Hazárdjelenségek a kombinációs hálózatokban
|
|
- Elemér Székely
- 7 évvel ezelőtt
- Látták:
Átírás
1 Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése szükséges. 1
2 valóságos logikai kapuk viselkedése nem ideális. Például, a bemeneti jelváltozásra nem azonnal reagálnak, késleltetésük van. késleltetési időt t pd vel jelöljük (propagation delay). X1 1 X1 d X1 X1 d t pd késleltetés modellezése késleltetés hatását koncentrált késleltetéssel modellezhetjük. Ha igyelembe akarjuk venni, hogy egy kapu különböző bemenetein a késleltetés kicsit eltérő lehet, akkor a késleltető tagot a bemenetekre helyezzük. Ha a ettől eltekintünk, akkor a kimenetre helyezhetjük a késleltetőt. Itt az utóbbi modellt használjuk. X1 1 dt X1 d késleltetés miatt a kombinációs hálózatban nem kívánt, un. hazárdjelenségek léphetnek el. 2
3 Egy Hamming távolságú bemeneti változásra ellépő hazárdok izonyos áramköröknél (pl. az aszinkron sorrendi hálózatoknál) ontos, hogy az áramkör kombinációs hálózat része hogyan viselkedik az olyan gerjesztéskre, amelyeknél egyszerre csak egy bemeneti jel változik. statikus hazárd Először nézzük meg egy kapu viselkedését ha bemeneteire egy jelet és késleltetettjét azonos vagy különböző polaritással kötjük be. (Most eltekintünk a kapu késleltetésétől.) d dt d dt d d z és esetben az impulzus rövidebb, vagy hosszabb lesz egy kicsivel, ami általában nem zavaró. 3
4 dt d / d / dt /d /d és esetben, ha nem lenne késleltetés, a üggvény a bemenettől üggtelenül X./X = 0 értéket adna. esetben a késleltetés miatt a bemeneti jel hátsó élénél a kimeneten egy magas impulzus jelenik meg. esetben a késleltetés miatt a bemeneti jel első élénél a kimeneten egy magas impulzus jelenik meg. 4
5 5. dt d / d / 6. dt /d /d z 5. és 6 esetben késleltetés nélkül a kimenet X + /X = 1 lenne. 5. esetben a késleltetés miatt a bemeneti jel első élénél a kimeneten egy alacsony impulzus jelenik meg. 6. esetben a késleltetés miatt a bemeneti jel hátsó élénél a kimeneten egy alacsony impulzus jelenik meg. enti impulzusok létrejöttét nyilván nem beolyásolja, ha ND helyett NND vagy OR helyett NOR kaput alkalmazunk, csak az impulzus előjele változik. enti jelenségek akkor hasznosak, ha kimondottan ez volt a célunk, vagyis egy jel első vagy hátsó élénél egy impulzust szeretnénk előállítani. 5
6 Vizsgáljuk meg, hogyan viselkedik az alábbi logikai hálózat, ha az bemeneti változójára 1-0 átmenetet adunk, miközben a másik két bementén == /1 /2 3 ' =1 dt1 =1 /1 dt2 dt3 /2 3 ' dt4 Ha nem lenne késleltetés, a kimeneten =/. +., ==1 esetén 1-et adna -tól üggetlenül. ==1 biztosítja, hogy az jel átjusson mindkét kapun. -on ponálva, a -on negálva. Ez a két jel egymáshoz képest kis késéssel a VGY kapu bemeneteire jutva, a kimeneten egy alacsony impulzust hoz létre. Mivel most / késik -hoz képest, az impulzus az leutó élénél jelentkezik. 6
7 Statikus hazárd z olyan tipusú hazárdot, mely a kombinációs hálózat egy bemenetének változásakor jön létre: 1, 2... i.. n 1, 2.../ i.. n és amelynél a üggvény értéke a tranziens előtt és után ugyanaz: ( 1, 2... i.. n ) = ( 1, 2.../ i.. n ) de közben ( 1, 2... i.. n ) /( 1, 2... i.. n ) ( 1, 2... i.. n ) tranziens zajlik le: vagy statikus hazárdnak nevezzük. 7
8 Hasonló de ellenkező előjelű hazárd jön létre konjunktív megvalósítású hálózatban is. (Mivel a legutolsó kapu késleltetése nem beolyásolja a hazárd keletkezését, csak megkéslelteti, annak késleltetését akár el is hagyhatjuk): =0 dt1 /1 dt2 /2 =0 dt3 3 Ha a hazárd zavaró, (a kombinációs hálózatot tartalmazó logika helytelen működését okozza), akkor védekezni kell ellene. 8
9 =1 dt1 = /1 dt2 dt3 / Karnaugh tábla diszjunktív alakú megvalósításhoz tartozó leedését megnézve látható, hogy a hazárd annál az átmenetnél következik be, amelyet nem ed le prímimplikáns. =0 esetén a kapu, =1 esetén a kapu állítja elő az 1-eseket, melyeket a kimeneti VGY kapu juttat a kimenetre. késleltetés miatt előordul, hogy rövid időre az egyik kapu már nem állítja elő, a másik pedig még nem. Ha az eddig leedetlen. prímimplikánst is leedjük, akkor az ehhez tartozó kapu -tól üggetlenül előállítja az 1-et, s az előbbi hazárd nem jön létre. ponált és negált jel ugyan találkozik a VGY kapunál, de az nem engedi át a tranzienst, mivel az hazádmentesítő kapu kimenete letiltja a kijutását. 3 ' dt4 9
10 =1 /1 dt1 dt2 /2 =1 5. dt3 3 1 =1 1 Hasonló a helyzet a konjunktív megvalósításnál is. Leedve a hazárdos átmenethez tartozó prímimplikánst, nem jön létre a hazárd. =0 dt1 /1 dt2 /2 0 =0 0 dt3 3 =
11 Statikus hazárd legalább 2 szintű hálózatban jön létre. statikus hazárd eltétele, hogy a hazárdot okozó jel legalább 2 úton terjedjen a kimenetre. Kivédése: a 2 szintű megvalósításnál az összes szomszédos mintermet (matermet) le kell edni egy közös hurokkal. Karnaugh tábla alapján megállapítható, hogy mely szomszédos mintermek (matermek) nincsennek leedve közös hurokkal, s ezek lesznek a hazárdos átmenetek. dinamikus hazárd Elemezzük hazárd szempontjából az alábbi (3 szintű) kapcsolást. =1 /1 dt1 dt2 /2 dt4 =1 dt3 3 kapcsolás csak a kimeneti ÉS kapuban különbözik az előbbiekben ismertetett diszjunktív alakú kapcsolástól. kapu kimenetén ugyanúgy megjelenik egy statikus hazárd. zonban a kimeneti kapura közvetlenül eljut /. Ez az jel 0-1 változása előtt 0-át biztosít a kimeneten. Viszont még 4-es kapu kimenetén megjelenő st. hazárd előtt engedélyezni 11
12 ogja a hazárdos tranziens kijutását, majd a tranziensek lezajlása után 1 lesz a kimenet. Tehát a kimeneten a tranziens jelenik meg. z olyan tipusú hazárdot, mely a kombinációs hálózat egy bemenetének változásakor jön létre: 1, 2... i.. n 1, 2.../ i.. n és amelynél a üggvény értéke a tranziens előtt és után ellentétes: ( 1, 2... i.. n ) = /( 1, 2.../ i.. n ) de közben ( 1, 2... i.. n ) /( 1, 2... i.. n ) ( 1, 2... i.. n ) /( 1, 2... i.. n ) tranziens zajlik le: vagy dinamikus hazárdnak nevezzük. Dinamikus hazárd csak 2-nél többszintű hálózatban jöhet létre. Feltétele, hogy egy jel legalább 3 úton terjedjen a kimenetre. 12
13 Kivédése: z alacsonyabb szinten keletkező statikus hazárd megszüntetésével, vagy 2 szintű hazárdmentes megvalósítással. 13
14 Hazárd analízis kapcsolási rajz alapján Ez a módszer minden esetben használható. / / / / / 5. / / / / / Először derítsük ki, hogy az egyes kapuk kimenetein a mely jelek és milyen polaritással jelenhetnek meg. Ezt mutatja a enti ábra. Ebből már látható, hogy a kimeneten a jel nem okozhat hazárdot, mivel csak ponáltan képes kijutni. z és jel hazárdot okozhat, így csak ezekkel kell oglakozni. z jel változása akkor okoz statikus hazárdot, ha: - a 7. kapu első bemenetére jel eljut de / nem, (csak =1, =0-nál teljesül) miközben az alsóra az / (csak =1 esetén teljesül és más eltétele nincs). Tehát =1, =0-nál statikus hazárd van. 14
15 / / / / 5. / / 7. / - a 7. kapu első bemenetére jel és / eljut (csak ==1 esetén), miközben az alsó bemenete 1 (sak =1 és =0 esetén). Ezek nem teljesülnek egyszerre, tehát nincs hazárd. z jel változása akkor okoz dinamikus hazárdot, ha - 7. kapu első bemenetére és / jel eljut (csak ==1 esetén) és az alsóra / is (=1 és =0 vagy =1 esetén). eltételek csak ==1 esetén teljesülnek, így ekkor dinamikus hazárd van. 15
16 5. / / 7. / z jel változása akkor okoz statikus hazárdot, ha: - a 7. kapu első bemenetére jel eljut, (csak =1-nél teljesül) miközben az alsóra csak / (csak =1 és =1 esetén teljesül). Tehát ==1 esetén statikus hazárd van kapu első bemenete 1 (=0, =1 esetén teljesül), míg az alsóra (csak =0 esetén teljesül) és / eljut (=0, =1 esetén teljesül). Tehát =0, =1 esetén statikus hazárd van. z jel változása akkor okoz dinamikus hazárdot, ha: - a 7. kapu első bemenetére (csak =1-nél teljesül) és az alsóra (csak =0 esetén teljesül) és / (=1 esetén teljesül) eljut. eltételek egyszerre nem teljesülnek, így nincs dinamikus hazárd. 16
17 Hazárd keresés Karnaugh-tábla segítségével bban az esetben, ha a üggvény 2 két szintű hálózat ÉS vagy VGY kapcsolata, a dinamikus és statikus hazárdos átmenetek a Karnaugh tábla alapján is megtalálhatók statikus hazárd =1*2-ben statikus hazárd =1*2-ben 1 2 dinamikus hazárd =1*2-ben
18 Funkcionális hazárd (1-nél több Hamming távolságú bemeneti változás hatása) Ha egy kombinációs hálózat bemenetén egyszerre több jel változik, akkor ezt a változást a hálózat nem biztos, hogy egyidejűnek érzi. (Pl. z egyes bemenetekre kapcsolódó kapuk késleltetése nem egyorma, de maga bemeneti változás sem történik pontosan egyszerre.) enti hálózat az = változást változásként érzékelheti és ekkor a kimenetén a konstans 1 helyett unkcionális hazárd jelenik meg, mivel (110)=1 (111)=0 (011)= 18
Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.
Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.
Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár
Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
Aszinkron sorrendi hálózatok
Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
IRÁNYÍTÁSTECHNIKA I.
IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos
Digitális Technika I. (VEMIVI1112D)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 6. hét Hazárd jelenségek Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu Kapcsolódó jegyzet, segédanyag: http://www.virt.vein.hu
4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű
Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései
Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Elméleti anyag: Lényegtelen kombináció (don t care) fogalma Kombinációs hálózatok
Digitális technika - Ellenőrző feladatok
igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális
IRÁNYÍTÁSTECHNIKA I.
IRÁNYÍTÁSTECHNIKA I. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS
A feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg. Olvasható aláírás:...minta VIZSGA...
feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg. Olvasható aláírás:...mint VIZSG... NÉV:...tk.:... Kiegészítő és szegedi képzés IGITÁLIS TCHNIK VIZSG ZÁTHLYI Kedves
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat vesszük sorra. Elsőként arra térünk ki, hogy a logikai értékek
I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)
I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,
Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton
Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika
Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
Tantárgy: DIGITÁLIS ELEKTRONIKA Tanár: Dr. Burány Nándor
Tantárgy: DIGITÁLIS ELEKTRONIKA Tanár: Dr. Burány Nándor 4. félév Óraszám: 2+2 1 I. RÉSZ A DIGITÁLIS ÁRAMKÖRÖK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Általános témák, amelyek vonatkoznak az SSI, MSI, LSI és
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
Hardver leíró nyelvek (HDL)
Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS
DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti
6. hét: A sorrendi hálózatok elemei és tervezése
6. hét: A sorrendi hálózatok elemei és tervezése Sorrendi hálózat A Sorrendi hálózat Y Sorrendi hálózat A Sorrendi hálózat Y Belső állapot Sorrendi hálózat Primer változó A Sorrendi hálózat Y Szekunder
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához
XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput
5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti
10. Digitális tároló áramkörök
1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
DIGITÁLIS TECHNIKA I FÜGGVÉNYEK KANONIKUS ALAKJAI MINTERMEK ÉS MAXTERMEK DISZJUNKTÍV KANONIKUS ALAK, MINTERM
IGITÁLIS THNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 4. LİÁS 4. LİÁS. Logikai üggvények kanonikus algebrai alakjai, diszjunktív és konjunktív normálalakok 2. Logikai üggvények
TARTALOMJEGYZÉK. Tarnai, Bokor, Sághi, Baranyi, Bécsi, BME
TRTLOMJEGYZÉK. evezetés... 8. Kombinációs hálózatok és tervezésük... 9.. Logikai függvének... 9.. Logikai függvének megadása....3. Logikai függvének kanonikus alakjai... 4.3.. iszjunktív kanonikus alak
Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika
Boole algebra, logikai függvények
Boole algebra, logikai függvények Benesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése
DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA
206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS ELŐÍRT TANKÖNYV-IRODALOM Sorrendi hálózatok, flip-flopok, regiszterek, számlálók,
Digitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
2. Digitális hálózatok...60
2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
DIGITÁLIS TECHNIKA I A JELTERJEDÉSI IDİK HATÁSA A KOMBINÁCIÓS HÁLÓZATOK MŐKÖDÉSÉRE A JELTERJEDÉS KÉSLELTETÉSE
IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 0. ELİÁS 0. ELİÁS. jelterjedési idık hatása a kombinációs hálózatok mőködésére 2. Kódok: hibajelzés és javítás 2008/2009
Irányítástechnika Elıadás. A logikai hálózatok építıelemei
Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális
DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint
6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,
11.2. A FESZÜLTSÉGLOGIKA
11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy
PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István
Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.
A fealdatot két részre osztjuk: adatstruktúrára és vezérlőre
VEZÉRLŐK Benesóczky Zoltán 24 A jegyzetet a szerzői jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges. A fealdatot
MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása
Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:
28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK
28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök
Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?
Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával
4. hét Az ideális és a valódi építőelemek
4. hét Az ideális és a valódi építőelemek 4.1. Az ideális és valódi építőelemek Most ismerkedjünk meg a rendszereket felépítő építőelemekkel. Előtte azonban célszerű néhány alapfogalmat tisztázni. 4.1.1.
DIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK
Dr Keresztes Péter DIGITÁLIS HÁLÓZATOK A jegyzet a HEFOP támogatásával készült Széchenyi István Egyetem Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató
3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK
3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek
Digitálistechnika II. 1. rész
Digitálistechnika II. 1. rész Oktatási cél: A tárgy keretében a Digitális technika I. tárgyban szerzett elméleti ismeretek elmélyítésére kerül sor. A hallgatók gyakorlati feladat-megoldások segítségével
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole
EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Digitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (Sc) 1. előadás: Logikai egyenletek leírása I. oole-algebra axiómái és tételei Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 2. Laboratóriumi gyakorlat gyakorlat célja: oolean algebra - sszociativitás tétel - Disztributivitás tétel - bszorpciós tétel - De
A feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás:...
2 év hó nap NÉV:MEGOÁSneptun kód: feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás: Kedves Kolléga! kitöltést a dátum, név és aláírás rovatokkal kezdje!
Bevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l :
Bevezetés Forrás: http://e-oktat.pmmf.hu/digtech1 Jelen jegyzet a Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Karán folyó Műszaki Informatika képzés Robotirányítási rendszerek I-II. tantárgyaihoz
3 Tápegységek. 3.1 Lineáris tápegységek. 3.1.1 Felépítés
3 Tápegységek A tápegységeket széles körben alkalmazzák analóg és digitális berendezések táplálására. Szerkezetileg ezek az áramkörök AC-DC vagy DC-DC átalakítók. A kimenet tehát mindig egyenáramú, a bemenet
Quine-McCluskey Módszer
Quine-McCluskey Módszer ECE-331, Digital Design Prof. Hintz Electrical and Computer Engineering Fordította: Szikora Zsolt, 2000 11/16/00 Forrás = http://cpe.gmu.edu/courses/ece331/lectures/331_8/index.htm
Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás
DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS NORMÁL BCD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját
2. hét Kombinációs hálózatok leírási módjai
2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti
Digitális Technika I. (VEMIVI1112D)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
Analóg és digitális mennyiségek
nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű
DIGITÁLIS TECHNIKA II
IGIÁLIS ECHNIA II r Lovassy Rita r Pődör Bálint Óbudai Egyetem V Mikroelektronikai és echnológia Intézet 3 ELŐAÁS 3 ELŐAÁS ELEMI SORRENI HÁLÓZAO: FLIP-FLOPO (2 RÉSZ) 2 AZ ELŐAÁS ÉS A ANANYAG Az előadások
Dr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
Digitális technika I.
Digitális technika I. ELSŐ JAVÍTOTT KIADÁS 4 Utolsó frissítés időpontja: 4--8 (terjedelem: 48 A4-es lap) (A jegyzetben található estleges hibákért, elírásokért elnézést kérek, és a hibák jelzését köszönettel
2. Alapfogalmak. 1. ábra
1. Bevezetés A Pécsi Tudományegyetem Pollack Mihály Műszaki Karán tanuló műszaki informatikus hallgatók mindezidáig más oktatási intézmények által kiadott jegyzetekből és a kereskedelemben kapható drága
PAL és s GAL áramkörök
Programozható logikai áramkörök PAL és s GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,
Digitális technika házi feladat III. Megoldások
IV. Szinkron hálózatok Digitális technika házi feladat III. Megoldások 1. Adja meg az alábbi állapottáblával megadott 3 kimenetű sorrendi hálózat minimális állapotgráfját! a b/x1x c/x0x b d/xxx e/x0x c
Digitális Technika 2. Logikai Kapuk és Boolean Algebra
Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.
D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3.
Szinkron hálózatok D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3. Irodalom: Arató Péter: Logikai rendszerek. Tankönyvkiadó, Bp. 1985. J.F.Wakerley: Digital Design. Principles and Practices; Prentice
DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS
IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 5. ELİÁS 5. ELİÁS. Karnaugh táblázat programok. Nem teljesen határozott logikai függvények. Karnaugh táblázat, logikai tervezési
DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium
Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 3. FEJEZET
Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 5. félév Óraszám: 2+2 1 3. FEJEZET TÁPEGYSÉGEK A tápegységek építése, üzemeltetése és karbantartása a teljesítményelektronika
Tájékoztató. Használható segédeszköz: számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) és a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított szakmai és vizsgakövetelménye
DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István
IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Előadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
ELEKTRONIKAI ALAPISMERETEK
É RETTSÉGI VIZSGA 2005. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2005. október 24., 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Minimalizálási algoritmusok
Sorompó kezelés mérlegműszerrel
METRISoft Mérleggyártó KFT PortaWin (PW2) Jármű mérlegelő program 6800 Hódmezővásárhely Jókai u. 30 Telefon: (62) 246-657, Fax: (62) 249-765 e-mail: merleg@metrisoft.hu Web: http://www.metrisoft.hu Módosítva:
Digitális technika VIMIAA02 3. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 3. EA Fehér Béla BME MIT Minimalizálási algoritmusok
ELEKTRONIKAI ALAPISMERETEK
zonosító ÉRETTSÉGI VIZSG 2016. május 18. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSELI VIZSG 2016. május 18. 8:00 z írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMERI ERŐFORRÁSOK
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta
Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Elektronikus Eszközök Tanszék Mai témák Transzfer kapu Kombinációs logikai elemek különböző CMOS megvalósításokkal Meghajtó áramkörök
30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok)
30.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a szekvenciális hálózatok jellemzıit! Mutassa be a két- és többszintő logikai hálózatok realizálásának módszerét! Mutassa be a tároló áramkörök
DT1100 xx xx. Galvanikus leválasztó / tápegység. Kezelési útmutató
Galvanikus leválasztó / tápegység Kezelési útmutató Tartalomjegyzék 1. Kezelési útmutató...4 1.1. Rendeltetése... 4 1.2. Célcsoport... 4 1.3. Az alkalmazott szimbólumok... 4 2. Biztonsági útmutató...5
Dr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Második zárthelyi dolgozat megoldásai biomatematikából * A verzió
Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre.
Koincidencia áramkörök
Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van