Digitális technika - Ellenőrző feladatok
|
|
- Elvira Kelemenné
- 7 évvel ezelőtt
- Látták:
Átírás
1 igitális technika - Ellenőrző feladatok a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális és alakban a decimális 219-et! d.) Írja fel decimálisan a 6 bites kettes komplemensben adott számot! e.) Írja fel 4 bites kettes komplemens alakban a -6-ot! a.) dja meg annak a 4 bemenetű (), 1 kimenetű () kombinációs hálózatnak a Karnaugh táblázatát, amelynek a kimenete 1, ha a bemenetéra adott bináris szám legalább 2 egyes bitet tartalmaz. táblázat felírásakor vegye figyelembe, hogy a bemeneten azok a kombinációk nem fordulhatnak elő, ahol az összes bemenet azonos értékű! b.) dja meg annak a 4 bemenetű (), 1 kimenetű () kombinációs hálózatnak a minterm és maxterm indexeit, amelynek kimenete 1, ha a bemeneti kombináció páros számú 0-t (nulla is párosnak minősül!) tartalmaz. Vegye figyelembe, hogy a bemeneten soha nem fordulhat elő olyan kombináció, amelynek decimális megfelelője 3-nál kisebb! c.) dja meg annak a 4 bemenetű (), 1 kimenetű () kombinációs hálózatnak a Karnaugh táblázatát, amely a kimenete 1, ha legalább 3 bemenete 1 értékű, vagy a bemenete megegyezik a bemenetével amikor az bemenete különbözik a bemenettől. táblázat felírásakor vegye figyelembe, hogy a bemeneten azok a kombinációk nem fordulhatnak elő, ahol az összes bemenet azonos értékű! d.) dja meg annak a 4 bemenetű (), 1 kimenetű () kombinációs hálózatnak a Karnaugh táblázatát, amely a kimenete 1, ha legalább 3 bemenete 0 értékű, vagy a bemenete nem megegyezik a bemenetével amikor az bemenete megegyezik a bemenettel. táblázat felírásakor vegye figyelembe, hogy a bemeneten azok a kombinációk nem fordulhatnak elő, ahol az összes bemenet azonos értékű! e.) dja meg annak a 4 bemenetű (), 1 kimenetű () kombinációs hálózatnak a minterm és maxterm indexeit, amelynek a kimenete 1, ha a bemenetén lévő bináris szám több 1-es bitet tartalmaz, mint 0-t. z indexek felírásakor vegye figyelembe, hogy a bemeneten azok a kombinációk nem fordulhatnak elő, ahol az összes bemenet azonos értékű! f.) dja meg annak a 4 bemenetű (), 1 kimenetű () kombinációs hálózatnak az igazságtáblázatát, amely a kimenete 1, ha pontosan két bemenete 1-es értékű, vagy az és bemenet 1-es értéke mellett a és bemenetből csak az egyik 1-es. táblázat felírásakor vegye figyelembe, hogy a bemeneten azok a kombinációk nem fordulhatnak elő, ahol az összes bemenet azonos értékű! g.) dja meg annak a négy bemenettel (,,, ahol a legkisebb helyérték) és két kimenettel (Z1 és Z2, ahol Z2 a kisebb helyérték) rendelkező kombinációs hálózat igazságtáblázatát, amely a kimenetén 2 biten megjeleníti a bemeneten értelmezett bináris szám négyzetgyökének egész részét (kerekítés nélkül) (Z1Z2 = int ( sqrt ()) a.) dja meg az ()=(+)(+) logikai függvény kanonikus boole-algebrai alakjait! b.) dja meg az ()= + logikai függvény kanonikus boole-algebrai alakjait! c.) dja meg az ()=(+) logikai függvény kanonikus boole-algebrai alakjait! d.) dja meg az ()=++ logikai függvény kanonikus boole-algebrai alakjait! e.) dja meg az ()=+ logikai függvény kanonikus boole-algebrai alakjait! 1
2 4. igitális technika - Ellenőrző feladatok a.) dja meg a maxterm indexeit az alábbi logikai függvénynek: (,,, ) = [(0,1,2,5,7,9) + 4 (3,10,15)] 3 4 b.) dja meg a minterm indexeit az alábbi logikai függvénynek: (,, ) = [ 0,1,3, ] c.) dja meg a maxterm és minterm indexeit az alábbi logikai függvénynek! (,, ) = d.) dja meg a maxterm és minterm indexeit az alábbi logikai függvénynek! (,, ) = ( + + )( + + )( + + )( + ) + 5. a.) mellékelt Karnaugh táblával adott az () függvény. Jelölje be a Karnaugh táblán az összes, mintermből képezhető prímimplikánsát, adja meg a prímimplikánsok algebrai alakját, és jelölje meg a lényeges prímimplikánsokat! b.) mellékelt Karnaugh táblával adott az () függvény. Jelölje be a Karnaugh táblán az összes, mintermből képezhető prímimplikánsát, adja meg a prímimplikánsok algebrai alakját, és jelölje meg a lényeges prímimplikánsokat! c.) mellékelt Karnaugh táblával adott az () függvény. Jelölje be a Karnaugh táblán az összes, maxtermből képezhető prímimplikánsát, adja meg a prímimplikánsok algebrai alakját, és jelölje meg a lényeges prímimplikánsokat! d.) mellékelt Karnaugh táblával adott az () függvény. Jelölje be a Karnaugh táblán az összes, mintermből képezhető prímimplikánsát, adja meg a prímimplikánsok algebrai alakját, és jelölje meg a lényeges prímimplikánsokat!
