Digitális Rendszerek (BSc)
|
|
- András Pál Bodnár
- 6 évvel ezelőtt
- Látták:
Átírás
1 Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (Sc) 1. előadás: Logikai egyenletek leírása I. oole-algebra axiómái és tételei Előadó: Vörösházi Zsolt
2 Jegyzetek, segédanyagok: Könyvfejezetek: -> Oktatás -> Tantárgyak -> Digitális Rendszerek (SC). (00_chapter, 01_chapter.pdf) Fóliák, óravázlatok.ppt (.pdf) Feltöltésük folyamatosan 2
3 I. Logikai egyenletek leírása Stílus bsztrakció Formalizmus Leírás (VHDL) Formalizmus Tervezés bsztrakció Stílus Technológia 3
4 Stílus Komplex feladat egyszerűbb, kezelhető részfeladatokra bontása Szisztematikus Érthető módszerek kellenek Pl: programozási stílusok (Top-down, strukturált) Jó stílus kialakításának szabályai: Top-down módszer szerinti tervezés Csak kiforrott, biztos technikákat szabad alkalmazni Fontos a dokumentálás! 4
5 bsztrakció Digitális tervezés elvi-fogalmi szintje Kezdeti absztrakció a tervezés során meghatározó, kritikus pont! 1. koncepcionális modell (elvi elgondolás) 2. megvalósítható, realizálható modell (HW) Magas-szintű absztrakció elvi modell szintenkénti finomítása és felépítése 5
6 Formalizmus rendszer viselkedésének leírására szolgál Szisztematikus szabályok és eljárások Minden absztrakciós szinten fontos a használatuk Pl: alapvető formalizmus a oole-algebra (bináris logika elmélete) de csak alsóbb szinteken használható (felsőbb-, rendszer-szint) (alsóbb-, áramköri szint) bsztrakció oole algebra (konkretizálás) 6
7 Digitális tervezés Logikai konstansok: Logikai állítás: Igaz / Hamis, True / False, 1 / 0 Logikai (bináris) változók: Pl: logikai változó esetén legyen, :=fotódióda hiba lehet: T / F (=F nincs hiba; =T hiba) Logikai változó neve utaljon a funkciójára Logikai operátorok: Felírásuk igazság táblázattal (Truth Table) 7
8 Igazságtábla: logikai operátorok felírása X logikai függvény megadása az,c, logikai változók összes lehetséges értékétől függően Jel: X(,C,) //3 változó -> 2^3 = 8 sor// C X Kanonikus standard igazság tábla: ig (3 változó esetén) C X F F F F F F T T F T F T F T T F T F F T T F T F T T F F T T T F sor
9 Logikai operátorok és igazság táblázatuk (NOT) Jel: NOT = Formális definíció igazságtáblával: Def: ha hamis, NOT igaz ha igaz, NOT hamis NOT
10 Logikai operátorok és igazság táblázatuk (ND) Jel: ND C = C Formális definíció igazságtáblával: C C Def: C értéke pontosan akkor igaz ha és C is egyszerre igaz, különben hamis 10
11 Logikai operátorok és igazság táblázatuk (OR) Jel: OR C = +C Formális definíció igazságtáblával: C +C Def: +C értéke pontosan akkor igaz,ha és C közül legalább az egyik igaz, különben hamis 11
12 Egy ill. kétváltozós logikai függvények bemutatása és szabványos jelöléseik 12
13 Egyváltozós logikai függvények: Jelmásoló (jel-erősítés): be ki be ki be 1 ki Negálás - Inverter (NOT): Nemzetközi szabvány Magyar szabvány be ki be ki be 1 ki 13
14 Kétváltozós logikai függvények: ÉS (ND): ki ki & ki VGY (OR): ki ki 1 ki ntivalencia (XOR): ki ki -1 ki 14
15 Kétváltozós log.függv. (folyt.): NEM-ÉS (NND): ki ki & ki NEM-VGY (NOR): ki ki 1 ki Ekvivalencia (NXOR): ki ki = ki 15
16 Tri-State uffer: buszok esetén használatos: kommunikációs irány változhat Driver: egyirányú kommunikációra Transceiver: kétirányú kommunikációra 3 állapota lehet: magas: 1 alacsony: 0 (normál TTL szintek) nagy impedanciás áll: Z mindkét kimeneti tranzisztor zár EN EN High-true enable Low-true enable 16
17 oole algebra 17
18 oole-algebra Logikai operátorok algebrája ( ) George oole: először mutatott hasonlóságot az általa vizsgált logikai operátorok és a már jól ismert aritmetikai operátorok között. HW tervezés alacsonyabb absztrakciós szintjén rendkívül fontos szerepe van. (Specifikáció + egyszerűsítés) 18
19 oole algebra elemei: vizsgált 3 alapművelet: ND, OR, NOT Tulajdonságaik (ND, OR esetén): Kommutatív: +=+, = sszociatív: +(+C)=(+)+C=++C ( C)=( ) C= C Disztributív: (+C)= + C, +( C)=(+) (+C) Operátor precedencia (csökkenő sorrendben): NOT ND OR átzárójelezhetőség! 19
20 oole algebrai azonosságok! 1.) = 2.) + 0 = 3.) + 1 = 1 4.) + = 5.) + = 1 6.) 1 = 7.) 0 = 0 8.) = 9.) = 0 10.) + = 11.) ( + ) = 12.) + = 13.)( + ) ( + ) = 14.) + = + 15.) ( + ) = 16.) + C = ( + ) ( + C) 17.) ( + C) = + C De-Morgan azonosságok: 18.) + = 19.) = + 20
21 oole-algebrai azonosság igazolása igazságtáblával Pl: De Morgan NOT ( ) = + Dualitás elve NOT NOT NOT() + NOT() Példa: egyszerűsítésre ( + C ( + )) = +? 21
22 Logikai egyenletek megadása igazság-táblázatokból Pl: sor W W pontosan akkor lesz igaz, ha igaz és hamis, egyébként W hamis lesz. Vagyis egyenletként kifejezve: W = Pl: sor Y Y pontosan akkor lesz igaz, ha és is hamis, vagy igaz és hamis, vagy és is igaz, egyébként W hamis lesz. Vagyis egyenletként kifejezve: Y = Y = 22
23 1.) Sum-of-Products (szorzat termek összege) Szorzat (ND) termek összeg (OR) kapcsolata Emberi szemléletmódhoz közelebb áll: a táblázat soraiból azokat a függvényértékeket (Y) vesszük amelyek 1 -esek Def: Triviális forma: ha egy változó egy adott szorzat termben vagy ponáltan, vagy negáltan legfeljebb egyszer szerepel. Ezt hívják még mintermnek (m i ) vagy kanonikus szorzat termnek is. Pl: valós / triviális / kanonikus formulák:,,, Pl: érvénytelen formulák (de ettől még oole kifejezés), ami jelenti azt is, hogy tovább egyszerűsíthetők:, C C 23
24 Diszjunktív Normál Forma: Jel: n változó esetén 2^n lehetséges minterm van. Képzésük: az igazságtáblázatból azoknak a mintermeknek a VGY kapcsolatát vesszük, ahol függvényértékek sorában (Y) 1 -es szerepel, vagy ahol a függvény komplemensének ( Y ) értéke 0. Y ( DNF) : n 2 1 m i i= 0 minterm: m i (i. sora a kanonikus táblának, ahol Y értéke 1 ). 24
25 Példa: DNF felírása Igazságtábla: sor Y Kapott egyenlet: Y = + + = m + [0 0] [1 0] [1 1] 0 + m2 m3 Komplemens: Y = = [0 1] m 1 25
26 2.) Product-of-Sums: összeg termek szorzata összeg (OR) termek szorzat (ND) kapcsolata Maxterm (M i ): olyan kanonikus összeg term, amelyben mindegyik logikai változó pontosan egyszer fordul elő, ponált, vagy negált alakban. Valós maxterm: + + C, de nem valós: + C Kanonikus forma: Nem kanonikus forma: W = ( P+ Q+ R)( P+ Q+ R) W = ( P+ Q)( P+ Q+ R) Gyakorlatban kevésbé használt forma. 26
27 KNF: Konjunktív Normál Forma Jel: W( KNF) n 2 1 = M i= 0 i Képzésük: a kanonikus igazságtábla azon maxtermjeinek ÉS kapcsolatát vesszük, ahol a függvény (W ) értéke 0, vagy a komplemens függvény ( W ) értéke 1. Pl: W = + vagy W = ( + ) ( + ) ( + ) disztributív = = Maxterm (M i ): az igazságtáblázat i. sora, ahol a kimeneti függvényérték 0. 27
28 Példák: KNF Legyen: M i = + + C ahol a kimeneti függvényérték hamis volt. Ez az M i maxterm igaz,,c változók értékének kombinációjára, kivéve egyet, ahol =1, =0, C=1. Tehát [101]=5. M 5 (táblázat 5.sora) Legyen: M i = + + C ahol a kimeneti függvényérték hamis volt. Ez az M i maxterm igaz,,c változók értékének kombinációjára, kivéve egyet, ahol =0, =0, C=0. Tehát [000]=0. Így M 0 (táblázat 0.sora) 28
29 Példa: KNF felírása Igazságtábla sor J K L W Igazságtáblából kapjuk, hogy: W( KNF) = ( J + K + L) ( J + K + L) ( J + K + L) ( J + K + L) ( J + K + L) W ( KNF) = = M M M M M [ ] [ ] [ ] [ ] [ ] W( DNF) = ( J K L) + ( J K L) + ( J K L) [ ] [ ] [ ] W( DNF) = = m + m + m 29
30 Igazságtábla felírása logikai kifejezésekből I. a.) DNF-ből: felírás egyszerű Kanonikus mintermből: egy sor képződik (ahol Y igaz), Nem kanonikus, kevesebb változót tartalmazó termből: több sor is képződhet, mivel egy ilyen term egy adott logikai változó ponált és negált értékére is igaz kimeneti eredményt (Y) ad, Egy sorhoz több term is tartozhat! 30
31 Példa: DNF -> Igazságtábla Eredeti egyenlet: Y( DNF) = J K + J K L+ J K L+ K L Kapott igazságtábla: term1 term2 term3 term4 kanonikus (minterm) sor J K L W term2 és term term term term term4 31
32 Igazságtábla felírása logikai kifejezésekből II. b.) KNF-ből: felírás nehezebb (az egyes logikai változók negált értékeit kell venni) Kanonikus maxtermből: egy sor képződik (ahol Y hamis), Nem kanonikus, kevesebb változót tartalmazó termből: több sor is képződhet, mivel egy ilyen term egy adott logikai változó ponált és negált értékére is hamis kimeneti eredményt (Y) ad, Egy sorhoz több term is tartozhat! 32
33 Példa: KNF -> Igazságtábla Eredeti egyenlet: GKNF ( ) = ( + + C) ( + ) ( + + C) term1 term2 term3 Kapott igazságtábla: kanonikus (maxterm) sor C G term1 és term2 term2 term3 33
34 Igazság táblák tömörebb felírási formája Eml: Kanonikus ig. táblánál: n változó -> 2^n sor (összes lehetséges változó kombináció felírásával) Egyszerűsített / tömörebb felírás: X : Don t Care változó két értéke: 0 és 1 is lehet. Pl: Y = J K + J K L+ J K L+ K L term1 term2 term3 term4 J K L Y kanonikus (minterm) X X term2 és term4 term1 term3 Term1: L don t care (0 v. 1) Term4: J dont care (1 v. 0) 34
35 NTSH: Nem Teljesen Specifikált Hálózat (Don t Care kimenet) izonyos bemeneti kombinációkra ugyanazt a kimeneti eredményt kapjuk (irreleváns) Jele: Don t care kimeneti állapot Pl. Y ha =1, 0 X 1 ha =0, Y = + = + Y = 35
36 KRNOUGH TÁLÁK 36
37 Karnough táblák Korai időszakban: logikai elemek hatalmas, nehezen tervezhető, nagy energiát disszipáló eszközökből álltak Logikai kifejezések egyszerűsítése. Ma: HW olcsó elemekből épül fel. Cél: az áramköri minimalizáció (modularitás, egyszerűség) Technológia / tervezési stílusok fejlődtek Glue ragasztó logika: egyszerűsödött egyenlet felírás Nagy áramköri komplexitás, sebesség K-Map / Veicht diagram: grafikus ábrázolási és egyszerűsítési mód, a kanonikus igazságtábla egy újrarendezett formája (több forma is létezik, és fontos a betűk, cimkék sorrendje) 37
38 Karnough tábla felírása igazság táblázatból Igazságtábla mindenegyes sorának kimeneti értékéhez (Y i ) a Karnough tábla egy négyzete feleltethető meg. Pl. n=2 változó esetén lehetséges táblák: sor Y Y Y Y Y Y 0 Y 2 Y 1 Y 3 könyvbeli jelölés Y 0 Y 1 Y 2 Y 3 általános jelölés 38
39 Karnough táblák n=2, 3, 4 változóval még könnyű felírni (>4 változó felett már más technikát használunk) Pl: n=3 változó esetén lehetséges táblákra: C C C Y 0 Y 2 Y 6 Y 4 0 Y 0 Y 1 Y 3 Y 2 C 1 Y 1 Y 3 Y 7 Y 5 1 Y 4 Y 5 Y 7 Y 6 39
40 Karnough táblák Pl: n=4 változó esetén lehetséges táblákra: CD CD C Y 0 Y 4 Y 12 Y 8 00 Y 0 Y 1 Y 3 Y 2 01 Y 1 Y 5 Y 13 Y 9 01 Y 4 Y 5 Y 7 Y 6 D 11 Y 3 Y 7 Y 15 Y Y 12 Y 13 Y 15 Y 14 C 10 Y 2 Y 6 Y 14 Y Y 8 Y 9 Y 11 Y 10 D 40
41 Karnough táblák n= 5 változó esetén n=6 változó esetén 41
42 oole függvény ábrázolási módjai oole-algebrai kifejezés: Y = + Igazságtábla: sor Y Karnough tábla:
43 Szomszédosság adjacencia Def: Ha egy Karnough táblában két szomszédos (adjacent) cella csak egy változó értékében különbözik (egységnyi távolság)! Pl. Y3 és = C Y7 = C C C
44 Egyszerűsítés Karnough táblákkal Tömörítés szabályai: 2^n (n=0,1,2..) term vonható be egy tömbbe, Egyetlen term több tömbben is szerepelhet (átlapolódás lehetséges) Egyik tömb, a másikat nem tartalmazhatja teljes mértékben, (redundancia) Mindig a lehető legnagyobb lefedéseket keressük, és haladjunk a legkisebb méretű tömbök/lefedések felé Don t care ( - ) kimeneti függvényértékeket a jobb lefedésnek megfelelően kell megválasztani (NTSH) Egymás mellett lévő (adjacens) sorokra és oszlopokra érvényes: 44
45 Példa: Karnough táblák egyszerűsítése érvényes érvénytelen C C C C Nem összes, de lehetséges egyszerűsítések - érvényes Átlós, és nem 2^n számú 1 -es lefedés érvénytelen 45
46 Lehetséges módszerek Karnough tábla értelmezésére: M1: Y( DNF) 1 -esek lefedésével képzett (normál, eddig használt ált. módszer) M2: Y( DNF) 0 -k lefedésével képzett inverz függvény felírás M3: Y( KNF) 0 -k lefedésével képzett M4: Y( KNF) 1 -esek lefedésével képzett inverz függvény felírás 46
47 jánlott: fejezetek végén a feladatok (Exercises) részek áttekintése. 47
Digitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
Digitális Technika I. (VEMIVI1112D)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás
Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc). hét - Boole algebra (függvény, igazságtábla, kanonikus alak). Kombinációs Hálózatok
Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.
Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű
Digitális Technika 2. Logikai Kapuk és Boolean Algebra
Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti
Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika
IRÁNYÍTÁSTECHNIKA I.
IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)
I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,
Analóg és digitális mennyiségek
nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű
Példa:
Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika
Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár
Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.
1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE
. EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének
DIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA
206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole
6. LOGIKAI ÁRAMKÖRÖK
6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.
Boole algebra, logikai függvények
Boole algebra, logikai függvények Benesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 2. Laboratóriumi gyakorlat gyakorlat célja: oolean algebra - sszociativitás tétel - Disztributivitás tétel - bszorpciós tétel - De
Kombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK
28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök
Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016
Programozás és digitális technika II. Logikai áramkörök Pógár István pogari@eng.unideb.hu Debrecen, 2016 Gyakorlatok célja 1. Digitális tervezés alapfogalmainak megismerése 2. A legelterjedtebb FPGA-k
2. hét Kombinációs hálózatok leírási módjai
2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok
2019/02/11 10:01 1/10 Logika
2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát
Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest Az előadások ezen könyvek megfelelő fejezetein alapulnak.
06.0.. DIGITÁLIS TECHNIKA Dr. Lvassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikrelektrnikai és Technlógia Intézet. ELŐADÁS: LOGIKAI (BOOLE) FÜGGVÉNYEK ÉS ALKALMAZÁSAIK IRODALOM Arató Péter: Lgikai rendszerek
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
ÍTÉLETKALKULUS SZINTAXIS ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) jelkészlet elválasztó jelek: ( ) logikai műveleti jelek: ítéletváltozók (logikai változók): p, q, r,... ítéletkonstansok: T, F szintaxis szabályai
1. hét: A Boole - algebra. Steiner Henriette Egészségügyi mérnök
1. hét: A Boole - algebra Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Elérhetőségek Dr. Steiner Henriette steiner.henriette@nik.uni-obuda.hu Féléves követelmények Heti óraszámok:
Hazárdjelenségek a kombinációs hálózatokban
Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése
1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.
1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,
6. LOGIKAI ÁRAMKÖRÖK
6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.
Digitális technika - Ellenőrző feladatok
igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális
A + B = B + A, A + ( B + C ) = ( A + B ) + C.
6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az
MUNKAANYAG. Mészáros Miklós. Logikai algebra alapjai, logikai függvények I. A követelménymodul megnevezése:
Mészáros Miklós Logikai algebra alapjai, logikai függvények I. MUNKNYG követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása követelménymodul száma: 0917-06 tartalomelem azonosító
Zalotay Péter Digitális technika I
Zalotay Péter Digitális technika I Távoktatás előadási anyaga Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...5 1. LOGIKAI ALAPISMERETEK...8 1.1. Halmazelméleti alapfogalmak...8 1.2. A logikai
Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint
25.5.5. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐDÁS: LOGIKI (OOLE) LGER ÉS LKLMÁSI IRODLOM. ÉS 2. ELŐDÁSHO rató könyve2-8,
MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása
Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
Dr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
Zalotay Péter Digitális technika
Zalotay Péter Digitális technika Elektronikus jegyzet Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...3 1. A DIGITÁLIS TECHNIKA ELMÉLETI ALAPJAI...7 1.1. Logikai alapismeretek...7 1.2. Halmazelméleti
INFORMATIKA ALAPJAI-II
INFORMATIKA ALAPJAI-II Tartalomjegyzék BEVEZETŐ... RELÁCIÓ- ÉS LOGIKAI EGYENLETEK... 4. RELÁCIÓ EGYENLETEK... 4. LOGIKAI EGYENLETEK... 4.. Egyszerű logikai művelet... 5.. Elemi logikai függvények azonosságai...
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40.) Töltse ki a táblázat üres celláit! A táblázatnak
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés
Quine-McCluskey Módszer
Quine-McCluskey Módszer ECE-331, Digital Design Prof. Hintz Electrical and Computer Engineering Fordította: Szikora Zsolt, 2000 11/16/00 Forrás = http://cpe.gmu.edu/courses/ece331/lectures/331_8/index.htm
IRÁNYÍTÁSTECHNIKA I.
IRÁNYÍTÁSTECHNIKA I. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök
Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve
Új műveletek egy háromértékű logikában
A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS
IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 5. ELİÁS 5. ELİÁS. Karnaugh táblázat programok. Nem teljesen határozott logikai függvények. Karnaugh táblázat, logikai tervezési
Digitális technika I.
Digitális technika I. ELSŐ JAVÍTOTT KIADÁS 4 Utolsó frissítés időpontja: 4--8 (terjedelem: 48 A4-es lap) (A jegyzetben található estleges hibákért, elírásokért elnézést kérek, és a hibák jelzését köszönettel
Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK
Dr Keresztes Péter DIGITÁLIS HÁLÓZATOK A jegyzet a HEFOP támogatásával készült Széchenyi István Egyetem Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató
2. Digitális hálózatok...60
2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 3. Laboratóriumi gyakorlat A gyakorlat célja: Négy változós AND, OR, XOR és NOR függvények realizálása Szimulátor használata ciklussal
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint 09 ÉETTSÉG VZSG 00. május. ELEKTONK LPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSG JVÍTÁS-ÉTÉKELÉS ÚTMTTÓ OKTTÁS ÉS KLTÁLS MNSZTÉM Fontos tudnivalók javítási-értékelési
PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István
Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása
Bellák György László Mechatronikai elemek A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása A követelménymodul száma: 0944-06 A tartalomelem azonosító száma és
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési feladatok
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
PAL és s GAL áramkörök
Programozható logikai áramkörök PAL és s GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,
L O G I K A I H Á L Ó Z A T O K
ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 L O G I K A I H Á L Ó Z A T O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Alapfogalmak...3 Digitális technikában alkalmazott számrendszerek...3
Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton
Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika
EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Digitális technika I
Digitális technika I Dr. Göllei Attila, Dr. Holczinger Tibor, Dr. Vörösházi Zsolt 2014 A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0104 A felsőfokú informatikai oktatás minőségének fejlesztése, modernizációja
Logikai függvények osztályai. A függvényosztály a függvények egy halmaza.
Logikai függvények osztályai A függvényosztály a függvények egy halmaza. A logikai fügvények egy osztálya logikai függvények valamely halmaza. Megadható felsorolással, vagy a tulajdonságainak leírásával.
Hobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek
Hobbi Elektronika A digitális elektronika alapjai: További logikai műveletek 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL, 5th.
DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint
6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok
3. LOGIKAI FÜGGVÉNYEK GRAFIKUS EGYSZERŰSÍTÉSE ÉS REALIZÁLÁSA
3. LOGIKI FÜGGVÉNYEK GRFIKUS EGYSZERŰSÍTÉSE ÉS RELIZÁLÁS tananyag célja: a többváltzós lgikai függvények grafikus egyszerűsítési módszereinek gyakrlása. Elméleti ismeretanyag: r. jtnyi István: igitális
Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?
Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával
SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS. Somogyi Miklós DIGITÁLIS HÁLÓZATOK
SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS Somogyi Miklós DIGITÁLIS HÁLÓZATOK A tantárgy célja: a kapu szintű digitális hálózatok tervezési elveinek bemutatása és az elvek gyakorlati alkalmazásának elsajátítatása
A logikai következmény
Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel
Matematikai logika NULLADRENDŰ LOGIKA
Matematikai logika NULLADRENDŰ LOGIKA Kijelentő mondatokhoz, melyeket nagy betűkkel jelölünk, interpretáció (egy függvény) segítségével igazságértéket rendelünk (I,H). Szintaxisból (nyelvtani szabályok,
MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,
MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
Hobbi Elektronika. Bevezetés az elektronikába: Boole algebra, logikai kifejezések
Hobbi Elektronika Bevezetés az elektronikába: Boole algebra, logikai kifejezések 1 Felhasznált anyagok Mészáros Miklós: Logikai algebra alapjai, logikai függvények I. BME FKE: Logikai áramkörök Electronics-course.com:
Hardver leíró nyelvek (HDL)
Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Zalotay Péter DIGITÁLIS TECHNIKA
Zalotay Péter DIGITÁLIS TECHNIKA 3oldal BEVEZETÉS 5 DIGITÁLISTECHNIKA ALAPJAI 7 LOGIKAI ALAPISMERETEK 7 2 A LOGIKAI ALGEBRA 8 2 Logikai változók, és értékük 8 22 A Boole algebra axiómái 9 23 Logikai műveletek
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Az előadások anyagai letölthetők az alábbi honlapról: Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest 1999
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS ÁLTALÁNOS BEVEETÉS A digitális technika tantárgy Ajánlott irodalom Az előadások
2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához
XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput