinthetjük egy polinomnak is D=d n-1 *r n-1 +d n-2 *r n d 2 *r 2 +d 1 *r 1 +d 0 *r 0 Például ismerjük az r = 10-es számrendszert Ebben a decimális digitek ismert szimbólumai: 0, 1, 2,3,4,5,6, 7, 8, 9, (0 r-1)
9 Digitális technika Számábrázolási módszerek Példa: A jelentése értelemszerűen: = 2* * * *10 0 = = = Ugyanez 8-as számrendszerben is egy érvényes szám, de más numerikus értéket jelent (kb. a fele) = 2* * * *8 0 = = 2* *8 + 4*1 =
10 Digitális technika Digitális technikában fontos számrendszerek Tízes/Decimális/Dekadikus r = 10 d i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, Kettes/Bináris r = 2 d i = 0, 1, (a nevük bit, binary digit == bit) Nyolcas/Oktális r = 8 d i = 0, 1, 2, 3, 4, 5, 6, 7, Tizenhatos/Hexadecimális r = 16 d i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F A számjegyek fenti szimbólumait a gépek bináris bitsorozatokkal reprezentálják
11 Digitális technika Számjegyek bitkódjai természetes kódkép D = nn 11 ii=00 dd ii rrrr alapján X 2 = b 0 *2 0 X 8 = b 2 *2 2 + b 1 *2 1 + b 0 *2 0 X 10 = b 3 *2 3 + b 2 *2 2 + b 1 *2 1 + b 0 *2 0 X 16 = b 3 *2 3 + b 2 *2 2 + b 1 *2 1 + b 0 *2 0 X 16, X 10 bináris felírása formailag azonos, értelmezési tartományuk eltérő
12 Digitális technika Konverzió számrendszerek között Bináris Hexadecimális egyszerű 16 = 2 4, 1 hexadecimális digit 4 bináris digit (bit) = , csoportosítás jobbról kezdve és bal oldalon 4 bitre kiegészítve Szokásos írásmód = 0010_0000_0001_ Bináris Oktális hasonlóan, 3 bites csoportokkal 8 = 2 3, 1 oktális digit 3 bináris digit (bit) = 010_000_001_100 2
13 Digitális technika A Decimális Bináris konverzió bonyolultabb, valódi számítási algoritmust kíván Egészosztás 2-vel, a maradék az új bit, a legkisebb helyiértéktől kezdve, amíg 0 a hányados Példa decimális jelöléssel Eredmény: (visszafelé kiolvasva, az első bit a legkisebb helyiérték, LSB) =
14 Digitális technika Decimális Bináris konverzió, másik algoritmus 2 N+1 >= Decimális szám > 2 N Ha igen, akkor a bináris alakban d N = 1 és a kivonás után újabb feltétel vizsgálat következik a következő (kisebb) hatvánnyal Az első bit a legnagyobb helyiértékű bit (MSB)
15 Digitális technika A Bináris Decimális konverzió fontosabb Előző algoritmus inverze: Táblázat alapján, minden aktív d i bináris digit numerikus értékét összegezzük = , mert = = =2014
16 Digitális technika Bináris Decimális konverzió, másik algoritmus Az osztó/hányados algoritmus inverze: Legnagyobb helyiértékű bittől kezdve duplázás és következő bit hozzáadása lépésről-lépésre Alapja a számpolinom felírása Horner formulával: D = nn 11 ii=00 bb ii 22 ii = b n-1 *2 n-1 +b n-2 *2 n b 2 *2 2 +b 1 *2 1 +b 0 *2 0 = ((((((b n-1 *2)+b n-2 )*2+..+b 2 )*2+b 1 )*2+b 0 Példa: = = = ((((((((((1*2+1)*2+1)*2+1)*2+1)*2+0)*2+1)*2+1)*2+1)*2+1)*2+0)
17 Digitális technika Számrendszerek és konverziók összefoglalása Fontos számrendszerek: bináris, hexadecimális és decimális A bináris az elsődleges, minden új ismeretünk majd erre épül, azonban nagyobb értéktartománynál mérete miatt kezelhetetlen, áttekinthetetlen, kényelmetlen A hexadecimális formátum ennek egy tömörített formája, nincs szükség algoritmikus konverzióra, a többjegyes hexa számokat számjegyenként bináris sorozattá alakítva közvetlenül a teljes bináris formát kapjuk. Az {A,B,C,D,E,F} szimbólumokat használjuk a {10,11,12,13,14,15} számértékek jelölésére A többjegyes decimális számok bináris kezelése bonyolult. Mindkét irányban (DEC BIN, BIN DEC) algoritmikus megoldások szükségesek, amelyek speciális aritmetikai műveletek elvégzése után adják meg a konverzió eredményét.
18 Digitális technika Néhány fontosabb bináris érték, fejben számoláshoz Apró kellemetlenség, A korábban elterjedt k, M, G, T nagyságrendi jelölések nem teljesen precízek Az új szabványos jelölés lassan terjed, mi is nehezen tanuljuk, de egy informatikusnak illik tudni róla
19 Bináris számábrázolás tulajdonságai Eddig pozitív egészek N bit, 0-tól 2 N -1 terjedő pozitív egész értéktartomány Pozíció függő súlytényező: helyiérték Aritmetikai műveletek: Összeadás szabályai (általában 2 operandus között): = 0, = 1, 0 +1 = 1, = 10, ahol az 1 az átvitel a következő, eggyel magasabb helyiértékre Példa = 9, 4 biten Átvitel a 2. pozíción Eredmény esetleg jegy, pl = 17
20 Bináris számábrázolás tulajdonságai Szorzás Bináris szorzás szabályai: 0 * 0 = 0, 1 * 0 = 0, 0 * 1 = 0, 1 * 1 = 1 Nincs átvitel, de vannak részszorzatok és részszorzat összegek (több bemenetű összeadás?) Példák: 6*3 = 18 14*11 = 154 Az eredmény alapvetően 2N bites (4+4 = 8)
21 Előjeles számábrázolás Eddig: Összeadás, szorzás, (maradékos osztás) Egyik sem vezet ki a pozitív számok halmazából, bár a számtartományt esetleg növelni kell! Kivonás? Negatív hozzáadása? Mi a negatív? Előjeles számok: Normál jelölésben van (elő)jel, egyedi szimbólum De itt csak 0 és 1 van, nincs több szimbólum Más szabály kell (az előjel is egy új bit): Előjel + érték (pl. lebegőpontos formátum mantissza) Eltolt (offset) bináris (pl. lebegőpontos form. exponens) Egyes komplemens Kettes komplemens Csak ezzel foglalkozunk
22 Előjeles számábrázolás Komplemens kódok: A kettes komplemens fontos!! Egyes komplemens (1 s C): Képzési szabálya: Negatív értékhez minden bináris számjegyet invertálunk (0 1,1 0) Kettes komplemens (2 s C): Képzési szabálya: Negatív értéknél minden bitet invertálunk és az így kapott számhoz hozzáadunk 1-et és csak az eredeti számú bitet őrizzük meg Más módszer: A szám értékét 2 N -ből binárisan kivonva megkapjuk a negatívjának 2 s C kódját. Pl. 4 bitre -5 képzése: = 1011, mert igaz, hogy = 10000, ami viszont 4 biten 0.
23 Digitális technika Kettes komplemens számábrázolás A pozícionális számábrázolás definíciója alapján D = b n-1 *2 n-1 + nn 2 ii=0 bb ii 2 ii b n-1 a legnagyobb helyiértékű bit (MSB), b i pedig a többi bit. Az MSB negatív értékű, ha nem nulla A 2 s C előjeles számokkal végzett műveletvégzési szabályok megegyeznek a normál pozitív számokra vonatkozókkal Egyetlen 0 kód, önmaga kettes komplemens kódja Könnyű aritmetikai tesztek (=,, >, <,, )
24 Előjeles számábrázolás Kettes komplemens (2 s C) méretkonverzió Előjel kiterjesztés: Számjegyek számának növelése Pozitív számokra egyértelmű, bal oldalon kiegészítés 0-kal, a numerikus érték természetesen nem változik A +5 érték 4 biten 0101 és 12 biten 0000_0000_0101 A 5 érték 4 biten 1011 és 12 biten 1111_1111_1011 Mert a 2 s C szabályai szerint bitjeit invertálva _0000_ = 0000_0000_0101 Általánosan, ha kevesebb bitről előjel kiterjesztéssel méretet növelünk több bitre, az érték nem változik Jelentősége: pl. konverzió különböző méretű adatformátumok között (8 bites bájt 32 bites szó)
25 Valós számok Az eddigi pozícionális számrendszer, a törtrészre is kiegészíthető, csak negatív kitevőkkel r -1, r -2,.. r -n, tört helyiértékek, r 0 tól jobbra Bináris előjeles számrendszer valós számokra Implicit kettedes pont a megfelelő helyen Tehát ebben a számformátumban pl. előjelesen a = 6,625 illetve az = -0,125 Tetszőleges pontosság, bitszám növelésével, DE Probléma: 0,1 10 = 0,
26 Fixpontos számábrázolás tulajdonságai A teljes értéktartományt ( FSR ) a legnagyobb helyiértékű bit (MSB) értéke határozza meg, a példában az előjeles számokra ~ ±2 4 = ~ ± 16 Két érték közötti min. eltérést (felbontás, pontosság) a legkisebb helyiértékű bit (LSB) értéke határozza meg, a példában ~ ±2-3 = ~ ±0,125 Nagy értéktartomány sok egész bit Nagy pontosság sok törtrész bit Megoldás Skálázó tényező alkalmazása
27 Lebegőpontos számformátum A számok normál alakját modellezi, a választott számrendszer szerinti skálázó tényező használatával D = ( 1) e *m*r k ahol e az előjel, m a mantissza, r a radix (2 vagy 10), k a kitevő. A szabvány több méretet definiál (32/64/128 bit). Pl. az IEE754 szabvány szerint, 32 biten a formátum a következő: e=1 bit, m=24 (23+1) bit, k=8 bit, és az érték (-1)^e*(1+m)*2^(k-127) Értéktartománya széles: 32 biten maximum ±3,4*10 38 Tartalmazza a 0-t, és a legkisebb értékei ±1,4*10-45 Egyenletes relatív pontosság, a mantissza pontossága, 2-23
28 Decimális számábrázolás Digitális hardver bináris számábrázolás Könnyű a műveletvégzők tervezése ADD, SUB, MULT, DIV, SQRT Azonban szükség lehet a decimális értékre vagy akár decimális aritmetikára Pl. numerikus kijelzés esetén, banki aritmetika Két megoldás lehetséges, feladattól függ a választás Decimális adatok tárolása (nem hatékony), decimális műveletvégzés (bonyolultabb), közvetlen eredmény Bináris adatok tárolása (hatékony), bináris műveletek (egyszerűbb), kijelzés előtt BIN2BCD konverzió
29 Decimális számábrázolás Decimális számjegyek kódolása, ábrázolása A binárisan kódolt decimális (BCD) kódban a bitek a természetes 8421 súlyozással szerepelnek Léteznek még más, speciális alkalmazási követelményeknek megfelelő kódok, melyek egyes alkalmazásokban előnyösen használhatók (nem tárgyaljuk) Aritmetikai műveleteknél a BCD digitekkel végzett műveleteknél az átvitel kezelése bonyolult (nem tárgyaljuk)
30 Kódolási technikák A numerikus értékeknél fixpontos (előjeles) egész, tört, lebegőpontos Nemcsak számokkal dolgozunk: Szöveg, hang, kép, stb. Tetszőleges egyedi események, állapotok A továbbiakban megvizsgáljuk a kódolási technikák néhány egyszerűbb területét Feladat: Adott célra legkedvezőbb kódolás elérése
31 Kódolási technikák A bináris kódolási ABC 2 elemű {0,1} A legegyszerűbb esetekben k db bittel 2 k db kódszó képezhető, ill. N darab kódszót minimum n log 2 N bittel tudunk képezni (pl. 10 db kódszó minimum log 2 N =3,32 4) Kódkészlet osztályozása Fix vagy változó hosszúságú Numerikus, alfanumerikus, grafikus Pozíció kód vagy szomszédos kódolású Redundáns biteket tartalmazó hibajelző és/vagy javító
32 Kódolási technikák Fix hosszúságú kódok Minimális bitszám igény, min. n log 2 N Bináris, vagy bármely, tetszőleges sorrendű Nem minimális bitszám mellett k-az-n-ből, pl. 1-az-N-ből, 2-az-5-ből Könnyen kezelhető, értelmezhető, digitális hardverrel generálható, dekódolható Eredeti ASCII karaktertáblázat 7 bites, 128 kódszó
33 Kódolási technikák Pozíció kódok A lineáris ill. forgó abszolút pozíció jeladóknál a kód megbízható adatátvitelt ad, a szomszédos kódszavak között mindig csak1 bit változás (forgóadónál a végértéken is)
34 Kódolási technikák Gray, tükrözött kód bináris n bitből N=2 n méretű kódszókészlet generálható A bal alsó saroktól kezdve kiolvashatók a 2, 3, 4 bites kódtáblák Lehet kevesebb, de páros kódszó számot is használni, az aktuális tábla középszimmetrikus oszlopaival (pl. 10 kód 4 biten, ha éppen erre lenne szükség) Ha már megismertük a XOR logikai függvényeket, látni fogjuk, hogy a Gray kód generálása viszonylag könnyű
35 1. EA vége
Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
Assembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
Dr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
I+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant
Fixpontos és lebegőpontos DSP Számrendszerek
Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa
5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
DIGITÁLIS TECHNIKA I KÓD IRODALOM SZIMBÓLUMKÉSZLET KÓDOLÁS ÉS DEKÓDOLÁS
DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 7. ELİADÁS 7. ELİADÁS 1. Kódok és kódolás alapfogalmai 2. Numerikus kódok. Tiszta bináris kódok (egyenes kód, 1-es
5. Fejezet : Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Számítógép architektúrák
Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált
Digitális jelfeldolgozás
Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés
A programozás alapjai előadás. A C nyelv típusai. Egész típusok. C típusok. Előjeles egészek kettes komplemens kódú ábrázolása
A programozás alapjai 1 A C nyelv típusai 4. előadás Híradástechnikai Tanszék C típusok -void - skalár: - aritmetikai: - egész: - eger - karakter - felsorolás - lebegőpontos - mutató - függvény - union
DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA
1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk
5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek
Egész számok ábrázolása (jegyzet) Bérci Norbert 2015. szeptember 10-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 1 1.2. Alaki- és
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
Aritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
Kombinációs hálózatok Számok és kódok
Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Bevezetés a számítástechnikába
Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.
