Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése"

Átírás

1 Alapfogalmak Dr. Kallós Gábor A számítógép felépítése A Neumann-elv A számítógéppel szemben támasztott követelmények (Neumann János,. Goldstine, 1945) Az elv: a szekvenciális és automatikus működésű, digitális, elektronikus számítógép (memóriája) tárolja a műveletek sorozatát, azaz a programot. A gép részei: Központi aritmetikai egység (számolómű) Központi vezérlő egység Memória nput és output egység 2 Számítógép történelem Számolóeszközök és számítógépek Számolásra alkalmas eszközök ( őstörténet ) Számológép (mechanikus) B. Pascal, W. Leibniz, C. Babbage Számítógép terv (mechanikus): Babbage, 1838 Első elektromechanikus számítógépek: Z1-4 (K. Zuse, 1938-) Mark. és. (. Aiken, 1941-) Első igazi elektronikus számítógép: ENAC (J. Mauchly,. Goldstine és J. Eckert, 1946) elektroncső, 150 kw energiaigény, szorzás mp-ként 3 1

2 Számítógép történelem Számítógép generációk Osztályozás szempontjai: hardverek és szoftverek fejlettsége Első generáció ( ) Jelfogós és elektroncsöves berendezések CPU aritmetikai logikai egység + központi vezérlő egység EDVAC (1949), Z4 (1950), UNVAC (1951, már sorozatban gyártott), BM 650 és 701 Gépi kódú ill. assembly programozás Második generáció ( ) Diódák és tranzisztorok, ferritgyűrűs memória, kisebb gépméret Gyorsabb műveletvégzés, 1 millió művelet per sec Első programnyelvek (FORTRAN , COBOL , BASC ) 4 Számítógép történelem armadik generáció ( k.) ntegrált áramkörök, sokkal kisebb energiafogyasztás és méret, sokszoros tárolókapacitás és sebesség Operációs rendszerek (UNX), erőforrások közös használata BM 360, CDC 6000 Negyedik generáció (1975k-) Nagyfokú integráltság Mikroprocesszor, memória és kiegészítő áramkörök Mikroszámítógépek Ötödik generáció (elv: 1989k-) Néhány elképzelés beépült a mostani gépekbe 5 Számítógép történelem Magyarországi történelem azai fejlesztések ( hőskor, 50-es évek közepétől) Kozma László és Kalmár László (BME, Szeged) Számítógép-ellátottság 70-es évek elejétől: második generációs gépek (kb. 10 év késéssel) az országos szerveknél és az egyetemeknél, kutató intézeteknél 1983-tól: iskolaszámítógép program, minden középiskola kapott egy T1080Z személyi számítógépet (BASC progr.), szintén 10 év késés a harmadik generációnál 80-as évek végétől: BM-klónok (COCOM-lista vége) 90-es évek második fele: már nincs lemaradásunk, ill. ha mégis van, az csak pénzkérdés 6 2

