DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
|
|
- Krisztián Bakos
- 8 évvel ezelőtt
- Látták:
Átírás
1 7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben központi szerepet játszó számrendszerek és aritmetikák.. Számrendszerek. ináris számok 3. ritmetikai műveletek bináris számokkal jelen és a következő előadáshoz kapcsolódó jegyzetrészek: Áttekintjük a digitális technikában használatos számrendszereket, az aritmetikai műveletek elvégzésének szabályait és célszerű algoritmusait, valamint az egyes számrendszerek közti áttérések algoritmusait is. digitális rendszerekben, célszerűségi okokból a -es (bináris) számrendszer terjedt el. Mindezek sokféle digitális funkcionális egység működésének alapjait képezik. Rőmer jegyzet 46-6 old., 79-8 old. Zsom jegyzet I, 9-49 old., old. Gál könyv 3-45 old., 67- old. z előadások ezen könyvek megfelelő fejezetein alapulnak. 3 4 HELYÉRTÉK INÁRIS SZÁMRENDSZER 38 = = Szám helyértéke () = Szám alaki értéke Számjegyek:,,,3,4,5,6,7,8,9 Számjegyek:, 38 = Szám valódi értéke Számrendszer alapja: Decimális számrendszer 5 számítástechnika és a digitális technika a bináris számrendszerre épül 6
2 ES SZÁMRENDSZER kettes számrendszert Leibniz dolgozta ki, még 679-ben, majd 854-ben George oole alakította ki hozzá az algebrát. oole-féle algebrában nem csupán az összeadás és szorzás művelete lehetséges, hanem az ún. logikai műveletek is: és, vagy, negáció. -es számrendszer használatakor az adattárolás lényegesen egyszerűbben oldható meg, mint a - es számrendszerben. 936-ban R. Valtat szabadalmaztatta egy -es számrendszerben dolgozó számítógép elvét. Ebben az időben kezdett hozzá Konrad Zuse is egy -es számrendszert alkalmazó, mechanikus működésű, programvezérelt számítógép kifejlesztéséhez. Valtat és Zuse felismerte, hogy a -es számrendszer használata egyszerűsíti a HEXDECIMÁLIS SZÁMRENDSZER 3 4F = F 6 + Számjegyek:,,..., 9,,, C, D, E, F számítástechnikát = = 537 () Megkülönböztető jelölés $, pl. $4F -ES ÉS -ES SZÁMRENDSZER Pl. 9 tízes számrendszerbeli alakja azért ez, mert 9 = x 3 + x + x + 9x kettes számrendszerbeli alakja, mert 9 = x + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x + x + x Hexadecimális rendszerben pedig $7D9 SZÁMRENDSZEREK ÉS SZÁMJEGYEIK Megnevezés lap Számjegyek ináris (duális), Ternális 3,, Tetrális 4,,,3 Kvintális 5,,,3,4 Oktális 8,,,3,4,5,6,7 Decimális,,,3,4,5,6,7,8,9 Duodecimális,,,3,4,5,6,7,8,9,a,b Hexadecimális 6,,,3,4,5,6,7,8,9,,,C,D,E,F 9 ÁTSZÁMÍTÁS KÉT SZÁMRENDSZER KÖZÖTT Egy természetes szám átírása egyik számrendszerből a másikba: a számot elosztjuk az új rendszer alap-számával, és a maradékokat jobbról balra haladva leírjuk. Pl. 9 = x4 +, 4 = x5 +, 5 = x5 +, 5 = x5 +, 5 = x6 +, 6 = x3 +, 3 = x5 +, 5 = x7 +, 7 = x3 +, 3 = x +, = x +. Tehát -ESŐL -ESE VLÓ ÁTLKÍTÁS LGORITMUS -esből -esbe való átalakítás algoritmusa így is megfogalmazható (a kapott számjegyeket jobbról balra kell leírni): Ismételd Ha a szám páratlan, írj le -et, és vonj ki a számból -et, különben írj le -t oszd el a számot -vel amíg a szám nem