3 6. igitális technika - Ellenőrző feladatok a.) dott az alábbi logikai függvény. dja meg algebrai alakban a legegyszerűbb kétszintű konjunktív realizációt! b.) dott az alábbi logikai függvény. dja meg algebrai alakban a legegyszerűbb kétszintű konjunktív realizációt, és rajzolja fel kizárólag NOR kapuk felhasználásával! c.) dott az alábbi logikai függvény. dja meg algebrai alakban a legegyszerűbb kétszintű realizációt, amelyet NN kapukkal lehet megvalósítani! d.) dott az alábbi logikai függvény. dja meg algebrai alakban a legegyszerűbb kétszintű diszjunktív realizációt! a.) dott az alábbi logikai függvény (). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes diszjunktív realizációt! közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő b.) dott az alábbi logikai függvény (). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes diszjunktív realizációt! közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő
4 7. igitális technika - Ellenőrző feladatok c.) dott az alábbi logikai függvény (). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes diszjunktív realizációt! közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő d.) dott az alábbi logikai függvény (). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes konjunktív realizációt! közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő e.) dott az alábbi logikai függvény (). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes konjunktív realizációt! közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő f.) dott az alábbi logikai függvény (). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes konjunktív realizációt! közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő g.) dott az alábbi logikai függvény (). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes diszjunktív realizációt! megvalósított hálózat a szomszédos bemeneti kombináció változásokra nem tartalmazhat statikus hazárdot! h.) dott az alábbi logikai függvény (). Grafikus minimalizálással határozza meg és írja fel algebrai alakban a legegyszerűbb kétszintű, hazárdmentes konjunktív realizációt! megvalósított hálózat a szomszédos bemeneti kombináció változásokra nem tartalmazhat statikus hazárdot!
5 8. igitális technika - Ellenőrző feladatok a.) Egy logikai függvény számjegyes minimalizálásakor a következő oszlopok adódtak: dja meg a legegyszerűbb kétszintű realizáció meghatározásához a prímimplikáns táblát és írja fel a segédfüggvényt, ha a 6,7,12 indexek közömbös bejegyzést takarnak! I II III 4 4,6(2) 4,6,12,14(2,8) a 3 4,12(8) 4,12,6,14(8,2) 6 3,7(4) 3,7,11,15(4,8) b 12 3,11(8) 3,11,7,15(8,4) 7 6,7(1) 6,7,14,15(1,8) c 11 6,14(8) 6,14,7,15(8,1) 14 12,14(2) 15 7,15(8) 11,15(4) 14,15(1) b.) Egy logikai függvény számjegyes minimalizálásakor a következő két oszlop adódott: Írja fel a még szükséges oszlopokat és jelölje meg a prímimplikánsokat! I II 0 0,2(2) 2 0,4(4) 4 2,6(4) 6 4,6(2) 9 6,14(8) 11 9,11(2) 14 11,15(4) 15 14,15(1) c.) Írja fel algebrai alakban a következő - maxtermek által meghatározott - prímimplikánsokat. ((,,,), az változó a legmagasabb helyérték) d.) Írja fel algebrai alakban a következő - mintermek által meghatározott - prímimplikánsokat. ((,,,), az változó a legmagasabb helyérték) d.) dott az alábbi logikai függvény: (,,,)= [(0,1,2,5,6,9,10,15) (7,13,14)] dja meg a számjegyes minimalizálás II. oszlopát! 4,6,12,14 (2,8) 3,7,11,15 (4,8) 6,7,14,15 (1,8) 3,7,11,15 (4,8) I e.) z (,,,)= [(0,1,2,5,6,9,10,15) (7,13,14)] logikai függvény minimalizálása során a maxtermekből az alábbi prímimplikánsok és segédfüggvény adódott. a 0,1 (1) b 0,2 (2) c 1,5,9,13 (4,8) d 2,6,10,14 (4,8) e 5,7,13,15 (2,8) f 6,7,14,15 (1,8) S = acde + bcde + acdf + bcdf zonos értékűek-e a segédfüggvényben lévő megoldások? Indokolja a választ! Írja fel az acde megoldás algebrai alakját! 5
6 8. igitális technika - Ellenőrző feladatok f.) Egészítse ki az (,,,)= [(0,1,2,5,6,9,10,15) (7,13,14)] függvény prímimplikáns tábláját úgy, hogy a minimális hazárdmentes megoldást meg lehessen határozni! ( közömbös bejegyzésekhez tartozó bemeneti kombinációk fizikailag nem fordulhatnak elő!) Írja fel a módosított segédfüggvényt! dja meg algebrai alakban az(oka)t a prímimplikáns(oka)t, amely(ek) az acde megoldást hazárdmentessé teszi(k)! a b c d e f g.) Számjegyes minimalizálás során az (,,,) függvény maxtermjeiből az alábbi prímimplikánsok adódtak: a = 2,3,6,7 (1,4) b = 8,10,12,14 (2,4) c = 2,6,10,14 (4,8) d = 0,2,8,10 (2,8) dja meg a prímimplikáns táblát, írja fel a segédfüggvényt és írja fel az függvény legegyszerűbb kétszintű konjunktív alakját, ha az változó a legmagasabb helyértékű! (3p) 9. a.) Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő. f1 f2 b.) Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő. f1 f2 c.) Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő. f1 f2 6