3 A számítógépek osztályozása Számítógép kategóriák Az osztályozás fontosabb szempontjai: Feldolgozási sebesség, tárkapacitás, adatátviteli sebesség Szuperszámítógép Az elsők több tízmillió dollárba kerültek, most is nagyon drágák Akár több ezer, igen gyors processzort tartalmaznak, párhuzamos működés Nagyon számolásigényes tudományos kutatómunkához és katonai célokra használják Leghíresebb képviselőjük a Cray gépcsalád Nagyszámítógép Nagyobb cégeknél, vállalatoknál, nagyobb egyetemeken Több ezer felhasználó egyidejű kiszolgálására Kisszámítógép A személyi számítógépnél eggyel magasabb kategória Fontosabb gyártók: BM (de nem PC), Silicon Graphics, Sun, Next Mikroszámítógép (személyi számítógép, PC) A mikroprocesszor megjelenésével, már az első példányok elfértek minden kellékükkel együtt egy asztalon, egy felhasználó számára elérhető áron Fontosabb gyártók: BM, ewlett Packard, Olivetti, Apple Macintosh 7 Adatok A számítógép adatkezelő eszköz Az adatokat át kell alakítani oly módon, hogy a számítógép kezelni és tárolni tudja Az adattárolás alapja a kettes számrendszer elyiértékes ábrázolás, tdk. 0-1 sorozatok Az adatokat a gép memóriája tárolja Bit, bájt, Kilobájt, Megabájt, Gigabájt, Terabájt Tárolandó: szöveg, szám, (utasítás), logikai, kép és hang 8 Szöveges adatok A szöveg karakterek sorozata A karaktereket 1, 2 vagy több bájton el lehet tárolni A kódokat táblázatok tartalmazzák Tárolási szabványok ASC (American Standard Code for nformation nterchange) Felső fele változhat, SO (Latin-1) és (Latin-2) EBCDC (Extended Binary Coded Decimal nterchange Code, főként nagygépes környezetben) Unicode (Különböző nemzeti karakterkészleteket tartalmaz, 1991-) UTF-7: 7 bites kód, már nem használják UTF-8: az ASC Latin-1-ből UTF-16: 16 bites kód UCS-4 és UTF-32: 4 bájtos kódok Ebben már pl. a kínai és koreai képírás is benne van 9 3

4 Az ASC kódtábla alsó fele 10 A Latin-2 (felső) kódtábla részlete 11 Számok Tárolási szabványok egész számokra (fixpontos: a tizedespont helye fix) Előjeles bináris kódolás BCD kódolás (Binary Coded Decimal, vállalati és pénzügyi rendszereknél) 4 bites csoportok, jegyek 0-tól 9-ig tt lehet törtrész is Bináris komplemens kódolás A 0-val kezdődő számok pozitívak Az 1-gyel kezdődő számok negatívak (invertálással) Spec: kettes bináris komplemens A számhoz hozzáadunk 2^N-et, ennek a bináris alakját vesszük, ha N biten kódolunk (nemneg. számoknál túlcsordulás) Vagy: pozitív számokra bináris alak, negatív számokra a bináris alak bitenkénti invertálása + 1 tt nincs pozitív és negatív

5 Példa: 2 bájtos kettes (bináris) komplemens ábrázolás Ábrázolható számtartomány: 2^15-től +2^15 1-ig Ábrázolható számok legnagyobb nem negatív legkisebb nem negatív legnagyobb negatív legkisebb negatív Binárisan Decimálisan Lehetséges problémák az egész számok ábrázolásával: Túlcsordulás Pozitív és negatív 0 13 Tört számokra: lebegőpontos ábrázolás m*2^k alakra hozzuk a számot, ahol ½ <= m < 1 Tárolandó a mantissza (m, az első bit kivételével, pl. 23, 52 vagy 64 bit), a karakterisztika (k, fixpontosan, pl. 8, 11 vagy 15 bit), és az előjel (1 bit) Kiegészítjük 0-val a hiányzó pozíciókat ill. elhagyjuk az el nem férő jegyeket Valós számokra csak közelítés! Példa: a -987,56 lehetséges ábrázolása 4 bájton 987,56 10 = Lebegőpontos alak: *2 10 Karakterisztika: = Előjel 1 Mantissza (1) Karakterisztika Lehetséges problémák: Túlcsordulás, alulcsordulás A 0 pontossága, ill. mit tekintünk 0-nak 14 Logikai adatok Logikai állítás: igazságtartalma egyértelműen eldönthető (igaz vagy hamis) Ezt a két értéket tároljuk Elvileg egy bit is elég, gyakorlatilag egy bájtot szoktak használni Műveletek Egyváltozós (NOT negáció, tagadás) 4 ilyen művelet lehetséges Kétváltozós AND és, konjunkció; OR vagy, diszjunkció; XOR kizáró vagy Szabályok: Boole-algebra 15 5

6 Fontosabb kétváltozós logikai műveletek: A B A AND B A OR B A XOR B A B A B elyettesítési szabályok az implikáció és az ekvivalencia kiváltására (egyszerűen ellenőrizhető): A B = NOT(A) OR B A B = (A AND B) OR (NOT A AND NOT B) 16 6

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta.

A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta. Kezdetek A gyors számolás vágya egyidős a számolással. Mind az egyiptomiak mind a babilóniaiak számoló táblázatokat használtak. A helyiérték és a 10-es számrendszer egyesítése volt az első alapja a különböző

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant

Részletesebben

IT - Alapismeretek. Megoldások

IT - Alapismeretek. Megoldások IT - Alapismeretek Megoldások 1. Az első négyműveletes számológépet Leibniz és Schickard készítette. A tárolt program elve Neumann János nevéhez fűződik. Az első generációs számítógépek működése a/az

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

3. Az elektronikus számítógépek fejlődése napjainkig 1

3. Az elektronikus számítógépek fejlődése napjainkig 1 2. Az elektronikus számítógépek fejlődése napjainkig Vázold fel az elektronikus eszközök fejlődését napjainkig! Részletesen ismertesd az egyes a számítógép generációk technikai újdonságait és jellemző

Részletesebben

Informatika érettségi vizsga

Informatika érettségi vizsga Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 2

Dr. Oniga István DIGITÁLIS TECHNIKA 2 Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8

Részletesebben

Alapismeretek. Tanmenet

Alapismeretek. Tanmenet Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Történeti áttekintés 2. Számítógépes alapfogalmak 3. A számítógép felépítése, hardver A központi egység 4. Hardver

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

Számítógép architektúrák. Bevezetés

Számítógép architektúrák. Bevezetés Számítógép architektúrák Bevezetés Mechanikus számológépek Blaise Pascal (1642) Gottfried Willhelm von Leibniz báró (~1676) Összeadás, kivonás Mai négyműveletes zsebszámológépek mechanikus őse Charles

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

Információs technológiák 1. Ea: Történelmese

Információs technológiák 1. Ea: Történelmese Információs technológiák 1. Ea: Történelmese 56/1 B ITv: MAN 2015.09.08 Témakörök A számítógép kialakulása A Neumann-elvek Testépítés A lélek útja tudattágítás Ellenőrző kérdések 56/2 Mi a számítógép?

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.

Részletesebben

5. Fejezet : Lebegőpontos számok

5. Fejezet : Lebegőpontos számok 5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix 2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.

Részletesebben

INFORMATIKA MATEMATIKAI ALAPJAI

INFORMATIKA MATEMATIKAI ALAPJAI INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

Fejezetek az Információ-Technológia Kultúrtörténetéből

Fejezetek az Információ-Technológia Kultúrtörténetéből Fejezetek az Információ-Technológia Kultúrtörténetéből Kezdeti elektronikus számítógépek kultúrtörténete ITK 7/58/1 Számológép - számítógép? Lady Ada Lovelace (1815-1852). Charles Babbage (1791-1871) ITK

Részletesebben

2. Fejezet : Számrendszerek

2. Fejezet : Számrendszerek 2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:

Részletesebben

Fixpontos és lebegőpontos DSP Számrendszerek

Fixpontos és lebegőpontos DSP Számrendszerek Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

INFO1 Számok és karakterek

INFO1 Számok és karakterek INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa

Részletesebben

I+K technológiák. Számrendszerek, kódolás

I+K technológiák. Számrendszerek, kódolás I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép

Részletesebben

5. Fejezet : Lebegőpontos számok. Lebegőpontos számok

5. Fejezet : Lebegőpontos számok. Lebegőpontos számok 5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

Összeadás BCD számokkal

Összeadás BCD számokkal Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok

Részletesebben

Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása

Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása Az Informatika Elméleti Alapjai Dr. Kutor László A számolás korai segédeszközei A korszerű számítógépek kialakulása http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1

Részletesebben

Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása

Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása Az Informatika Elméleti Alapjai Dr. Kutor László Számolás az ujjakon 2. (Kína- India) A számolás korai segédeszközei A korszerű számítógépek kialakulása http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév:

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 2. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT

Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

Programozás alapjai. Wagner György Általános Informatikai Tanszék

Programozás alapjai. Wagner György Általános Informatikai Tanszék Általános Informatikai Tanszék Hirdetmények (1) Jelenlevők: műsz. informatikusok progr. matematikusok A tantárgy célja: alapfogalmak adatszerkezetek algoritmusok ismertetése Követelményrendszer: Nincs:

Részletesebben

Informatikai rendszerek alapjai (Informatika I.) NGB_SZ003_1

Informatikai rendszerek alapjai (Informatika I.) NGB_SZ003_1 Informatikai rendszerek alapjai (Informatika I.) NGB_SZ003_1 1. előadás Történeti áttekintés Információelméleti alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Történeti áttekintés:

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

A számítástechnika fejlődése

A számítástechnika fejlődése A számítástechnika fejlődése Az 1600-as évektől kezdődően az emberek igyekeztek olyan gépeket építeni, melyek megkönnyítik a számolást. A számítógépek fejlődését nagy lépésekben követjük. Az egymástól

Részletesebben

Informatikai Rendszerek Alapjai. A számolás korai segédeszközei A korszerű számítógépek kialakulása

Informatikai Rendszerek Alapjai. A számolás korai segédeszközei A korszerű számítógépek kialakulása Informatikai Rendszerek Alapjai Dr. Kutor László A számolás korai segédeszközei A korszerű számítógépek kialakulása http://uni-obuda.hu/users/kutor/ 2015. ősz Óbudai Egyetem, NIK Dr. Kutor László IRA 9/37/1

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: és Byte: 8 bit 28 64 32 6 8 4 2 bináris decimális

Részletesebben

Jacquard szövőgépe, vezérlési modulok használata 1805 lyukkártyás vezérlés

Jacquard szövőgépe, vezérlési modulok használata 1805 lyukkártyás vezérlés Az emberek ősidők óta törekednek arra, hogy olyan eszközöket állítsanak elő, melyek könnyebbé teszik a számolást, ilyen pl.: kavicsok, fadarabok, zsinórokra kötött csomók, fák, földre vésett jelek voltak.

Részletesebben

Digitális technika VIMIAA02 1. EA

Digitális technika VIMIAA02 1. EA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek

Részletesebben

Programozott soros szinkron adatátvitel

Programozott soros szinkron adatátvitel Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.

Részletesebben

A programozás alapjai előadás. A C nyelv típusai. Egész típusok. C típusok. Előjeles egészek kettes komplemens kódú ábrázolása

A programozás alapjai előadás. A C nyelv típusai. Egész típusok. C típusok. Előjeles egészek kettes komplemens kódú ábrázolása A programozás alapjai 1 A C nyelv típusai 4. előadás Híradástechnikai Tanszék C típusok -void - skalár: - aritmetikai: - egész: - eger - karakter - felsorolás - lebegőpontos - mutató - függvény - union

Részletesebben

Információs technológiák 2. Ea: Info-tour-mix. Nélkülözhetetlen alapfogalmak

Információs technológiák 2. Ea: Info-tour-mix. Nélkülözhetetlen alapfogalmak Információs technológiák 2. Ea: Info-tour-mix Nélkülözhetetlen alapfogalmak 86/1 B ITv: MAN 2015.09.08 Témakörök Rendszerelmélet Adatok, jelek, kommunikáció Mesés 1x1 Ellenőrző kérdések 86/2 Rendszerelmélet

Részletesebben

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés . Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve

Részletesebben

Bevezetés az informatikába Dr. Nyakóné dr. Juhász, Katalin Dr. Terdik, György Biró, Piroska Dr. Kátai, Zoltán

Bevezetés az informatikába Dr. Nyakóné dr. Juhász, Katalin Dr. Terdik, György Biró, Piroska Dr. Kátai, Zoltán Bevezetés az informatikába Dr. Nyakóné dr. Juhász, Katalin Dr. Terdik, György Biró, Piroska Dr. Kátai, Zoltán Bevezetés az informatikába Dr. Nyakóné dr. Juhász, Katalin Dr. Terdik, György Biró, Piroska

Részletesebben

Az informatika fejlődéstörténete. A számítástechnika kezdetei

Az informatika fejlődéstörténete. A számítástechnika kezdetei Az informatika fejlődéstörténete A számítástechnika kezdetei A mechanikus számológépek a mechanikus golyós számológépek az abakusz i.e. 2000-től Fogaskerekes számológépek Schickard 1623 négy alapművelet

Részletesebben

Az informatika fejlődéstörténete

Az informatika fejlődéstörténete 1.2.1. Az informatika fejlődéstörténete A különböző számolási, számítási műveletek megkönnyítése és mechanizálása mindig is az emberiség fejlődésének kulcsfontosságú kérdése volt. Az abakusz az első számolóeszköz,

Részletesebben

Tartalom. 6.1.2. Jelátalakítás és kódolás... 10. 6.1.3. A számítógép felépítése... 10. 6.1.4. Alaplap... 11. 6.1.5. A központi egység...

Tartalom. 6.1.2. Jelátalakítás és kódolás... 10. 6.1.3. A számítógép felépítése... 10. 6.1.4. Alaplap... 11. 6.1.5. A központi egység... Tartalom 1. Információs társadalom... 2 1.1. Informatikai alapfogalmak... 2 1.2. A kommunikáció... 2 1.3. Számítógépes adatbázisok... 3 1.4. Keresés az interneten... 4 2. Információ és társadalom... 4

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1

Részletesebben

Hardver ismeretek. Várady Géza, B144 varadygeza@gmail.com

Hardver ismeretek. Várady Géza, B144 varadygeza@gmail.com Hardver ismeretek Várady Géza, B144 varadygeza@gmail.com Bevezetés Informatika sokrétű Információk Információtechnika Szerzése Feldolgozása Tárolása Továbbítása Informatika a technikai eszköz oldalról

Részletesebben

Az informatika fejlõdéstörténete

Az informatika fejlõdéstörténete Az informatika fejlõdéstörténete Elektronikus gépek A háború alatt a haditechnika fejlõdésével felmerült az igény a számítások precizitásának növelésére. Több gépet is kifejlesztettek, de ezek egyike sem

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Az első elektronikus számítógépek

Az első elektronikus számítógépek Az első elektronikus számítógépek 100 évre volt szükség Babbage gépének megvalósításához, mert az ő korában még a gyakorlatban nem állt rendelkezésre olyan eszköz, amivel ezt a gépet megbízhatóan és nem

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

A számítástechnika története

A számítástechnika története A számítástechnika története A számolás igénye már igen korán megjelent az emberiség történetében. Eleinte csak megszámlálásos feladatok léteztek. Például meg kellett számolni hány állat van a csordában,

Részletesebben

Digitális rendszerek. Utasításarchitektúra szintje

Digitális rendszerek. Utasításarchitektúra szintje Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik

Részletesebben

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor 1. előadás Adatok, számrendszerek, kódolás Dr. Kallós Gábor 2014 2015 1 Tartalom Adat, információ, kód Az információ áramlásának klasszikus modellje Számrendszerek Út a 10-es számrendszerig 10-es és 2-es

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök Hobbi Elektronika Bevezetés az elektronikába: Logikai kapuáramkörök 1 Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja BME FKE: Logikai áramkörök Colin Mitchell: 200 Transistor

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

A számrendszerekrl általában

A számrendszerekrl általában A számrendszerekrl általában Készítette: Dávid András A számrendszerekrl általában Miért foglalkozunk vele? (Emlékeztet) A mai számítógépek többsége Neumann-elv. Neumann János a következ elveket fektette

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló

Részletesebben

(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték...

(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték... Számábrázolás és karakterkódolás (jegyzet) Bérci Norbert 2014. szeptember 15-16-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 2 1.2.

Részletesebben

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) 1 Előadás Bevezetés az informatikába Adatszerkezetek Algoritmusok, programozási technológiák Számítástudomány alapjai

Részletesebben

1. Generáció( ):

1. Generáció( ): Generációk: 1. Generáció(1943-1958): Az elektroncsövet 1904-ben találták fel. Felfedezték azt is, hogy nemcsak erősítőként, hanem kapcsolóként is alkalmazható. A csövek drágák, megbízhatatlanok és rövid

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Bevezetés az Informatikába

Bevezetés az Informatikába Bevezetés az Informatikába Karakterek bináris ábrázolása Készítette: Perjési András andris@aries.ektf.hu Alap probléma A számítógép egy bináris rendszerben működő gép Mindent numerikus formátumban ábrázolunk

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika

Részletesebben

1. Milyen eszközöket használt az ősember a számoláshoz? ujjait, fadarabokat, kavicsokat

1. Milyen eszközöket használt az ősember a számoláshoz? ujjait, fadarabokat, kavicsokat 1. Milyen eszközöket használt az ősember a számoláshoz? ujjait, fadarabokat, kavicsokat 2. Mit tudsz Blaise Pascalról? Ő készítette el az első szériában gyártott számológépet. 7 példányban készült el.

Részletesebben

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága

Részletesebben

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega

Részletesebben

Ez egy program. De ki tudja végrehajtani?

Ez egy program. De ki tudja végrehajtani? Császármorzsa Keverj össze 25 dkg grízt 1 mokkás kanál sóval, 4 evőkanál cukorral és egy csomag vaníliás cukorral! Adj hozzá két evőkanál olajat és két tojást, jól dolgozd el! Folyamatos keverés közben

Részletesebben

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással

Részletesebben

Elektronikai műszerész Elektronikai műszerész

Elektronikai műszerész Elektronikai műszerész A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Műveletek lebegőpontos adatokkal

Műveletek lebegőpontos adatokkal Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Műveletek lebegőpontos adatokkal Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Műveletek az IEEE 754

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

erettsegizz.com Érettségi tételek

erettsegizz.com Érettségi tételek erettsegizz.com Érettségi tételek Az informatika fejlődéstörténete, jogi ismeretek Információ és társadalom Az informatika fejlődéstörténete a XX. Században, napjainkban Jogi ismeretek, szerzőjog, szoftver

Részletesebben

Harmadik gyakorlat. Számrendszerek

Harmadik gyakorlat. Számrendszerek Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák

Digitális Rendszerek és Számítógép Architektúrák Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 1. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Vörösházi Zsolt Szolgay

Részletesebben

Objektumorientált Programozás I.

Objektumorientált Programozás I. Objektumorientált Programozás I. Algoritmizálási alapismeretek Algoritmus végrehajtása a számítógépen Adattípusok Típuskonverziók ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok,

Részletesebben

Számítástechnika története

Számítástechnika története Számítástechnika története Hardware alapismeret Általános tudnivalók Általános tudnivalók A tanító tanár neve: Mandácskó Zoltán Végzettség: mérnök informatikus, mérnök-tanár Munkahelyem: Pázmány Péter

Részletesebben

2019/02/11 10:01 1/10 Logika

2019/02/11 10:01 1/10 Logika 2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

I. el adás, A számítógép belseje

I. el adás, A számítógép belseje 2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után

Részletesebben