Programozott soros szinkron adatátvitel
Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
Bevezetés az informatikába
Bevezetés az informatikába 2. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése
Alapfogalmak Dr. Kallós Gábor 2007-2008. A számítógép felépítése A Neumann-elv A számítógéppel szemben támasztott követelmények (Neumann János,. Goldstine, 1945) Az elv: a szekvenciális és automatikus
1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció
1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága
A Gray-kód Bináris-kóddá alakításának leírása
A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül
Negatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
Műveletek lebegőpontos adatokkal
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Műveletek lebegőpontos adatokkal Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Műveletek az IEEE 754
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1.
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. Kötelezően megoldandó feladatok: A kódoláselmélet alapjai részből: 6. feladat 16. feladat A logikai függvények részből: 19. feladat
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 10. ELŐADÁS 1 PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE A 1 1
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.
6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
INFO1 Számok és karakterek
INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
Digitális Rendszerek és Számítógép Architektúrák
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 1. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Vörösházi Zsolt Szolgay
Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.
Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
Digitális technika (VIMIAA02) Laboratórium 5.5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5.5 Fehér Béla Raikovich Tamás,
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László
A számrendszerekrl általában
A számrendszerekrl általában Készítette: Dávid András A számrendszerekrl általában Miért foglalkozunk vele? (Emlékeztet) A mai számítógépek többsége Neumann-elv. Neumann János a következ elveket fektette
26.B 26.B. Analóg és digitális mennyiségek jellemzıi
6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!
Informatika érettségi vizsga
Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés
A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata
7.2.1. A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata A valósidejű jel- és képfeldolgozás területére eső alkalmazások esetében legtöbbször igény mutatkozik arra, hogy
DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK
5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél
5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris
(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték...
Számábrázolás és karakterkódolás (jegyzet) Bérci Norbert 2014. szeptember 15-16-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 2 1.2.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Digitális rendszerek. Utasításarchitektúra szintje
Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik
Verilog HDL ismertető 2. hét : 1. hét dia
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Verilog HDL ismertető 2. hét : 1. hét + 15 25 dia Fehér Béla, Raikovich
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Komputeralgebrai Algoritmusok
Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék 2015-2016 Ősz Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma,
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 2. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Dr. Vörösházi Zsolt
Számrendszerek. Bináris, hexadecimális
Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk
A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni.
Példák számok kiírására A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Decimális számok kiírása Az alábbi
I. el adás, A számítógép belseje
2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Programtervezési stratégiák. Top-down tervezés. Top-down tervezés. Bottom-up tervezés. 4.
212. február 28. A PROGAMOZÁS ALAPJAI 1 Vitéz András egyetemi adjunktus BME Híradástechnikai Tanszék vitez@hit.bme.hu Miről lesz ma szó? Programtervezési stratégiák Top-down Bottom-up Függvények Szintaxis
TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
INFORMATIKA MATEMATIKAI ALAPJAI
INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 2. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Dr. Vörösházi Zsolt
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)
2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli
Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék
Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483
A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással
.. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás
Informatika elméleti alapjai. January 17, 2014
Szám- és kódrendszerek Informatika elméleti alapjai Horváth Árpád January 17, 2014 Contents 1 Számok és ábrázolásuk Számrendszerek Helyiérték nélküliek, pl római számok (MMVIIII) Helyiértékesek a nulla
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Számkezelés Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 53 TARTALOMJEGYZÉK 1 TARTALOMJEGYZÉK 2 Az egzakt aritmetika Bignum aritmetika
Assembly Utasítások, programok. Iványi Péter
Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP-2.2.5.
Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 12.a Évfolyam: 12. 32 hét, heti 2 óra, évi 64 óra Ok Dátum: 2013.09.21
1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.
Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.