7 9. igitális technika - Ellenőrző feladatok d.) Tartalmaz-e az alábbi hálózat kimenete () hazárdot, ha a bemeneten csak szomszédos kombinációváltozást engedünk meg? Ha igen, milyen bemeneti kombináció-változásnál fordul elő? e.) Jelölje meg, hogy az alábbi hazárdok közül melyek fordulhatnak elő és melyek nem egy háromszintű kombinációs hálózatban! igen nem unkcionális hazárd inamikus hazárd Lényeges hazárd Statikus hazárd f.) Jelölje meg, hogy az alábbi hazárdok közül igen nem melyek fordulhatnak elő és melyek nem egy unkcionális hazárd kétszintű kombinációs hálózatban! inamikus hazárd Lényeges hazárd Statikus hazárd g.) Egy háromszintű kombinációs hálózat kimenetén ÉS kapu állítja elő az jelet ( = 1 2 ). Egy szomszédos bemeneti kombináció-változásra az kimeneten jelsorozat jön létre, amelynek kezdő és befejező 1 értéke stabil. Mi okozhatja ezt a kimeneti jelsorozatot? 10. a.) Végezze el az állapottábla összevonását. Ekvivalencia, vagy kompatibilitási osztályokat határozott meg? Indokolja a választ! dja meg az egyszerűsített állapottáblát! y\x 0 1 a a0 c1 b a1 c0 c e1 c0 d e0 c0 e e0 c0 b.) Végezze el az állapot összevonás első lépését, azaz töltse ki az alábbi állapottáblához a lépcsős táblát Ekvivalencia vagy kompatibilitási osztályokat határozhatunk meg? Indokolja a választ! y\x 0 1 a d0 e1 b e1 b- c e- c0 d c1 f0 e c1 e0 f b1 a- c.) dja meg a következő állapottábla minimalizálásához a lépcsős táblát! Ekvivalencia vagy kompatibilitási osztályokat írhatunk fel? Indokolja a választ! Írja fel a maximális ekvivalencia (vagy kompatibilitási) osztályokat! y x 1,x a a,0 b,0 -,- c,0 b a,0 b,0 -,- -,- c a,0 -,- d,0 c,0 d -,- -,- d,0 e,- e g,1 -,- f,1 e,1 f -,- -,- f,1 e,1 g g,1 h,1 -,- e,1 h a,- h,1 -,- -,- 7
8 10. igitális technika - Ellenőrző feladatok d.) Egyszerűsítse az alábbi állapottáblát! y\x 0 1 a c,1 e,0 dja meg az összevonáshoz használt lépcsős táblát! b e,0 b,1 dja meg a maximális ekvivalencia osztályokat. c d,0 f,1 dja meg az összevont állapottáblát. d e,0 d,1 e d,0 e,1 f b,0 a,1 11. a.) Jelölje meg, hogy a következő flip-flopok közül mely(ek) működhet(nek) és mely(ek) nem aszinkron módon! igen nem J-K S-R -G b.) dja meg, hogy miért csak szinkron müködésű lehet a, JK és T flip-flop! c.) Rajzoljon fel T flip-flop-ot J-K flip-flop felhasználásával! d.) Valósítsa meg a JK flipflopot T flip-flop felhasználásával! e.) Rajzoljon fel flip-flop-ot T flip-flop felhasználásával! f.) Valósítsa meg a -G flip-flop-ot S-R flip-flop felhasználásával! g.) Rajzoljon fel T flip-flop-ot flip-flop felhasználásával! h.) Rajzoljon fel flip-flop-ot J-K flip-flop felhasználásával! 12. a.) Működhet-e aszinkron módon az alábbi állapottábla? Indokolja a válaszát! Szinkron működést feltételezve rajzolja be a mellékelt diagramba a megadott bemeneti kombinációsorozathoz tartozó állapot (y) és kimeneti kombináció sorozatot (Z). hálózat a állapotból indul! órajel y X1,X2: ,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0 x1 x2 Z b.) Működhet-e aszinkron módon az alábbi állapottábla? Indokolja a válaszát! Szinkron működést feltételezve rajzolja be a mellékelt diagramba a megadott bemeneti kombinációsorozathoz tartozó állapot (y) és kimeneti kombináció sorozatot (Z). hálózat a állapotból indul! órajel y X1,X2: ,0,0,0,1,0,1,1,0,1,0,0,0,1,1,1,0 x1 x2 Z 8
9 12. igitális technika - Ellenőrző feladatok c.) Milyen modell szerint működik az alábbi állapottábla? Indokolja a válaszát! Szinkron működést feltételezve rajzolja be a mellékelt diagrammba a megadott bemeneti kombináció-sorozathoz tartozó állapot (y) és kimeneti kombináció sorozatot (Z). hálózat a állapotból indul! órajel y X1,X2: ,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0 x1 x2 Z 13. a.) Írja fel annak az egybemenetű (X), egykimenetű (Z), aszinkron sorrendi hálózatnak az állapottáblájat, amelynek a kimenete a bemenet minden második 0-1 átmenetekor állapotot vált! b.) Írja fel annak az egybemenetű (X), egykimenetű (Z), Mealy modell szerint működő szinkron sorrendi hálózatnak az állapottáblájat, amelynek a kimenete 1, ha a bemenetére utoljára egymás után három azonos bit érkezett! c.) Írja fel annak az egybemenetű (X), egykimenetű (Z), Moore modell szerint működő szinkron sorrendi hálózatnak az állapottáblájat, amelynek a kimenete 1, ha a bemenetére utoljára egymás után három azonos bit érkezett! d). Írja fel annak a Mealy modell szerint működő szinkron sorrendi hálózatnak az állapottáblájat, amely egy 1 bites soros összeadót valósít meg! e). Írja fel annak a Moore modell szerint működő szinkron sorrendi hálózatnak az állapottáblájat, amely egy 1 bites soros összeadót valósít meg! f.) Vegye fel annak az aszinkron sorrendi hálózatnak az előzetes állapottábláját, amely egy masterslave működésű T flip-flopot valósít meg! ( tervezéskor ne feledkezzen meg arról, hogy masterslave működés esetén az óraimpulzus 1 értéke alatt a flip-flop bemenetét nem szabad változtatni!) g.) Vegye fel annak az aszinkron sorrendi hálózatnak az előzetes állapottábláját, amely egy masterslave működésű flip-flopot valósít meg! ( tervezéskor ne feledkezzen meg arról, hogy masterslave működés esetén az óraimpulzus 1 értéke alatt a flip-flop bemenetét nem szabad változtatni!) h.) Írja fel annak a kétbemenetű (X1, X2) egykimenetű (Z) szinkron sorrendi hálózatnak az előzetes állapottábláját, amelynek működését alábbi idődiagram definiálja. megadott bemeneti változás sorozat ciklikusan ismétlődik és feltételezhetjük, hogy más bemeneti változások fizikailag nem fordulhatnak elő. Mealy, vagy Moore modell szerint definiált a működés? Indokolja a választ! Órajel X1 X2 Z ciklus 9
10 igitális technika - Ellenőrző feladatok i.) Egy kétbemenetű (X1,X2), egy kimenetű (Z) sorrendi hálózat kimenete 0, ha X1 bemenete 0. kimenet 1-re változik, ha X1 = 1 alatt X2 bemenet 0-ról 1-re vált. Minden más esetben a kimenet változatlan. dja meg a fenti leírásnak megfelelően működő aszinkron sorrendi hálózat előzetes állapottábláját! dja meg a fenti leírásnak megfelelően működő szinkron Mealy sorrendi hálózat előzetes állapottábláját! dja meg a fenti leírásnak megfelelően működő szinkron Moore sorrendi hálózat előzetes állapottábláját! j.) dja meg annak a Moore modell szerint működő szinkron sorrendi hálózatnak az előzetes állapottábláját, amelynek 2 bemenete (R és ) és 3 kimenete (z 2,z 1,z 0 ) van. z áramkör működése a következő: R=1 bemenet esetén álljon alaphelyzetbe (z 2,z 1,z 0 =000). R=0 esetén az áramkör 3 bites léptető regiszterként működik. bemeneten lévő érték léptetésre (órajelre) először a z 2 kimeneten jelenik meg. a.) Írja fel az alábbi logikai egyenletekkel adott, flip-flopokból felépített szinkron sorrendi hálózat állapot-tábláját. 1 = x y2 + x y1 2 = x y1 + x y1 Z = y1 y2 b.) Írja fel az alábbi logikai egyenletekkel adott, T flip-flopokból felépített szinkron sorrendi hálózat állapot-tábláját. T1 = x y2 + x y1 T 2 = x y1 + x y1 Z = y1 y2 c.) dott a következő állapottáblával meghatározott szinkron sorrendi hálózat. dja meg a T flipfloppal történő realizáció vezérlési tábláját, ha a következő állapotkódokat választottuk: = 00, = 11, = 01. Írja fel T1, T2 és Z függvények legegyszerűbb diszjunktív alakját. y\ x 1,x ,0,0,0,0,1,1,1,1,-,1,0,0 d.) Normál működésű-e az alábbi állapottáblával adott aszinkron sorrendi hálózat? (Indokolja a választ!) Tartalmaz-e kritikus versenyhelyzetet? (Indokolja a választ!) Ha igen, jelölje meg az érintett állapotátmeneteket, és adjon meg kritikus versenyhelyzet mentes állapotkódot! Tartalmaz-e lényeges hazárdot? Ha igen, jelölje meg az érintett állapotátmeneteket, és adja meg, hogy hogyan lehet kiküszöbölni! 10 y\ x 1,x ,0 00,0 11,0 00, ,0 01,0 11,0 11, ,1 01,1 11,1 10, ,0 01,0 11,0 10,0
11 igitális technika - Ellenőrző feladatok 14. e.) Működhet-e aszinkron módon az alábbi állapottáblával adott sorrendi hálózat? (Indokolja a választ!) Tartalmaz-e kritikus versenyhelyzetet? Ha igen, jelölje meg az érintett állapot-átmeneteket, és adjon meg kritikus versenyhelyzet mentes állapotkódot! Tartalmaz-e lényeges hazárdot? Ha igen, jelölje meg az érintett állapotátmeneteket, és adja meg, hogy hogyan lehet kiküszöbölni! f.) Helyesen valósították-e meg az alábbi aszinkron sorrendi hálózatban az Y1, Y2 és Z függvényeket? Indokolja a válaszát! x 2 x 1 y\ x 1,x ,0 00,0 01,0 00, ,0 01,0 01,0 11, ,1 01,1 11,1 11,1 Y 2 Z Y 1 g.) Tartalmaz-e az alábbi állapottáblával adott aszinkron sorrendi hálózat kritikus versenyhelyzetet? (indokolja a válaszát!) mennyiben tartalmaz, javítsa ki instabil állapot módosítás módszerével Tartalmaz-e a hálózat lényeges hazárdot, ha igen, hol? Hogyan küszöbölhető ki? h.) Szomszédos kódolással válasszon kritikus versenyhelyzet mentes állapotkódot az alábbi állapottáblával adott aszinkron sorrendi hálózathoz! (Rajzolja fel a megfelelő állapotátmeneti gráfot is!) Tartalmaz-e a hálózat lényeges hazárdot? Ha igen, hol? y1y2\x1x ,0 01,0 00,1 11, ,1 01,1 01,1 01, ,1 01,1 01,1 11, ,1 11,1 10,0 11,0 y1y2\x1x ,0,0,1,0,1,1,1,1,1,1,0,0,1,1,1,1 11
12 igitális technika - Ellenőrző feladatok 15. a.) Rajzolja fel egy általános regiszter i. celláját flip-flop és multiplexer felhasználásával, ha a regiszterre a következő műveleteket definiáljuk: V0 V1 unkció 0 0 Tart (a kimenet nem változik) 0 1 Jobbra léptet 1 0 alra léptet 1 1 Törlés b.) Rajzoljon fel egy két bites, aszinkron módon törölhető léptető (shift) regisztert flip-flopok felhasználásával. c.) Rajzoljon fel J-K flip-flop-ok felhasználásával egy 2 bites aszinkron számlálót! d.) Rajzoljon fel T flip-flop-ok felhasználásával egy 2 bites aszinkron számlálót! dja meg, hogy mekkora lenne egy ilyen 10 bites számláló 10. flip-flopjának kimenetén a késleltetés az órajelhez képest, ha egy ÉS kapu késleltetése 10 ns, egy T flip-flop késleltetése 30 ns. e.) Rajzoljon fel flip-flop-ok felhasználásával egy 2 bites szinkron számlálót! f.) Rajzoljon fel egy két bites, szinkron számlálót T flip-flopok felhasználásával! dja meg, hogy mekkora lenne párhuzamos kaszkádosítással egy ilyen 10 bites számláló 10. flipflopjának bemenetén a késleltetés az órajelhez képest, ha egy ÉS kapu késleltetése 10 ns, egy T flipflop késleltetése 30 ns. g.) Rajzoljon fel T flip-flopok felhasználásával egy négy bites szinkron számlálót soros kaszkádosítással! dja meg, hogy mekkora lenne egy ilyen 10 bites számláló 10. flip-flopjának bemenetén a késleltetés az órajelhez képest, ha egy ÉS kapu késleltetése 10 ns, egy T flip-flop késleltetése 30 ns. h.) Egészítse ki a mellékelt ábrát úgy, hogy az egy 2 bites aszinkron számlálót valósítson meg! T Q T Q i.) Egészítse ki a mellékelt ábrát úgy, hogy az egy 2 bites szinkron számlálót valósítson meg! > Q > Q j.) Egészítse ki a mellékelt kapcsolási rajzot úgy, hogy az az alábbi idődiagramnak megfelelő kétfázisú órajelet állítsa elő! lk Q Q lk > Q > Q 2 j.) Jelölje meg, hogy a következő idődiagramok mely szinkron flip-flop működési módra jellemzők. Élvezérelt Master-slave ata-lock-out emenet mintavételezése Kimenet beállítása 12
13 igitális technika - Ellenőrző feladatok k.) Pótolja a hiányzó adatokat a következő memóriamodulok ábráin: ím: 0...? 8 kbit dat: ím: ? dat: ím: kbit dat: 0...? ím:... Kapacitás:... l.) Jelölje meg, hogy a következő állítások közül melyik igaz, és melyik nem! dat:... igaz nem Két three-state típusú kimenet csak akkor köthető össze, ha közülük egy időpillanatban pontosan 1 aktív. Két three-state típusú kimenet csak akkor köthető össze, ha közülük egy időpillanatban legfeljebb 1 aktív. Egy totem-pole és egy three-state kimenet feltétel nélkül összeköthető. Két totem-pole kimenet feltétel nélkül összeköthető. Két totem-pole kimenet soha nem köthető össze. Nyitott kollektoros kimenetek összekötésével huzalozott ÉS kapcsolat valósítható meg. 16. a.) Készítsen pontosan 16 K címtartományú 8 bit-szervezésű memóriaegységet az alábbi modul felhasználásával! ÍM :0-12 ME 32 Kbit-es memória T :0-3 R / WR b.) Készítsen pontosan 64 Kbit kapacitású 16 bit-szervezésű memóriaegységet az alábbi modul felhasználásával! ÍM :0-10 ME 16 Kbit-es memória T :0-7 R / WR c.) Készítsen pontosan 96 Kbit kapacitású 8 bit-szervezésű memóriaegységet az alábbi modulok felhasználásával! ÍM :0-12 ÍM :0-11 ME 64 Kbit-es memória T :0-7 ME 16 Kbit-es memória T :0-3 R / WR R / WR d.) Készítsen pontosan 256 Kbit kapacitású 8 bit-szervezésű memóriaegységet az alábbi modul felhasználásával! ÍM :0-12 ME 64 Kbit-es memória T :0-7 R / WR 13
14 igitális technika - Ellenőrző feladatok 17. a.) Készítsen bináris számlálót, amely 0-tól 100-ig számlál, majd ha elérte a 100-as értéket, akkor a számláló automatikusan 200-ról folytatja a számlálást. Egy külső RESET jellel 0-ról tetszőleges időpillanatban (aszinkron módon) 0-ra lehet a számlálót állítani, z egység felépítésére használja az alábbi 4 bites számlálót (a L és L jelek közül az L jel prioritása a nagyobb) és 8 bites komparátort! EP Q0-Q3 RO 0-7 Komparátor ET 4 bites számláló < Órajel L (aszinkron) X0-X3 L (szinkron) 0-7 = b.) Készítsen bináris számlálót, amely 0-tól 100-ig számlál, majd ha elérte a 100 értéket, akkor a számláló automatikusan 144-ről folytatja a számlálást egészen 160-ig. Ha elérte a 160-at, akkor 0-ról újraindul. Emellett egy külső STRT jellel 144-ről lehet a számlálót újraindítani. z egység felépítésére használja az alábbi 4 bites számlálót (a L és L jelek közül az L jel prioritása a nagyobb) és 4 bites komparátort! EP ET Órajel Q0-Q3 4 bites számláló L (szinkron) X0-X3 L (szinkron) RO Komparátor < = > < = > c.) Készítsen bináris számlálót, amely 0-tól 64-ig számlál, majd ha elérte a 64-es értéket, akkor a számláló automatikusan 128-ról folytatja a számlálást egészen 200-ig, majd 0-ról újra kezdi a ciklust. Egy külső RESET jellel 0-ról tetszőleges időpillanatban (aszinkron módon) 0-ra lehet a számlálót állítani, egy külső STRT jel pedig szinkron módon 128-ról indítja el a számlálót. z egység felépítésére használja az alábbi 4 bites számlálót (a L és L jelek közül az L jel prioritása a nagyobb) és 8 bites komparátort! EP Q0-Q3 RO 0-7 Komparátor ET 4 bites számláló < Órajel L (aszinkron) X0-X3 L (szinkron) 0-7 = d.) Készítsen bináris számlálót, amely 0-tól 200-ig számlál, majd ha elérte a 200-as értéket, akkor a számláló automatikusan 0-ról folytatja a számlálást. Egy külső RESET jellel 0-ról tetszőleges időpillanatban (aszinkron módon) 0-ra lehet a számlálót állítani, egy külső STRT jel pedig szinkron módon 100-ról indítja el a számlálót. z egység felépítésére használja az alábbi 4 bites számlálót (a L és L jelek közül az L jel prioritása a nagyobb) és 8 bites komparátort! EP Q0-Q3 RO 0-7 Komparátor ET 4 bites számláló < Órajel L (aszinkron) X0-X3 L (szinkron) 0-7 = 14
15 igitális technika - Ellenőrző feladatok 18. a.) dja meg (hexadecimális alakban), hogy mi lesz az, H, L regiszterek, a Z flag és a megcímzett memória rekeszek értéke az egyes utasítások végrehajtása után, valamint az U oszlopban jelezze X-szel, hogy az adott utasítás végrehajtásra került-e. táblázatba elegendő csak a megváltozott értékeket bejegyezni! memóriában a 8000H címtől kezdődően az 55 H, H értékek találhatók. H L Z U Memória (ím/érték) LXI H, 8000 H XR XR M INX H JNZ IE INR M IE: N M MVI,11 H JNZ O X H N M: M: := N [HL] állítja az S, Z, := + [HL] állítja az S, Z,, P és X rp: rp := rp - 1, nem állítja a INR M: [HL] := [HL] + 1, állítja az S, Z,, P INX rp: rp := rp + 1, nem állítja a JZ n16: P = n16, ha Z=1 JNZ n16: P = n16, ha Z=0 LXI rp,n16: rp := n16 MVI r, n8: r := n8 XR r: := XOR r, állítja az S, Z, Y XR M: := XOR [HL], állítja az S, Z, Y O: XR M M b.) dja meg (hexadecimális alakban), hogy mi lesz az, H, L regiszterek, az S (előjel) flag és a megcímzett memória rekeszek értéke az egyes utasítások végrehajtása után, valamint az U oszlopban jelezze X-szel, hogy az adott utasítás végrehajtásra került-e. táblázatba elegendő csak a megváltozott értékeket bejegyezni! memóriában a 8000H címtől kezdődően az H, 55 H értékek találhatók. H L S U Memória (ím/érték) LXI H, 8000 H XR OR M INX H JP IE INR M IE: N M MVI, H JM O X H O: XR M M N M: M: := N [HL] állítja az S, Z, := + [HL] állítja az S, Z,, P és X rp: rp := rp - 1, nem állítja a INR M: [HL] := [HL] + 1, állítja az S, Z,, P INX rp: rp := rp + 1, nem állítja a JP n16: P = n16, ha S=0 JM n16: P = n16, ha S=1 LXI rp,n16: MVI r, n8: OR M: rp := n16 r := n8 := OR [HL], állítja az S, Z, Y XR r: := XOR r, állítja az S, Z, Y 15
16 18. igitális technika - Ellenőrző feladatok c.) dja meg, hogy mi lesz az,h,l regiszterek, Y flag és a megcímzett memória rekeszek értéke az egyes utasítások végrehajtása után. táblázatba elegendő csak a megváltozott értékeket bejegyezni hexadecimális alakban! H L Y Memória (ím/érték) LXI H, 4523 H SHL E00 H MOV,L N H MOV L, SUI 3 MOV H, M X H M M: M: := + [HL] + Y állítja az S, Z, := + [HL] állítja az S, Z,, P és N r: := N r, állítja az S, Z, X rp: rp := rp - 1, nem állítja a LXI rp,n: rp := n MOV r1, r2: r1 := r2 SHL cím 16 : [cím 16 ] := HL SUI adat 8 : := - adat 8 állítja az S, Z, XR r: := XOR r, állítja az S, Z, XR H d.) dja meg, hogy mi lesz az,h,l regiszterek, Y flag és a megcímzett memória rekeszek értéke az egyes utasítások végrehajtása után. táblázatba elegendő csak a megváltozott értékeket bejegyezni hexadecimális alakban! H L Y Memória (ím/érték) LXI H, 4218 H SHL E00 H MOV,H N L MOV L, SUI 2 MOV H, M INX H M XR L M: M: := + [HL] + Y állítja az S, Z, := + [HL] állítja az S, Z,, P és N r: := N r, állítja az S, Z, INX rp: rp := rp + 1, nem állítja a LXI rp,n: rp := n MOV r1, r2: r1 := r2 SHL cím 16 : [cím 16 ] := HL SUI adat 8 : := - adat 8 állítja az S, Z, XR r: := XOR r, állítja az S, Z, 16
DIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
RészletesebbenDigitális technika házi feladat III. Megoldások
IV. Szinkron hálózatok Digitális technika házi feladat III. Megoldások 1. Adja meg az alábbi állapottáblával megadott 3 kimenetű sorrendi hálózat minimális állapotgráfját! a b/x1x c/x0x b d/xxx e/x0x c
Részletesebben2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához
XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput
RészletesebbenIrányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár
Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.
RészletesebbenIRÁNYÍTÁSTECHNIKA I.
IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos
RészletesebbenD I G I T Á L I S T E C H N I K A Gyakorló feladatok 3.
Szinkron hálózatok D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3. Irodalom: Arató Péter: Logikai rendszerek. Tankönyvkiadó, Bp. 1985. J.F.Wakerley: Digital Design. Principles and Practices; Prentice
Részletesebben1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű
RészletesebbenLogikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.
Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.
Részletesebben1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
RészletesebbenMegoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Elméleti anyag: Amikor a hazárd jó: élekből impulzus előállítás Sorrendi hálózatok alapjai,
RészletesebbenEBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
RészletesebbenDIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
RészletesebbenA feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg. Olvasható aláírás:...minta VIZSGA...
feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg. Olvasható aláírás:...mint VIZSG... NÉV:...tk.:... Kiegészítő és szegedi képzés IGITÁLIS TCHNIK VIZSG ZÁTHLYI Kedves
Részletesebben6. hét: A sorrendi hálózatok elemei és tervezése
6. hét: A sorrendi hálózatok elemei és tervezése Sorrendi hálózat A Sorrendi hálózat Y Sorrendi hálózat A Sorrendi hálózat Y Belső állapot Sorrendi hálózat Primer változó A Sorrendi hálózat Y Szekunder
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
RészletesebbenGépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve
Részletesebben4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
RészletesebbenDIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint
6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,
Részletesebben2. Digitális hálózatok...60
2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk
Részletesebben10. Digitális tároló áramkörök
1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek
Részletesebben3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK
3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek
RészletesebbenDr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
RészletesebbenDIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
RészletesebbenElőadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
RészletesebbenAszinkron sorrendi hálózatok
Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
RészletesebbenDIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA
206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,
RészletesebbenDIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
RészletesebbenHazárdjelenségek a kombinációs hálózatokban
Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése
Részletesebben5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
RészletesebbenKiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez
Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez Benesóczky Zoltán 217 1 digitális automaták kombinációs hálózatok sorrendi hálózatok (SH) szinkron SH aszinkron SH Kombinációs automata Logikai
RészletesebbenDIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István
IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
RészletesebbenDIGITÁLIS TECHNIKA II
IGITÁLIS TEHNIKA II r. Lovassy Rita r. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐAÁS AZ ELŐAÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése
Részletesebben1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.
1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,
RészletesebbenDigitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton
Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika
RészletesebbenA feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás:...
2 év hó nap NÉV:MEGOÁSneptun kód: feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás: Kedves Kolléga! kitöltést a dátum, név és aláírás rovatokkal kezdje!
RészletesebbenDr. Oniga István DIGITÁLIS TECHNIKA 9
r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:
RészletesebbenDIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A digitális tervezésben gyakran szükséges a logikai jelek változását érzékelni és jelezni. A változásdetektorok készülhetnek csak egy típusú változás (0 1, vagy
Részletesebben7.hét: A sorrendi hálózatok elemei II.
7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve
RészletesebbenDr. Oniga István DIGITÁLIS TECHNIKA 9
r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:
RészletesebbenDIGITÁLIS TECHNIKA II
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS 1 AZ ELŐADÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése
RészletesebbenDigitális hálózatok. Somogyi Miklós
Digitális hálózatok Somogyi Miklós Kombinációs hálózatok tervezése A logikai értékek és műveletek Két-értékes rendszerek: Állítások: IGAZ, HAMIS Bináris számrendszer: 1, 0 Kapcsolók: BEKAPCSOLVA, MEGSZAKÍTVA
RészletesebbenDigitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
RészletesebbenÁramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:
Részletesebbenfunkcionális elemek regiszter latch számláló shiftregiszter multiplexer dekóder komparátor összeadó ALU BCD/7szegmenses dekóder stb...
Funkcionális elemek Benesóczky Zoltán 24 A jegyzetet a szerzői jog védi. Azt a BM hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges. funkcionális
RészletesebbenDigitális hálózatok. Somogyi Miklós
Digitális hálózatok Somogyi Miklós Kombinációs hálózatok tervezése A logikai értékek és műveletek Két-értékes rendszerek: Állítások: IGAZ, HAMIS Bináris számrendszer: 1, 0 Kapcsolók: BEKAPCSOLVA, MEGSZAKÍTVA
RészletesebbenSzekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
RészletesebbenDIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS ELŐÍRT TANKÖNYV-IRODALOM Sorrendi hálózatok, flip-flopok, regiszterek, számlálók,
RészletesebbenHobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog
RészletesebbenElektronikai műszerész Elektronikai műszerész
A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
RészletesebbenDIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS NORMÁL BCD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját
Részletesebben5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások
RészletesebbenA feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás:...
2..év hó nap NÉV:...neptun kód:.. Kurzus: feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás:... Kedves Kolléga! kitöltést a dátum, név és aláírás rovatokkal
RészletesebbenDr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
RészletesebbenDigitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti
RészletesebbenF1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok
F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
RészletesebbenVersenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/áramköri/tervezési
RészletesebbenDigitális technika VIMIAA02 2. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika
RészletesebbenMUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása
Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:
RészletesebbenDigitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben
RészletesebbenA gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók.
Megoldás Digitális technika II. (vimia111) 1. gyakorlat: Digit alkatrészek tulajdonságai, funkcionális elemek (MSI) szerepe, multiplexer, demultiplexer/dekóder Elméleti anyag: Digitális alkatrészcsaládok
RészletesebbenSzekvenciális hálózatok Állapotdiagram
Szekvenciális hálózatok Állapotdiagram A kombinatorikus hálózatokra jellemző: A kimeneti paramétereket kizárólag a mindenkori bemeneti paraméterek határozzák meg, a hálózat jellegének, felépítésének megfelelően
RészletesebbenIRÁNYÍTÁSTECHNIKA I.
IRÁNYÍTÁSTECHNIKA I. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS
RészletesebbenDigitális Technika I. (VEMIVI1112D)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
RészletesebbenSzámítógép architektúrák 2. tétel
Számítógép architektúrák 2. tétel Elemi sorrendi hálózatok: RS flip-flop, JK flip-flop, T flip-flop, D flip-flop, regiszterek. Szinkron és aszinkron számlálók, Léptető regiszterek. Adatcímzési eljárások
RészletesebbenSzámlálók és frekvenciaosztók Szinkron, aszinkron számlálók
Szinkron, aszinkron számlálók szekvenciális hálózatok egyik legfontosabb csoportja a számlálók. Hasonlóan az 1 és 0 jelölésekhez a számlálók kimenetei sem interpretálandók mindig számként, pl. a kimeneteikkel
Részletesebben10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok
RészletesebbenDigitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Sorrendi hálózatok Az eddigiekben
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Elektronikai
RészletesebbenSzéchenyi István Egyetem. dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK ÉS RENDSZEREK
Széchenyi István Egyetem dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK ÉS RENDSZEREK 41 TARTALOMJEGYZÉK 1. rész. Kombinációs hálózatok tervezése 8 1.1. LOGIKAI ÉRTÉKEK ÉS ALAPMŰVELETEK 8 1.1.1 A logikai változók
RészletesebbenMáté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
RészletesebbenI.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)
I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,
RészletesebbenMáté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
RészletesebbenVersenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny
54 523 01 0000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 01 0000 00 00 SZVK rendelet száma: 15/2008 (VIII. 13.) SZMM
RészletesebbenMegoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole
RészletesebbenÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
RészletesebbenTARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
RészletesebbenDigitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás
RészletesebbenDigitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Sorrendi hálózatok Az eddigiekben
Részletesebben1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE
. EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének
RészletesebbenEllenőrző mérés mintafeladatok Mérés laboratórium 1., 2011 őszi félév
Ellenőrző mérés mintafeladatok Mérés laboratórium 1., 2011 őszi félév (2011-11-27) Az ellenőrző mérésen az alábbiakhoz hasonló feladatokat kapnak a hallgatók (nem feltétlenül ugyanazeket). Logikai analizátor
Részletesebben2. hét Kombinációs hálózatok leírási módjai
2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti
RészletesebbenDigitális technika I.
Digitális technika I. ELSŐ JAVÍTOTT KIADÁS 4 Utolsó frissítés időpontja: 4--8 (terjedelem: 48 A4-es lap) (A jegyzetben található estleges hibákért, elírásokért elnézést kérek, és a hibák jelzését köszönettel
RészletesebbenTájékoztató. Használható segédeszköz: számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) és a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított szakmai és vizsgakövetelménye
RészletesebbenDIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS
DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti
RészletesebbenKombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
RészletesebbenXI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat vesszük sorra. Elsőként arra térünk ki, hogy a logikai értékek
RészletesebbenLogikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
RészletesebbenHobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek
Hobbi Elektronika A digitális elektronika alapjai: További logikai műveletek 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL, 5th.
RészletesebbenDIGITÁLIS TECHNIKA II
IGIÁLIS ECHNIA II r Lovassy Rita r Pődör Bálint Óbudai Egyetem V Mikroelektronikai és echnológia Intézet 3 ELŐAÁS 3 ELŐAÁS ELEMI SORRENI HÁLÓZAO: FLIP-FLOPO (2 RÉSZ) 2 AZ ELŐAÁS ÉS A ANANYAG Az előadások
RészletesebbenIrányítástechnika Elıadás. A logikai hálózatok építıelemei
Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális
Részletesebben1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
RészletesebbenDr. Keresztes Péter DIGITÁLIS HÁLÓZATOK
Dr Keresztes Péter DIGITÁLIS HÁLÓZATOK A jegyzet a HEFOP támogatásával készült Széchenyi István Egyetem Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató
RészletesebbenA/D és D/A konverterek vezérlése számítógéppel
11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,
RészletesebbenMegoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései
Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Elméleti anyag: Lényegtelen kombináció (don t care) fogalma Kombinációs hálózatok
Részletesebben