10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.
|
|
- Etelka Deákné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív számok ábrázolása 1. Előjelbites ábrázolása 2. kettes komplemens ábrázolás 3. Átváltás a számrendszerek között (10 <-> többi; 2 <-> 8; 2<->16) Logikai műveletek 1. ÉS (ND): dott két (vagy több) állítás: és. z eredmény akkor és csak akkor igaz, ha igaz és is igaz. Példa: akkor veszek fagyit, ha kapható fagylalt és van rá pénzem. állítás: kapható fagylalt, állítás: van fagylaltra pénzem. 2. VGY (OR): dott két (vagy több) állítás: és. z eredmény akkor igaz, ha legalábbaz igaz vagy legalább a igaz. Példa: akkor veszek fagyit, ha van rá pénzem, vagy a barátomnak van rá pénze. állítás: van fagylaltra pénzem, állítás: a barátomnak van a fagylalomra pénze. 3. NEM (NOT): dott egy állítás. Ha igaz, akkor a NEM hamis. Ha hamis, akkor a NEM igaz. Példa: akkor veszek fagyit, ha nem felejtettem otthon a pénztárcámat. állítás: otthon felejtettem a pénztárcát. 4. Kizáró VGY (Exclusive OR) rövidítve: XOR (vagy EOR): dott két állítás: és. z eredmény igaz, ha és közül pontosan az egyik, és csak az egyik igaz. Példa: Vagy süteményt, vagy fagylaltot veszek. állítás: süteményt veszek, állítás: fagylaltot veszek. z állítás akkor igaz, ha az egyiket veszem meg. Ha egyiket sem vagy mindkettőt, akkor az XOR állítás hamis. Feladattípusok Átváltás: FF 3E lapműveletek: Művelet Összeadás F9 72 3C7 + 1D3 4E3 466
2 Művelet Összeadás (2- es komplemens) Kivonás FFF 72 3C7 + 4E D3 4E3 436 Kivonás 2-es komplemens D3 4E3 466 Logikai ÉS ND ND ND ND 0D3 4E3 466 Logikai VGY OR OR OR OR 0D3 4E3 466 Kizáró VGY XOR XOR XOR XOR 0D3 4E3 466 Logikai NEM NOT NOT NOT NOT 0D3 4E3 466 Hiányzó számjegy kitalálás: ( végeredmény még nem jó, csak a feladat-stílust mutatja) Művelet Összeadás ? 387 +?93 4?3 4?6 19? Összeadás (2- es komplemens) 9? ?3 4?6 9?9 172?87 Kivonás 709? ? ?87 Kivonás 2-es komplemens 709 1? ? ?11 010? ?001 1??1??01 11? ? 1?1? ? ? 100? 1?01 111? 1?11 0?01 0?01 010? ? 0?01-0?10 0??1 11?1 10? ?? ?? ?? ?? ?1 010? ? 0?01 Logikai ÉS ?01 ND ? ?? Logikai VGY ?01 OR ? ?11 01?1 010? Kizáró VGY 0? ??1?? XOR 001? 0?0? 1? Logikai NEM NOT ??1 1?? ?? ? 0??1 0?7 1? ? 463?66 0? ? ??7 + 4? ?7 17? 357 3?7 17? 3? ?3 45? 307?? ?2 357 ND ? ?2 357 OR ? ?7??7 1?? 357 XOR ??6 307??2 357 NOT 023 4?? ?7 0F9 72 3?7 + 1D3 4E? 466 0?9?2 3C? FFF 72 3?? + 4?3 466 F?F?2?C7 1F9?2 3C7-0?3 4E? 4?? 1F9?72 3C7-0D3 4E F9 7? 3C7 ND 0D3 4E ?9 72 3?7 1F9 72 3?7 OR 0D3 4E? 466 1F9?2 3C7 1?9 72?C7 XOR 0D? 4?3 4?? 1F9?72 3C7 NOT 0D3 4?3 466
3 FIGYELEM! logikai műveleteket mindig bitenként végezzük, tehát csak kettes számrendszerben. z csak beugratás, hogy más számrendszerben van megadva a szám! (Ez így valójában 3 feladat: számok átváltása 2-es számrendszerbe, az eredeti feladat megoldása, az eredmény visszaváltása.) Szöveges feladatok: Tetszőleges X számon milyen műveleteket kell elvégezni, hogy a 11. és 6. bit 0 legyen, a bitek 1-ek legyenek, a 3. bit pedig az ellenkezője. ( bitek számozása jobbról balra történik, a jobb szélső bit a 0. sorszámú.) Megoldás: X ND ( ) OR ( ) XOR ( ) z X-et ÉS-eljük egy olyan számmal, ahol csak a 11. és 6. bit 0, majd VGY-oljuk egy olyan számmal, ahol csak a bit 1 értékű, majd XOR-oljuk egy olyan számmal, amelyben csak a 3. bit 1 értékű. (Ki lehet próbálni tetszőleges X bináris szám behelyettesítésével, a műveletek elvégzése után az eredmény a feladatban megadott szabály szerinti lesz.) Van két olyan művelet, amellyel egy tetszőleges 16 bites szám összes bitjét az ellenkezőjére válthatjuk. Melyik ez a két művelet? Logikai műveletek elektronikai/elektromechanikai megvalósítása Relé: Elektromosan irányított mechanikus kapcsoló. Működése: egy kapcsoló, amit nem egy ember, hanem egy elektromágnes kapcsol ki vagy be, aszerint, hogy adunk-e áramot az elektromágnesre vagy nem. Két fajtája van: zárórelé: ha az elektromágnes működik, akkor zárja a kapcsolót (különben a kapcsoló nyitva van); nyitó relé: ha az elektromágnes működik, akkor kinyitja a kapcsolót (különben a kapcsoló zárva van); Záró relé Nyitó relé Tranzisztor: félvezetőből 1 készülő elektronikai eszköz. lényege, hogy elektromos úton szabályozható 2, hogy mennyi áramot engedjen keresztül magán. Egy reléhez hasonlóan kapcsolóként is működtethető: vezérelhetjük, hogy átengedi az áramot, vagy nem. Előnye, hogy sokkal kisebb, gyorsabb, kevesebbet fogyaszt, és sokkal ritkábban hibásodik meg mint egy relé. könnyebb érthetőség kedvéért a következő fejezetekben a relét fogjuk felhozni példának, de a valóságban már szinte mindent tranzisztorokkal építenek meg. 1 Többnyire szilíciumból, néha germániumból 2 a középső lábára kapcsolt megfelelő áramerősséggel
4 logikai műveletek megvalósítása relével ÉS művelet: két darab sorba kötött vezérelhető kapcsoló (relé). VGY művelet: két darab párhuzamosan bekötött vezérelhető kapcsoló (relé). NEM művelet: Egy darab nyitó relé. Kizáró-VGY művelet: Egy VGY, két ÉS és egy NEM művelet megfelelő összekapcsolásával kialakítható. Implikáció művelet (jele --> ): Ez a Ha igaz, akkor állítás eldöntésének műveletét jelenti. Például vegyük a következő állítást: Ha holnap Sárváron leszek, akkor bemegyek a sárvári gyógyfürdőbe. Itt az állítás: Holnap Sárváron leszek, a állítás: bemegyek a sárvári gyógyfürdőbe. z állításom csak akkor hamis, ha Sárváron leszek, de nem megyek be a gyógyfürdőbe. (Ha honap nem leszek Sárváron, akkor az állítás igaz, hiszen azt mondtam, hogy Ha Sárváron leszek.) Igazságtábla Egy olyan táblázat, ami felsorolásszerűen leírja, hogy a különböző bemeneti adatok esetén mi lesz a művelet eredménye. Például: NOT OR XOR ND x darab bináris két változós függvény lehetséges: Hamis ÉS NEM -> NEM -> XOR VGY NEM-VGY NEM-XOR NEM- -> NEM- -> NEM-ÉS Igaz Egybites félösszeadó Két bit összeadásának lehetséges variációi:
5 : : Eredmény: , átvitel= , átvitel= , átvitel= , átvitel=1 z erdmény és az átvitel kiszámításának igazságtáblája: Két bit összeadásának eredménye (1 bit) Két bit összeadásakor keletkez ő átvitel ki- számítása: Mint láthatjuk, ez nem más, mint egy Kizáró-VGY művelet és egy ÉS művelet. Egybites összeadógép készítése: ND & XOR =1 Átvitel Eredmény Egybites teljes összeadó Zsilipkapu vezérlés
ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA
1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk
SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
Új műveletek egy háromértékű logikában
A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
2019/02/11 10:01 1/10 Logika
2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát
3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III
22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited
Assembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István
LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
Programozás II. Segédlet az első dolgozathoz
Programozás II. Segédlet az első dolgozathoz 1 Tartalomjegyzék 1. Bevezető 4 2. Számrendszerek közötti átváltások 5 2.1 Tízes számrendszerből tetszőleges számrendszerbe................. 5 2.1.1 Példa.....................................
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
Aritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
Fixpontos és lebegőpontos DSP Számrendszerek
Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos
Bevezetés az elektronikába
Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
DIGITÁLIS TECHNIKA I 6. ELİADÁS SZÁMRENDSZEREK BEVEZETİ ÁTTEKINTÉS. Római számok és rendszerük. Helyérték
DIGITÁLIS TECHNIK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet. ELİDÁS: BINÁRIS SZÁMRENDSZER. ELİDÁS. elıadás témája a digitális rendszerekben központi szerepet játszó számrendszerek
Knoch László: Információelmélet LOGIKA
Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke
A számítógép alapfelépítése
Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán
S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k
S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k T a r t a l o m Mintafeladatok... 4 Számrendszerek, logikai mőveletek... 4 Gyakorló feladatok... 19 Számrendszerek, logikai mőveletek... 19 Megoldások...
Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog
DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.
6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Készítette: Nagy Tibor István
Készítette: Nagy Tibor István Operátorok Műveletek Egy (vagy több) műveleti jellel írhatók le A műveletet operandusaikkal végzik Operátorok fajtái operandusok száma szerint: egyoperandusú operátorok (pl.:
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben
Követelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
Negatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél
5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Assembly Utasítások, programok. Iványi Péter
Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk
A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta.
Kezdetek A gyors számolás vágya egyidős a számolással. Mind az egyiptomiak mind a babilóniaiak számoló táblázatokat használtak. A helyiérték és a 10-es számrendszer egyesítése volt az első alapja a különböző
IT - Alapismeretek. Feladatgyűjtemény
IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
A matematika nyelvéről bevezetés
A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések
Dr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
Matematikai alapok. Dr. Iványi Péter
Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: és Byte: 8 bit 28 64 32 6 8 4 2 bináris decimális
Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.
Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással
A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.
Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk,
Digitális elektronika gyakorlat
FELADATOK 1. Tervezzetek egy félösszeadó VHDL modult 2. Tervezzetek egy teljes összeadó VHDL modult 3. Schematic Editor segítségével tervezzetek egy 4 bit-es öszeadó áramkört. A két bemeneti számot a logikai
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika
Számrendszerek. Bináris, hexadecimális
Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk
Példa:
Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika
Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
Hobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek
Hobbi Elektronika A digitális elektronika alapjai: További logikai műveletek 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL, 5th.
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
I+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
A SZÁMÍTÓGÉP KIALAKULÁSA. Zámori Zoltán, KFKI
A SZÁMÍTÓGÉP KIALAKULÁSA Zámori Zoltán, KFKI ABACUS SZÁMLÁLÁS A MATEMATIKA ALAPJA Nézzük meg mi történik törzsvendégek esetén egy kocsmában. A pintek száma egy középkori kocsmában: Arató András Bornemissza
Komputeralgebrai Algoritmusok
Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék 2015-2016 Ősz Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma,
Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.
Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény
1. Halmazok, számhalmazok, alapműveletek
1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant
Mechatronika Modul 1: Alapismeretek
Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus
Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP-2.2.5.
Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 12.a Évfolyam: 12. 32 hét, heti 2 óra, évi 64 óra Ok Dátum: 2013.09.21
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR
MGYR KERESKEDELMI ÉS IPRKMR rszágos Szakmai Tanulmányi Verseny Elődöntő KMPLEX ÍRÁSBELI FELDTSR Szakképesítés: SZVK rendelet száma: 29/2016. (VIII. 26.) NGM rendelet Komplex írásbeli: Villamosipari és
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)
Kifejezések. Kozsik Tamás. December 11, 2016
Kifejezések Kozsik Tamás December 11, 2016 Kifejezés versus utasítás C/C++: kifejezés plusz pontosvessző: utasítás kiértékeli a kifejezést jellemzően: mellékhatása is van például: értékadás Ada: n = 5;
1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE
. EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének
Verilog HDL ismertető 2. hét : 1. hét dia
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Verilog HDL ismertető 2. hét : 1. hét + 15 25 dia Fehér Béla, Raikovich
(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek
Egész számok ábrázolása (jegyzet) Bérci Norbert 2015. szeptember 10-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 1 1.2. Alaki- és
Számrendszerek és az informatika
Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány
TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)
2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli
TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:
Dr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
Analóg és digitális mennyiségek
nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű
5. osztály. Matematika
5. osztály A természetes számok értelmezése 100 000-ig. A tízes számrendszer helyértékes írásmódja. A A természetes számok írásbeli összeadása, kivonása. A műveleti eredmények becslése. Ellenőrzés 3. A
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
ÍTÉLETKALKULUS SZINTAXIS ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) jelkészlet elválasztó jelek: ( ) logikai műveleti jelek: ítéletváltozók (logikai változók): p, q, r,... ítéletkonstansok: T, F szintaxis szabályai
Digitális ki-bemenetek kezelése, bitszintű műveletek
4. Laborgyakorlat Digitális ki-bemenetek kezelése, bitszintű műveletek A gyakorlat célja A gyakorlat során a digitális ki-bemenetek kezelését vizsgáljuk, ezek programozását létralogika és STL programozási
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
10. Digitális tároló áramkörök
1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek
5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti