Matematikai alapok. Dr. Iványi Péter
|
|
- Liliána Kozmané
- 8 évvel ezelőtt
- Látták:
Átírás
1 Matematikai alapok Dr. Iványi Péter
2 Számok A leggyakrabban használt adat típus Egész számok Valós számok
3 Bináris számábrázolás Kettes számrendszer Bitek: és Byte: 8 bit bináris decimális = = 255
4 Egész számok Egész szám (integer): 4 byte (32 bites processzorokon) Maximum: Minimum:
5 Boolean algebra Bináris számok között műveletek NOT (igazságtábla) A NOT(A) Példa: NOT()
6 Boolean algebra AND: csak akkor igaz ha mindkét bit igaz A B A AND B Példa: AND
7 Boolean algebra OR:akkor igaz ha az egyik bit igaz A B A OR B Példa: AND
8 XOR: exkluzív OR Boolean algebra A B A XOR B Példa: AND
9 Boolean algebra Bármilyen boolean művelet definiálható AND és OR műveletekkel, például A B A XOR B Csak az igaz eredményeket kell összekapcsolni: (A= AND B=) OR (A= AND B=)
10 Lebegőpontos számok Folytonos Diszkrét matematika Számok bináris ábrázolása IEEE 754 float: 32 biten van ábrázolva Ez azt jelenti, hogy 2 32 valós számot lehet pontosan reprezentálni Ezzel szemben végtelen sok valós szám van Ábrázolható tartomány: ± e-45 ± e+38
11 32 bit: Lebegőpontos számok s : előjel bit ( bit) e :exponenciális kitevő (8 bit) m : mantissza (23 bit) ( ) s m 2 ( e 27) seeeeeeeemmmmmmmmmmmmmmmmmmmmmm 3
12 Lebegőpontos számok m mantissza: (-22 bit) 2 - =.2 =.2 ugyanaz ezért normalizálva van az érték, mint bináris tört Bináris törtek. = /2 + /4 + /6 = 3/6 =.825 Nem minden szám reprezentálható:. = /6 + /32 + /256 + /52 + /496 + / vagyis az első 23 bitet használjuk csak, a maradékot eldobjuk...
13 Lebegőpontos számok Mantissza a tizedes ponttól jobbra levő rész Automatikusan feltételezünk egy -est a tizedes pont előtt.mmmmm... De így hogyan reprezentálhatjuk a zérust: Ha minden bit zérus De akkor hogyan representáljuk. et, hiszen a tizedes pont előtti -et automatikusan feltételezzük
14 Lebegőpontos számok Megoldás: az exponenciális biteket 27-et módosítjuk e kitevő: (3-23 bit) 5 esetén: = 32 binárisan -5 esetén 27 5 = 22 binárisan
15 Lebegőpontos számok Egy példa a lebegőpontos szám ábrázolásra:.85: bits: binary: decimal: e-27 ( + m / 2 23 ) = 2-4 ( /838868) = 4857/ =
16 Lebegőpontos számok Speciálisan reprezentált számok: Minusz végtelen (-inf): ha az összes exponenciális bit előjel bit Plusz végtelen (+inf): ha az összes exponenciális bit előjel bit NaN : Not a Number ha az összes exponenciális bit valamelyik mantissza bit
17 Lebegőpontos számok binary: decimális: binary: decimális:.5
18 Pontosság és teljesség Két különböző fogalom Pontosság: Az érték mennyire van közel a valódi értékhez Teljesség: Mennyi információ van az adott értékről
19 Pontosak Egész számok Ha van egy kettes számom és ahhoz egyet hozzáadok, akkor biztos hogy hármat fogok kapni Bármilyen műveletet végzünk és azértelmezési tartományba esik a válasz, akkor mindig pontos értéket kapunk Ugyanakkor nem teljesek, abban az értelemben, hogy nem képesek például a tört részeket reprezentálni
20 Lebegőpontos számok Fordított helyzet Teljesek: Önkényesen soha nem hagynak el információt a számról Elvileg minden számot tudnak reprezentálni ha elég bit áll rendelkezésre De nem pontosak Kerekítési hiba (Roundoff error) Kioltó hiba (Cancelation error)
21 Kerekítési hiba #include <stdio.h> int main() { double x =.3; double x2 = ; double x3 =.5; double x4 = ; } printf("%.2f\n", x2); if(x == x2) printf("egyenlo\n"); else printf("nem egyenlo\n"); printf("%.2f\n", x4); if(x3 == x4) printf("egyenlo\n"); else printf("nem egyenlo\n"); return();
22 A futtatás eredménye: Kerekítési hiba $ num3.exe.3444 nem egyenlo.5 egyenlo
23 Kerekítési hiba Négyzetgyök számítása Newton módszerrel double EPSILON =.; double t = c; while (t*t - c > EPSILON) t = (c/t + t) / 2.; Azt várjuk hogy mindig: t 2 c >
24 Kerekítési hiba #include <stdio.h> int main() { double eps =.; double c = 4.; /* bemenet */ double t = c; while(t*t - c > eps) { t = (c/t + t) / 2.; } printf("%f\n", t); return(); }
25 Kerekítési hiba c=4. c=. a program a helyes eredményt adja esetén a program végtelen ciklusba kerül A program elvileg akkor ér véget ha t 2 valójában t 2 < c esetén áll le. = c,de Ugyanakkor a folytonos matematika garantálja, hogy ez nem következhet be!!! Oka: kerekítési hiba
26 Lebegőpontos számok Kernighan és Plauger: A lebegőpontos számok olyanok mint egy kupac homok. Amikor elmozdítunk egy kicsit, el is veszítünk egy kicsit és csak piszok marad a kezünkben.
27 #include <stdio.h> Kioltó hiba int main() { double x =.4; double x2 =.; double y =.4; double y2 =.; double z = (y - y2) / (x - x2); printf("%f\n", z); return(); }
28 Kioltó hiba A várt eredmény:.4 /.4 =. A kapotteredmény.5
29 Stabilitás Egy matematikai probléma jól kondicionált ha a bemeneti paraméterek kis változására az eredmény is mértékben változik. Egy algoritmus numerikusan stabil ha bemeneti paraméterek kis változására az eredmény is kis mértékben változik. A művészet és tudomány az, hogy numerikusan stabil algoritmusokat találjunk jól kondicionált problémák megoldására.
30 Stabilitás A pontosság függ a probléma kondicionáltságától és az algoritmus stabilitásától. Pontatlanságot okozhat, ha: Stabil algoritmust alkalmazunk rosszul kondicionált problémára; vagy Instabil algoritmust alkalmazunk jól kondicionált problémára
31 Instabilitás Probléma: az f(x) = exp(x) függvény Jól kondicionált probléma Algoritmus: a Taylor sorozat első négy elemét használjuk g(x) = + x + x 2 / 2 + x 3 / 3 f() = g() =
32 Instabilitás Ha x < akkor az algoritmus instabil!!! De ha az e -x függvény Taylor sorát vesszük az már stabil lesz.
33 Rosszul kondicionáltság x n 2 = ( R + ) xn R ( xn ) Vegyük a fenti egyenletet Kezdő érték: x =.5 R=3 iterációt futtatunk A műveleteket többféleképpen csoportosítjuk
34 Rosszul kondicionáltság n (R+)x-R(xx) (R+)x-(Rx)x ((R+)-(Rx))x x + R(x-xx) pontos Négy különböző értéket kaptunk!!! Az összeadás, szorzás, kivonás stabil, de A probléma rosszul kondicionált. Ha R >2.57 az egyenlet kaotikus!
35 Mit fog kinyomtatni az alábbi kód? #include <stdio.h> int main() { double a = 2345.; double b = e-6; printf("%d", a + b == a); } return ; /* Eredmeny: */
36 Mit fog kinyomtatni az alábbi kód? #include <stdio.h> int main() { double d; for (d =.; d <=.5; d +=.) /* 4 értéket nyomtat */ { printf("%f\n", d); } printf("\n"); for (d =.; d <=.5; d +=.) /* 5 értéket nyomtat */ { printf("%f\n", d); } } return ;
37 Számoljuk ki: 4 4 9x y + 2y 2 #include <stdio.h> int main() { double x = 864; double y = 887; double r; r = 9*x*x*x*x - y*y*y*y + 2*y*y; printf("result: %f\n", r); } return ; /* Eredmény: 2. Helyes:. */
38 Mit fog kinyomtatni az alábbi kód? #include <stdio.h> int main() { long x = ; /* 2^24 + */ float y = ; printf("%ld\n", x); printf("%f", y); return ; } /* Eredmeny: nem lehet float-ként ábrázolni: */
39 Mit csinál a következő ciklus? int count = ; for (float x =.f; x < 2.f; x = x +.f) count++; printf( %d, count); int count2 = ; for (double x =.; x < 2.; x = x +.) count2++; printf( %d, count2); /* első ciklus végtelen ciklus lesz: f +.f = f a második ciklus működik */
40 Hibák az életben
41 Ariane 5 European Space Agency év, 7 billió dollárba került a fejlesztés 996 június 4-én felrobbant A rakéta és terhének összértéke: 5 millió dollár Ok: Szoftver, numerikus hiba
42 Ariane 5 Az irányító rendszer 36.7 másodperccel a fellövés után a rakéta oldal irányú sebességét reprezentáló számot próbálta konvertálni, egy 64 bites számot 6 bites formátumra A rendszert leállítja magát, mert érvénytelen adatot kap. A másodleges rendszer is leáll, hiszen ugyanaz a szoftver. Az irányító rendszer így hibás utasítást ad, mintha egy nem létező fordulatot kellene kompenzálni. A rakéta hirtelen irányt váltott (bár nem volt rá szükség) Olyan erők ébredtek melyre az önmegsemmisítés bekapcsolt 39 másodperccel a fellövés után
43 Patriot rakéta 99 február 25, Öböl háború Patriot nem tudta eltalálni az iraki Scud rakétát 28 katona halt meg és sérült meg Ok: Szoftver, numerikus hiba
44 Patriot rakéta Az egy tized másodpercekben mért időt a rendszer / el szorozta meg hogy másodpercekben kapja meg az időt Az adatot 24 biten reprezentálta / et nem lehet pontosan reprezentálni binárisan, így a 24. bit utáni rész levágódik. Ez egy kerekítési hiba. Sokszor elvégezve a szorzást a hiba növekszik: órás üzem esetén az eltérés:.34 másodperc
45 Patriot rakéta Scud sebessége:.676 m/s Így több mint fél kilómétert tesz meg a Scud.34 másodperc alatt
Matematikai alapok. Dr. Iványi Péter
Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1
Assembly Matematika Assembly-ben. Iványi Péter
Assembly Matematika Assembly-ben Iványi Péter Speciális kódolás BCD aritmetika Minden számjegy egy nibble-ben (4 bit) tárolunk Dec 0 1 2 3 4 BCD 0000 0001 0010 0011 0100 Dec 5 6 7 8 9 BCD 0101 0110 0111
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
Assembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István
Vektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Octave: alapok Az octave mint számológép: octave:##> 2+2 ans = 4 Válasz elrejtése octave:##> 2+2; octave:##> + - / * () Hatványozás:
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
Fixpontos és lebegőpontos DSP Számrendszerek
Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos
5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli
5. Fejezet : Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant
The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
INFO1 Számok és karakterek
INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika
3. SZÁMÍTÁSOK HIBÁI BEVEZETÉS A NUMERIKUS MÓDSZEREKBE
3. SZÁMÍTÁSOK HIBÁI BEVEZETÉS A NUMERIKUS MÓDSZEREKBE Bizonyos feladatokat, problémákat a hagyományos analitikus matematikai módszerekkel nem, vagy csak nagyon nehezen lehet megoldani. Ezekben az esetekben
Aritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
Algoritmusok Tervezése. 4. Előadás Visual Basic 1. Dr. Bécsi Tamás
Algoritmusok Tervezése 4. Előadás Visual Basic 1. Dr. Bécsi Tamás Bevezetés A BASIC (Beginner s All-purpose Symbolic Instruction Code) programnyelvet oktatási célokra hozták létre 1964-ben. Az általános
Mintavételes szabályozás mikrovezérlő segítségével
Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés
Kifejezések. Kozsik Tamás. December 11, 2016
Kifejezések Kozsik Tamás December 11, 2016 Kifejezések Lexika Szintaktika Szemantika Lexika azonosítók (változó-, metódus-, típus- és csomagnevek) literálok operátorok, pl. + zárójelek: (), [], {},
Információs Technológia
Információs Technológia A C programozási nyelv (Típusok és operátorok) Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 szeptember
C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi
C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási
Kifejezések. Kozsik Tamás. December 11, 2016
Kifejezések Kozsik Tamás December 11, 2016 Kifejezés versus utasítás C/C++: kifejezés plusz pontosvessző: utasítás kiértékeli a kifejezést jellemzően: mellékhatása is van például: értékadás Ada: n = 5;
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
B I T M A N B I v: T M A N
Műszaki informatika Tesztek+Megoldások B I v: T 2015.04.19 M A N 1/42 Tesztek + Megoldások Alapfogalmi kitérő kérdéssor IPA kérdéssor CPA kérdéssor 2/42 Ellenőrző kérdések 1. 1. Melyik Neumann elv következménye
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
Dr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése
Alapfogalmak Dr. Kallós Gábor 2007-2008. A számítógép felépítése A Neumann-elv A számítógéppel szemben támasztott követelmények (Neumann János,. Goldstine, 1945) Az elv: a szekvenciális és automatikus
ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA
1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk
PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar
PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
Műveletek lebegőpontos adatokkal
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Műveletek lebegőpontos adatokkal Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Műveletek az IEEE 754
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
Digitális Rendszerek és Számítógép Architektúrák
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 1. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Vörösházi Zsolt Szolgay
I+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
Informatika érettségi vizsga
Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés
DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
Programozott soros szinkron adatátvitel
Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom
Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002
Kódolás, hibajavítás Tervezte és készítette Géczy LászlL szló 2002 Jelkapcsolat A jelkapcsolatban van a jelforrás, amely az üzenő, és a jelérzékelő (vevő, fogadó), amely az értesített. Jelforrás üzenet
Negatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
Megoldott programozási feladatok standard C-ben
Megoldott programozási feladatok standard C-ben MÁRTON Gyöngyvér Sapientia Erdélyi Magyar Tudományegyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro Tartalomjegyzék
Programozás alapjai C nyelv 10. gyakorlat. Standard függvények. Union
Programozás alapjai C nyelv 10. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.21. -1- Standard függvények Standard függvények amelyeket
Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa
Programozás I. gyakorlat
Programozás I. gyakorlat 1. gyakorlat Alapok Eszközök Szövegszerkesztő: Szintaktikai kiemelés Egyszerre több fájl szerkesztése pl.: gedit, mcedit, joe, vi, Notepad++ stb. Fordító: Szöveges file-ban tárolt
A C# PROGRAMOZÁSI NYELV
A C# PROGRAMOZÁSI NYELV 2010.02.23. Bevezetés C# nyelv jellemzői 2 Kis és NAGY betű érzékeny Minden utasítást pontos vessző zár. Utasítás zárójel a:,. .NET Framework keretrendszerek 3 Microsoft.NET Framework
Számítógép architektúrák
Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:
INFORMATIKA MATEMATIKAI ALAPJAI
INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
A programozás alapjai előadás. A C nyelv típusai. Egész típusok. C típusok. Előjeles egészek kettes komplemens kódú ábrázolása
A programozás alapjai 1 A C nyelv típusai 4. előadás Híradástechnikai Tanszék C típusok -void - skalár: - aritmetikai: - egész: - eger - karakter - felsorolás - lebegőpontos - mutató - függvény - union
Programozás alapjai gyakorlat. 2. gyakorlat C alapok
Programozás alapjai gyakorlat 2. gyakorlat C alapok 2016-2017 Bordé Sándor 2 Forráskód, fordító, futtatható állomány Először megírjuk a programunk kódját (forráskód) Egyszerű szövegszerkesztőben vagy fejlesztőkörnyezettel
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK
Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Programtervezési stratégiák. Top-down tervezés. Top-down tervezés. Bottom-up tervezés. 4.
212. február 28. A PROGAMOZÁS ALAPJAI 1 Vitéz András egyetemi adjunktus BME Híradástechnikai Tanszék vitez@hit.bme.hu Miről lesz ma szó? Programtervezési stratégiák Top-down Bottom-up Függvények Szintaxis
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 2. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Dr. Vörösházi Zsolt
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
Programozás 1. Dr. Iványi Péter
Programozás 1. Dr. Iványi Péter 1 C nyelv B.W. Kernighan és D.M. Ritchie, 1978 The C Programming language 2 C nyelv Amerikai Szabványügy Hivatal (ANSI), 1983 X3J11 bizottság a C nyelv szabványosítására
Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
Programozás BMEKOKAA146. Dr. Bécsi Tamás 2. előadás
Programozás BMEKOKAA146 Dr. Bécsi Tamás 2. előadás Szintaktikai alapok Alapvető típusok, ismétlés C# típus.net típus Méret (byte) Leírás byte System.Byte 1Előjel nélküli 8 bites egész szám (0..255) char
2018, Diszkrét matematika
Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális
5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
Digitális technika VIMIAA02 1. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek
1. ábra. Repülő eszköz matematikai modellje ( fekete doboz )
Wührl Tibor DIGITÁLIS SZABÁLYZÓ KÖRÖK NEMLINEARITÁSI PROBLÉMÁI FIXPONTOS SZÁMÁBRÁZOLÁS ESETÉN RENDSZERMODELL A pilóta nélküli repülő eszközök szabályzó körének tervezése során első lépésben a repülő eszköz
Számítástechnika I. BMEKOKAA152 BMEKOKAA119 Infokommunikáció I. BMEKOKAA606. Dr. Bécsi Tamás 2. előadás
Számítástechnika I. BMEKOKAA152 BMEKOKAA119 Infokommunikáció I. BMEKOKAA606 Dr. Bécsi Tamás 2. előadás Console I/O bővebben Lásd mintaprogram 2015.09.21. Számítástechnika I. 2. Előadás 2 Számábrázolásról
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Számkezelés Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 53 TARTALOMJEGYZÉK 1 TARTALOMJEGYZÉK 2 Az egzakt aritmetika Bignum aritmetika
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
OOP I. Egyszerő algoritmusok és leírásuk. Készítette: Dr. Kotsis Domokos
OOP I. Egyszerő algoritmusok és leírásuk Készítette: Dr. Kotsis Domokos Hallgatói tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendı anyag vázlatát képezik. Ismeretük
10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.
Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
Programozás II. 2. Dr. Iványi Péter
Programozás II. 2. Dr. Iványi Péter 1 C++ Bjarne Stroustrup, Bell Laboratórium Első implementáció, 1983 Kezdetben csak precompiler volt C++ konstrukciót C-re fordította A kiterjesztés alapján ismerte fel:.cpp.cc.c
Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double
Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.10.. -1- Mit tudunk már? Típus fogalma char, int, float,
Programozás 3. Dr. Iványi Péter
Programozás 3. Dr. Iványi Péter 1 Egy operandus művelet operandus operandus művelet Operátorok Két operandus operandus1 művelet operandus2 2 Aritmetikai műveletek + : összeadás -: kivonás * : szorzás /
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Assembly Utasítások, programok. Iványi Péter
Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 2. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Dr. Vörösházi Zsolt
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek
Egész számok ábrázolása (jegyzet) Bérci Norbert 2015. szeptember 10-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 1 1.2. Alaki- és
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
Példa:
Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
Informatikai alkalmazások - levelező. 2013. ősz
Informatikai alkalmazások - levelező 2013. ősz Követelmények 2 db a félév gyakorlati anyagához kötődő házi feladat elkészítése Egyenként 20 pont (min. 50%) Utosló alkalommal megírt dolgozat Max. 25 pont
Programozás alapjai 9.Gy: Struktúra 2.
Programozás alapjai 9.Gy: Struktúra 2. Ördögi részletek P R O A L A G 35/1 B ITv: MAN 2018.11.10 Euró árfolyam statisztika Az EURO árfolyamát egy negyedéven keresztül hetente nyilvántartjuk (HUF / EUR).
10. gyakorlat Tömb, mint függvény argumentum
10. gyakorlat Tömb, mint függvény argumentum 1. feladat: A 6. gyakorlat 1. feladatát oldja meg a strukturált programtervezési alapelv betartásával, azaz minden végrehajtandó funkciót külön függvényben
(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték...
Számábrázolás és karakterkódolás (jegyzet) Bérci Norbert 2014. szeptember 15-16-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 2 1.2.
Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Előfeldolgozó rendszer Tömbök. Dr. Bécsi Tamás 4. Előadás
Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Előfeldolgozó rendszer Tömbök Dr. Bécsi Tamás 4. Előadás A?: operátor Nézzük meg a következő kifejezést: if (a>b) z=a; else z=b; Ez felírható
INFO1 Számok és karakterek
INFO1 Számok és karakterek Wettl Ferenc 2014. szeptember 9. Wettl Ferenc INFO1 Számok és karakterek 2014. szeptember 9. 1 / 17 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer
NAGYPONTOSSÁGÚ RACIONÁLIS-ARITMETIKA EXCEL VISUAL BASIC KÖRNYEZETBEN TARTALOM
NAGYPONTOSSÁGÚ RACIONÁLIS-ARITMETIKA EXCEL VISUAL BASIC KÖRNYEZETBEN TARTALOM 0. A feladat... 2 1. A racionális számok ábrázolásai... 2 2. A műveletek... 3 A műveletek szignatúrája... 3 A műveletek algoritmusa...
6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok
6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok 1. feladat: Az EURO árfolyamát egy negyedéven keresztül hetente nyilvántartjuk (HUF / EUR). Írjon C programokat az alábbi kérdések
C programnyelv 1. Kedves Kollegina, Kolléga!
C programnyelv 1 Kedves Kollegina, Kolléga! A jegyzetet Önnek készítettem azért, hogy referencia anyaga legyen a Programnyelv és a Programfejlesztés tárgyakhoz. Szeretném a segítségét igénybe venni abból
A meteorológia az időjárás tudománya
Ismerd meg! A meteorológia az időjárás tudománya A meteorológia a légkörben végbemenő folyamatok, jelenségek vizsgálatával foglalkozó tudomány, amelyen belül különös hangsúlyt fektetnek az időjárási és
Számítógépes Hálózatok. 7. gyakorlat
Számítógépes Hálózatok 7. gyakorlat Gyakorlat tematika Hibajelző kód: CRC számítás Órai / házi feladat Számítógépes Hálózatok Gyakorlat 7. 2 CRC hibajelző kód emlékeztető Forrás: Dr. Lukovszki Tamás fóliái
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,