3 7.4.. POZITÍV ÉS NEGTÍV INÁRIS SZÁMOK bináris szám éppen úgy mint egy decimális szám, lehet pozitív vagy negatív. számítógépekben az előjel ábrázolása és szimbólumokkal valósul meg. plusznak, a mínusznak felel meg. Ez az ún, előjelbit, mely után következik a szám abszolút értéke. -ES KOMPLEMENS (-es kiegészítős számábrázolás) Ha egy n-bites pozitív szám (egész szám) szimbolikus jelölése N = a a... a a P n n 3 az azonos abszolút értékű negatív számé N = a a... a a Q n n 3 -ES KOMPLEMENS (-es kiegészítős számábrázolás) POZITÍV ÉS NEGTÍV NÉGYITES INÁRIS SZÁMOK ÁRÁZOLÁS pozitív számok ábrázolása azonos a két előbbi számábrázolással. Egy n-bites pozitív szám (egész szám) szimbolikus jelölése M = a a... a a P n n 3 az azonos abszolút értékű negatív számé pedig a következő összeg eredménye M = a a a a + Q n n ES SZÁMRENDSZER ELŐNYEI z áramköri megvalósítás szempontjából előnyös, hogy a leképezéséhez csak két stabil állapot szükséges, így kétállapotú elemekkel: relékkel, tranzisztorokkal, mágnesezhető elemekkel könnyen leképezhető. két egymástól távol eső stabil állapot következtében viszonylag érzéketlen a fellépő zavarokkal szemben, illetve azok könnyen elháríthatók. digitális technika természetes számrendszere a kétértékű megvalósításból adódóan is a kettes számrendszer. Ehhez jól illeszkedik a hexadecimális számrendszer. Ebben a technikában a tízes számrendszer használata, néhány kivételtől (pl. decimális számlálók) eltekintve nehézkes, és -ES SZÁMRENDSZER ELŐNYEI: MTEMTIKI SZEMPONTOK bináris számrendszer matematikai szempontból is előnyös. z aritmetikai műveletek igen egyszerűen hajthatók végre, és igen egyszerű a logikai ítéletalkotás is. Ugyanazok a számjegyek használhatók fel mind az aritmetikai, mind a logikai műveletekhez. sok helyen indokolatlan
4 S ÉS 6-OS SZÁMRENDSZER hexadecimális számrendszert kényelmi szempontból használják, pl. mert a kettes számrendszerrel nagy számokat hosszú leírni. hexadecimálisból könnyű a binárisra átváltani és viszont. hexadecimális rendszert a $ jellel is jelölik. in-hex átváltás: négy bináris számjegy egy hexa számjegyet ad ki, pl. = $F. Egy byte két hexa számjeggyel adható meg. INÁRIS ÖSSZEDÁS Két bináris számjegy + = C, S alakú bináris összeadása: S - eredeti helyértéken mutatkozó összeg (sum vagy magyarul summa), C - következő helyértékre való átvitel (carry). Igazságtábla és logikai függvények: S C S = + = C = Megvalósító elem: félösszeadó 9 FÉLÖSSZEDÓ (HLF-DDER) Feladata két bit összeadása S = + = INÁRIS ÖSSZEDÁS: FÉLÖSSZEDÓ S FÖ C S: összeg, sum C: maradék, átvitel, carry C = Félösszeadó: két bemenet és két kimenet. Két bináris számjegyet tud összeadni, előállítja az összeget és átvitelt. Nem veszi figyelembe a kisebb helyértékről jövő átvitelt. = & félösszeadó S C INÁRIS/HEXDECIMÁLIS ÖSSZEDÁS IN DEC z összeadás hasonló a -e számrendszerbelihez: két számjegyet és az előző helyértékről származó maradékot kell összeadni. z összeg egyes helyértékén lévő számot le kell írni, a kettes helyértéken lévőt tovább kell vinni. 3 TELJES ÖSSZEDÓ Funkciója két bit és az előző helyi értékből származó maradék (átvitel) összeadása C in TÖ S C out 4 4
5 7.4.. TELJES ÖSSZEDÓ (FULL DDER) Z ÖSSZEGFÜGGVÉNY (D i ) INDEX i FÜGGETLEN VÁLTOZÓKHOZ RENDELT "SÚLYOK" (4) () () i i C i- D i C i FÜGGŐ VÁLTOZÓK teljes összeadónak három bemenete, a két operandus, és az alacsonyabb hely-értékről érkező átvitel ( i, i és C i- ) és két kimenete, az összeg és az átvitel) (S i (a táblázatban D i jelöli) és C i ) van. D i = (,,4,7) C i = (3,5,6,7) 5 i (4) () () i i C i- D i sakktábla Szimmetrikus függvény D i i C i i 6 TELJES ÖSSZEDÓ EGY LEHETSÉGES MEGVLÓSÍTÁS KÉT 4-ITES SZÁM ÖSSZEDÁS Soros átvitel terjedés (ripple carry adder) i i i i Ci- 3 3 C in C in C in C in (i + i) Ci- TÖ TÖ TÖ FÖ C out S C out S C out S C out S i + i Q 3 Q Q Q ii ii + (i + i) Ci- 7 Carry flag 8 INÁRIS KIVONÁS Két bináris számjegy - = D, (K) alakú bináris kivonása: K - magasabb helyértékről vett kölcsön (borrow); D - eredeti helyértéken mutatkozó különbség (difference) K D _ D = K = 9 INÁRIS SZÁMOK KIVONÁS ináris számok kivonásának algoritmusa hasonló a decimális számokéhoz ( > ): = n n = n n-... K = K n K n-... K K D = D n D n-... (kölcsön) (különbség) a különbség i-edik bitje D i = D i ( i, i,k i+ ) az i-edik különbségnél szükséges kölcsön K i = K i ( i, i,k i+ ) és K = 3 5
6 7.4.. INÁRIS SZORZÁS z x = P bináris szorzás szorzótáblája (bináris egyszeregy ) igen egyszerű P Lényegében azonos a logikai ÉS kapcsolattal (logikai szorzás) INÁRIS SZÁMOK SZORZÁS bináris számok szorzása ugyanúgy történik, mint a decimális számoké: - ha a szorzó soronkövetkező számjegye -es, akkor összeadás következik, - ha -as, akkor nincs összeadás. Minden helyértéknél léptetjük a részletszorzatot a megfelelő irányba. 3 3 INÁRIS SZORZÁS ELVÉGZÉSE x 36 x. részletszorzat. részletszorzat összeg 3. részletszorzat összeg 4. részletszorzat végösszeg 396 Kódok, kódolás: alapfogalmak Code (m) Kód KÓD - francia szó, eredeti szűkebb értelme a rejtjellel kapcsolatos. - információ kifejezésének, közlésének, megjelenítésének egyik formája. KÓDOLÁS ÉS DEKÓDOLÁS C C C C Kódoló Dekódoló Kód Kód - információt hordozó szimbólumok, - szimbólumokból felépített szavak, - szimbólumok és szavak összekapcsolási szabályai. - előírás, mely egyazon információ két ábrázolási formája (két C) közötti kapcsolatot adja meg. hozzárendelésnek nem kell feltétlenül egyértelműen megfordíthatónak lennie. 35 ár a a kódolás és dekódolás egymással felcserélhető, a gyakorlatban kódolás ha a szokásosabb, vagy eleve adott C a kiindulási alap, és dekódolás a fordított eset. Pl. -es számrendszer -es rendszer - kódolás -es számrendszer -es rendszer - dekódolás 36 6
7 7.4.. SZIMÓLUMKÉSZLET zon elemi jelek összessége melyeket a kódolásra felhasználhatunk. Pl. tízes számrendszer (a mennyiségi információ egyik kódja): - tíz darab számjegy, - tizedesvessző, - előjel, - szóköz. Pl. bináris kód a digitális technikában: - csak két szimbólum, és. KÓDSZÓ, KÓDVEKTOR szimbólumkészletből alkotott sorozat. Definiálni kell az egyes jelek összekapcsolási, illetve az egyes szavak megkülönböztetésének szabályait. Kétértékű (bináris) kód: az alkotóelem a bit. kódszavak különböző hosszúságúak lehetnek. 8 bit byte, a kódszavak hosszát gyakran byte-ban adják meg KÓDSZÓ KÉSZLET INÁRIS ÉS NEM INÁRIS KÓDOK Egy rendszerben használt kódszavak összessége. Pl. egy beszélt nyelvben a használt összes szó. használt szavak a megengedett, az értelmetlen szavak a tiltott kódszavak. Pl. szokásos CD kód: megengedett, tiltott kódszó (tetrád, illetve pszeudotetrád). ináris kód két elemű szimbólumkészlet. Nem bináris kód többelemű szimbólumkészlet. Gyakorlati megvalósíthatóság: kétállapotú elemek előnyös tulajdonságai bináris kód KÓDOLT INFORMÁCIÓ TOVÁÍTÁS Soros átvitel Párhuzamos átvitel Vegyes üzemmód DTÁTVITEL Kódolt információ átvitele: többféle üzemmódban lehet - soros, - párhuzamos, - vegyes. Soros átvitel: csatornák száma kicsi, adatátvitel ideje nagy. Párhuzamos átvitel: egyidejűleg több csatornán. Vegyes üzemmód: a két átvitelfajta valamilyen kombinációja. z adó és vevőoldali berendezések bonyolultabbak, és költségesebbek
8 7.4.. Kódok hibavédelmi képessége datforrás Hiba felismerés feltétele: D Átvivő közeg Zaj, zavar Rendeltetési hely Hiba javítás feltétele: D 3 Általánosságban k m + k HIFELISMERŐ ÉS HIJVÍTÓ KÓDOK Legegyszerűbb hibafelismerési eljárás: paritásbit átvitele Két lehetőség Kód Paritásbit páros paritás páratlan paritás m információs bithez k ellenőrző bit szükséges HIJVÍTÁS DECIMÁLIS SZÁMJEGYEK INÁRIS KÓDOLÁS DÓ PRITÁS GEN. JEL ITEK PRITÁS IT PRITÁS VIZSG. VEVŐ PRITÁS HI JELZŐ hibajavítást blokkrendszerű adatátvitel esetén SOR és OSZLOP paritás ellenőrzésével is elvégezhetjük. Ily módon egyetlen hiba a hibás sor és oszlop Információ ábrázolás és feldolgozás: tiszta bináris (és -es, valamint -es komplemens) kód. dat be- és kivitel: tízes számrendszer. -es számrendszer egyes számjegyei (a szimbólum,,,... 9) kifejezése bináris kóddal: binárisan kódolt decimális kód inary Coded Decimal (CD) metszéspontjában van, így a hiba értékcserével javítható NORMÁL CD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját rendeli - Természetes helyérték: 8 4 Érvényes kódszavak PSZEUDOTETRÁDOK ZONOSÍTÁS KRNUGH TÁLÁN C Minimalizálás után P = + C d = 8a 4 + 4a 3 + a +a hat nem megengedett kombináció (,... ) neve pszeudotetrád. Nem használt, illetve érvénytelen kódszavak 47 D Hibajelző: & & C 48 8
9 7.4.. Példa: decimális CD (84) ÖSSZEDÁS CD Mivel egyetlen helyértéken sem volt az összeg 9-nél nagyobb, ezért korrekcióra nem volt szükség CD ÖSSZEDÁS: +6 KORREKCIÓ korrekció + +6 korrekció + +6 korrekció 49 5 CD (84) ÖSSZEDÁS LGORITMUS CD + CD CD = CD + bin CD Átvitel két dekád között CD KÓDÚ ÖSSZEDÁS + > 9. érvénytelen kódszó Decimális 6 (bináris ) korrekció C4 CD + CD CD = CD + bin CD + bin 6 CD ha CD + bin CD 9 ha CD + bin CD > ináris összeadó 3 C4 C S3 S S S & & 3 ináris összeadó 3 C S3 S S S S3 S S S 5 5 9
DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.
6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet
DIGITÁLIS TECHNIKA I 6. ELİADÁS SZÁMRENDSZEREK BEVEZETİ ÁTTEKINTÉS. Római számok és rendszerük. Helyérték
DIGITÁLIS TECHNIK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet. ELİDÁS: BINÁRIS SZÁMRENDSZER. ELİDÁS. elıadás témája a digitális rendszerekben központi szerepet játszó számrendszerek
DIGITÁLIS TECHNIKA I KÓD IRODALOM SZIMBÓLUMKÉSZLET KÓDOLÁS ÉS DEKÓDOLÁS
DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 7. ELİADÁS 7. ELİADÁS 1. Kódok és kódolás alapfogalmai 2. Numerikus kódok. Tiszta bináris kódok (egyenes kód, 1-es
DIGITÁLIS TECHNIKA I PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK. Kódok, kódolás: alapfogalmak
206..28. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 0. ELŐDÁS PÉLD LEGEGYSZERŰ KONJUNKTÍV LK KÉPZÉSÉRE D Három négyes és két kettes
DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III
22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 10. ELŐADÁS 1 PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE A 1 1
Dr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
I+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
Assembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA
1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
LOGIKAI TERVEZÉS PROGRAMOZHATÓ. Elő Előadó: Dr. Oniga István
LOGIKI TERVEZÉS PROGRMOZHTÓ ÁRMKÖRÖKKEL Elő Előadó: Dr. Oniga István Funkcionális kombinációs ió egységek következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,
The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
Aritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.
Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív
LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István
LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
A Gray-kód Bináris-kóddá alakításának leírása
A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül
SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
DIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN
IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 8. ELİÁS 8. ELİÁS. Kódváltók, kódoló és dekódolók 2. Egyszerő kódátalakító (kombinációs) hálózatok 3. ináris/ és /bináris
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS NORMÁL BCD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
Programozott soros szinkron adatátvitel
Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.
3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
Kombinációs hálózatok Számok és kódok
Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az
Analóg és digitális mennyiségek
nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű
Digitális technika VIMIAA02 1. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek
Fixpontos és lebegőpontos DSP Számrendszerek
Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos
Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Számrendszerek. Bináris, hexadecimális
Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika
Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.
Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél
5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris
Alapismeretek. Tanmenet
Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Történeti áttekintés 2. Számítógépes alapfogalmak 3. A számítógép felépítése, hardver A központi egység 4. Hardver
2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)
2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli
DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés
TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
Negatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS
DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti
(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek
Egész számok ábrázolása (jegyzet) Bérci Norbert 2015. szeptember 10-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 1 1.2. Alaki- és
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant
Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.
Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény
Programozás II. Segédlet az első dolgozathoz
Programozás II. Segédlet az első dolgozathoz 1 Tartalomjegyzék 1. Bevezető 4 2. Számrendszerek közötti átváltások 5 2.1 Tízes számrendszerből tetszőleges számrendszerbe................. 5 2.1.1 Példa.....................................
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
26.B 26.B. Analóg és digitális mennyiségek jellemzıi
6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!
Informatika érettségi vizsga
Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés
DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint
6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,
Példa:
Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika
1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció
1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága
DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2
DIGITÁLIS THNIK I Dr. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet. LİDÁS. LİDÁS. Kódátalakítások: bináris/gray, bináris/d. Multiplexerek és demultiplexerek. Komparátorok. Kódok: hibajelzés
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
5. Fejezet : Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Matematikai alapok. Dr. Iványi Péter
Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: és Byte: 8 bit 28 64 32 6 8 4 2 bináris decimális
Dr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa
Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten!
Jelek JEL: információs értékkel bír Csatorna: Az információ eljuttatásához szükséges közeg, ami a jeleket továbbítja a vevőhöz, Jelek típusai 1. érzékszervekkel felfogható o vizuális (látható) jelek 1D,
Az adatkapcsolati réteg
Az adatkapcsolati réteg Programtervező informatikus BSc Számítógép hálózatok és architektúrák előadás Az adatkapcsolati réteg A fizikai átviteli hibáinak elfedése a hálózati réteg elől Keretezés Adatfolyam
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások
Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP-2.2.5.
Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 12.a Évfolyam: 12. 32 hét, heti 2 óra, évi 64 óra Ok Dátum: 2013.09.21
Bevezetés a számítástechnikába
Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Elméleti anyag: Amikor a hazárd jó: élekből impulzus előállítás Sorrendi hálózatok alapjai,
DIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA
206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS ELŐÍRT TANKÖNYV-IRODALOM Sorrendi hálózatok, flip-flopok, regiszterek, számlálók,
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
A számrendszerekrl általában
A számrendszerekrl általában Készítette: Dávid András A számrendszerekrl általában Miért foglalkozunk vele? (Emlékeztet) A mai számítógépek többsége Neumann-elv. Neumann János a következ elveket fektette
DIGITÁLIS TECHNIKA II
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS 1 AZ ELŐADÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése
Jel, adat, információ
Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.
DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1.
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. Kötelezően megoldandó feladatok: A kódoláselmélet alapjai részből: 6. feladat 16. feladat A logikai függvények részből: 19. feladat
Híradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu
Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék
Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483
Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése
Alapfogalmak Dr. Kallós Gábor 2007-2008. A számítógép felépítése A Neumann-elv A számítógéppel szemben támasztott követelmények (Neumann János,. Goldstine, 1945) Az elv: a szekvenciális és automatikus
Hibadetektáló és javító kódolások
Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati
10. Digitális tároló áramkörök
1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek
2018, Diszkrét matematika
Diszkrét matematika 7. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számrendszerek számrendszerek
Digitális technika - Ellenőrző feladatok
igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális