I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)
|
|
- Fruzsina Kiss
- 8 évvel ezelőtt
- Látták:
Átírás
1 I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra, illetve, ha csökkenteni tudjuk az egyes részfüggvények bemeneti változóinak számát. 1
2 Elsőként az algebrai lehetőségeket tekintjük át, majd a Karnaugh féle grafikus egyszerűsítési módszerrel ismerkedünk meg. Ez utóbbinak ma szinte csak pedagógiai jelentősége van, mivel a kézi tervezések háttérbe szorultak. Harmadikként a Quine féle módszert tárgyaljuk, amely alkalmas szoftveres megvalósításra. 2
3 LGERI EGSERŰSÍTÉS z algebrai egyszerűsítésnél a matema3kai logika törvényeit felhasználva egyszerűsítjük a függvényt. Pl. z egyenlőség felhasználásával az alábbi két logikai szorzat egyetlen szorzatra vezethető vissza, valamint a bemeneti változók számát is sikerült csökkenteni: 1 C C ( ) C C 3
4 Természetesen ez jelentős megtakarítást jelent a hardverben: két darab három bemenetű ÉS kapu és egy darab két bemenetű VG kapu helyett egyetlen két bemenetű ÉS kapuval megvalósítható a kifejezés. z algebrai egyszerűsítéssel az a gond, hogy nem áttekinthető és nem gépiesíthető. Nehéz felfedni, hogy mely tagokat lehetne összevonni, mely törvények alkalmazásával. 4
5 KRNUGH FÉLE GRFIKUS MÓDSER grafikus egyszerűsítésnél rendszerint a függvény igazságtáblázatából indulunk ki. Ha algebrai alak áll rendelkezésre, azt ki kell bővíteni a diszjunktív kanonikus alakra, amiből egyértelműen következik az igazságtáblázat. z igazságtáblázatból nem egyszerű belátni, hogy mely mintermeket lehetne összevonni és ezzel egyszerűsíteni a függvényt. z összevonással kapott tagokat prím implikánsoknak nevezzük. Esettől függően kettő, négy, nyolc, tizenhat... minterm vonható össze. 5
6 Úgy kell a mintermeket elrendezni (síkban vagy térben), hogy a szomszédosak (amelyek csak egyetlen változó ponált és negált alakja miatt különböznek) egymás mellé kerüljenek. z összevonást lefedő tömbbel jelöljük. z ilyen elrendezést Karnaugh táblának nevezzük. tábla előnye, hogy jól beláthatók az egyszerűsítési lehetőségek. Egy változó esetére a Karnaugh tábla a következő: 0 1 m i m 0 m 1 0 m 0 1 m 1 6
7 Két változó esetére a Karnaugh tábla a következő: m i m 0 m 1 m 2 m m 0 m 1 1 m 2 m 3 ttól függően, hogy melyik mintermek szerepelnek a függvényben, összevonhatók pl. m0 és m1, m1 és m3, m0 és m2, m2 és m3. 7
8 8 Egyszerűsítsük az alábbi függvényt először algebrai úton. ( ) m f ) (0,2,3, ( ) f (1) (1) ) ( ) (,, 1 következő két tételt használtuk fel a függvény egyszerűsítésére.
9 f (, ) m(0,2,3) függvénynek megfelelő Karnaugh táblában három egyes van, mivel három minterm alkotja a függvényt. lehetséges összevonásokat a következő ábra mutatja. lefedő tömböket karikázással jelöltük, a tábla mellé írtuk a lefedő tömböknek megfelelő prím implikánsokat
10 z egyszerűsített függvény a következő: f (, ) z eredmény jelentős: a korábbi három két bemenetű ÉS kapu és egy darab három bemenetű VG kapu helyett a függvény megvalósítható egyetlen VG kapuval. 10
11 Három változó esetére a Karnaugh táblában a következő módon rendezzük el a mintermeket: 11
12 12 12 Tekintsük a következő két háromváltozós függvényt, amelyetket mind algebrai módszerrel, mind pedig a Karnaugh táblával egyszerűsítünk: ( ) m f ) (1,3,5,7,, 1 ( ) m f ) (1,2,3,6,7,, 2
13 13 13 ( ) ( ) ( ) ( ) f 1 1 ) ( ) (,, Mindez együttesen
14 14 14 ( ) ( ) ( ) ( ) ( ) ( ) f,, 2
15 Ennek eredménye Ennek eredménye 15
16 Négy változó esetére a Karnaugh táblában a következő módon rendezzük el a mintermeket: 16
17 QUINE FÉLE TÁLÁTOS MÓDSER Ez az eljárás is a szomszédos mintermek összevonására épül. Megfelelő algoritmussal azokat a logikai szorzatokat keressük, amelyek kódjai csak egy értékben különböznek egymástól. z algoritmus a következő lépésekből áll: 17
18 1. Csoportosítjuk a mintermeket a kódjukban szereplő egyesek száma szerint. 2. Felsorakoztatjuk a kapott csoportokat, kezdve azzal, amelyben a legkevesebb egyes van. 3. z i-edik csoport minden elemét megpróbáljuk kombinálni az i1-edik csoport minden elemével. Ha összevonási lehetőséget látunk, felírjuk az egyszerűsített szorzatot, a kiküszöbölt változót alsó vonallal jelöljük. 18
19 4. 3. pontban leírt műveletet folytatjuk az egyszerűsített szorzatokon is, mindaddig, amíg összevonási lehetőség kínálkozik. z utolsó menetben kapott egyszerűsített szorzatok a prím implikánsok. 5. Prím implikáns táblát szerkesztünk annyi oszloppal, ahány minterm van a függvényben és annyi sorral, amennyi a prím implikánsok száma. -szel jelöljük azokat a sor és az oszlop metszéspontját, ha az adott prím implikáns fedi az illető mintermet. 19
20 6. Kiválasztjuk azokat a (lényeges) prím implikánsokat, amelyek szükségesek a mintermek lefedéséhez (nincsenek már fedve más prím implikánsokkal). 7. maradék prím implikánsok közül kiválasztjuk azokat, amelyek minimálisan szükségesek a lényeges prím implikánsokkal még le nem fedett mintermek lefedéséhez. 8. z így kapott prím implikánsok alkotják az egyszerűsített függvényt. 20
Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
Részletesebben1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű
Részletesebben1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.
1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,
RészletesebbenLogikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.
Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
RészletesebbenDigitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
RészletesebbenDigitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
Részletesebben2. hét Kombinációs hálózatok leírási módjai
2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti
RészletesebbenDigitális technika VIMIAA02 2. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika
RészletesebbenIRÁNYÍTÁSTECHNIKA I.
IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos
RészletesebbenQuine-McCluskey Módszer
Quine-McCluskey Módszer ECE-331, Digital Design Prof. Hintz Electrical and Computer Engineering Fordította: Szikora Zsolt, 2000 11/16/00 Forrás = http://cpe.gmu.edu/courses/ece331/lectures/331_8/index.htm
RészletesebbenDIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
RészletesebbenDigitális Technika I. (VEMIVI1112D)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
RészletesebbenDIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA
206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,
RészletesebbenDigitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás
RészletesebbenIrányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár
Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.
Részletesebben3. LOGIKAI FÜGGVÉNYEK GRAFIKUS EGYSZERŰSÍTÉSE ÉS REALIZÁLÁSA
3. LOGIKI FÜGGVÉNYEK GRFIKUS EGYSZERŰSÍTÉSE ÉS RELIZÁLÁS tananyag célja: a többváltzós lgikai függvények grafikus egyszerűsítési módszereinek gyakrlása. Elméleti ismeretanyag: r. jtnyi István: igitális
RészletesebbenMUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása
Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:
RészletesebbenDIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
RészletesebbenDIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint
6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,
RészletesebbenHazárdjelenségek a kombinációs hálózatokban
Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése
Részletesebben6. LOGIKAI ÁRAMKÖRÖK
6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.
RészletesebbenDr. Keresztes Péter DIGITÁLIS HÁLÓZATOK
Dr Keresztes Péter DIGITÁLIS HÁLÓZATOK A jegyzet a HEFOP támogatásával készült Széchenyi István Egyetem Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató
RészletesebbenNév: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?
Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával
RészletesebbenELEKTRONIKAI ALAPISMERETEK
É RETTSÉGI VIZSGA 2005. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2005. október 24., 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI
RészletesebbenDigitális Technika 2. Logikai Kapuk és Boolean Algebra
Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.
RészletesebbenAlapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok
RészletesebbenDIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
RészletesebbenNEMZETGAZDASÁGI MINISZTÉRIUM
NEMZETGAZDASÁGI MINISZTÉRIUM Minősítés szintje: Érvényességi idő: 2016. 10. 05. 10 óra 00 perc a vizsgakezdés szerint. Minősítő neve, beosztása: Palotás József s.k. Nemzeti Szakképzési és Felnőttképzési
RészletesebbenÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
RészletesebbenDigitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (Sc) 1. előadás: Logikai egyenletek leírása I. oole-algebra axiómái és tételei Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
RészletesebbenSZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS. Somogyi Miklós DIGITÁLIS HÁLÓZATOK
SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS Somogyi Miklós DIGITÁLIS HÁLÓZATOK A tantárgy célja: a kapu szintű digitális hálózatok tervezési elveinek bemutatása és az elvek gyakorlati alkalmazásának elsajátítatása
RészletesebbenDIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS
IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 5. ELİÁS 5. ELİÁS. Karnaugh táblázat programok. Nem teljesen határozott logikai függvények. Karnaugh táblázat, logikai tervezési
RészletesebbenI. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
Részletesebben28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK
28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!
Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!
RészletesebbenZalotay Péter Digitális technika I
Zalotay Péter Digitális technika I Távoktatás előadási anyaga Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...5 1. LOGIKAI ALAPISMERETEK...8 1.1. Halmazelméleti alapfogalmak...8 1.2. A logikai
RészletesebbenA + B = B + A, A + ( B + C ) = ( A + B ) + C.
6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
RészletesebbenKombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
RészletesebbenVILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK
ÉRETTSÉGI VIZSGA 2018. május 16. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenIRÁNYÍTÁSTECHNIKA I.
IRÁNYÍTÁSTECHNIKA I. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS
RészletesebbenGépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve
RészletesebbenDigitális technika - Ellenőrző feladatok
igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális
RészletesebbenÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40.) Töltse ki a táblázat üres celláit! A táblázatnak
RészletesebbenHatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
RészletesebbenMegoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései
Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Elméleti anyag: Lényegtelen kombináció (don t care) fogalma Kombinációs hálózatok
RészletesebbenAnalóg és digitális mennyiségek
nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű
RészletesebbenZalotay Péter Digitális technika
Zalotay Péter Digitális technika Elektronikus jegyzet Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...3 1. A DIGITÁLIS TECHNIKA ELMÉLETI ALAPJAI...7 1.1. Logikai alapismeretek...7 1.2. Halmazelméleti
RészletesebbenDIGITÁLIS TECHNIKA I FÜGGVÉNYEK KANONIKUS ALAKJAI MINTERMEK ÉS MAXTERMEK DISZJUNKTÍV KANONIKUS ALAK, MINTERM
IGITÁLIS THNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 4. LİÁS 4. LİÁS. Logikai üggvények kanonikus algebrai alakjai, diszjunktív és konjunktív normálalakok 2. Logikai üggvények
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
RészletesebbenAmit a törtekről tudni kell Minimum követelményszint
Amit a törtekről tudni kell Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat írtunk.
RészletesebbenElektronikai műszerész Elektronikai műszerész
A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Részletesebben6. LOGIKAI ÁRAMKÖRÖK
6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Elektronikai
RészletesebbenDigitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton
Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika
Részletesebben1.1. Alapfeladatok. hogy F 1 = 1, F 2 = 1 és általában F n+2 = F n+1 + F n (mert a jobboldali ág egy szinttel lennebb van, mint a baloldali).
1.1. Alapfeladatok 1.1.1. Megoldás. Jelöljük F n -el az n-ed rendű nagyapák számát. Az ábra alapján látható, hogy F 1 = 1, F = 1 és általában F n+ = F n+1 + F n mert a jobboldali ág egy szinttel lennebb
RészletesebbenZalotay Péter DIGITÁLIS TECHNIKA
Zalotay Péter DIGITÁLIS TECHNIKA 3oldal BEVEZETÉS 5 DIGITÁLISTECHNIKA ALAPJAI 7 LOGIKAI ALAPISMERETEK 7 2 A LOGIKAI ALGEBRA 8 2 Logikai változók, és értékük 8 22 A Boole algebra axiómái 9 23 Logikai műveletek
Részletesebben2019/02/11 10:01 1/10 Logika
2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát
Részletesebben2. Digitális hálózatok...60
2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Részletesebben15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
RészletesebbenSzéchenyi István Egyetem. dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK
Széchenyi István Egyetem dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK 1 TARTALOMJEGYZÉK Bevezető 10 1. rész. Kombinációs hálózatok tervezése 11 1.1. LOGIKAI ÉRTÉKEK ÉS ALAPMŰVELETEK 11 1.1.1. A logikai változók
RészletesebbenEBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Részletesebben2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenEllenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐORRÁS
RészletesebbenElemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenMveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére.
Mveletek a relációs modellben A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Megfogalmaz egy kérést, amelyben leírja, milyen adatokra van szüksége,
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
RészletesebbenBevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l :
Bevezetés Forrás: http://e-oktat.pmmf.hu/digtech1 Jelen jegyzet a Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Karán folyó Műszaki Informatika képzés Robotirányítási rendszerek I-II. tantárgyaihoz
RészletesebbenTájékoztató. Használható segédeszköz: számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított), a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított, a 27/2012 (VIII. 27.) NGM rendelet
RészletesebbenMegoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
RészletesebbenProgramozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016
Programozás és digitális technika II. Logikai áramkörök Pógár István pogari@eng.unideb.hu Debrecen, 2016 Gyakorlatok célja 1. Digitális tervezés alapfogalmainak megismerése 2. A legelterjedtebb FPGA-k
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenKombinációs hálózatok egyszerűsítése
Komináiós hálóztok egyszerűsítése enesózky Zoltán 24 jegyzetet szerzői jog véi. zt ME hllgtói hsználhtják, nyomtthtják tnulás éljáól. Minen egyé felhsználáshoz szerző elegyezése szükséges. él: speifikáióvl
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
RészletesebbenMegoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole
Részletesebben1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 01 Automatikai technikus
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
RészletesebbenSzakács Lili Kata megoldása
1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan
Részletesebben11. Sorozatok. I. Nulladik ZH-ban láttuk:
11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 01 Automatikai technikus
RészletesebbenÉlelmiszeripari folyamatirányítás 2016.03.12.
Élelmiszeripari folyamatirányítás 2016.03.12. Hidraulikus rendszerek Közeg: hidraulika-olaj Nyomástartomány: ált. 200-400 bar Előnyök: Hátrányok: - Nagy erők kifejtésére alkalmas (200-400 bar!) - Kisebb
RészletesebbenMódszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-
. modul: ELSŐFOKÚ TÖRTES EGYENLETEK A következő órákon olyan egyenletekkel foglalkozunk, amelyek nevezőjében ismeretlen található. Ha a tört nevezőjében ismeretlen van, akkor kikötést kell tennünk: az
RészletesebbenI. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 200. május 4. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 200. május 4. 8:00 Az írásbeli vizsga időtartama: 80 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
RészletesebbenRőmer Mária: Digitális technika példatár, KKMF 1105, Budapest Az előadások ezen könyvek megfelelő fejezetein alapulnak.
06.0.. DIGITÁLIS TECHNIKA Dr. Lvassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikrelektrnikai és Technlógia Intézet. ELŐADÁS: LOGIKAI (BOOLE) FÜGGVÉNYEK ÉS ALKALMAZÁSAIK IRODALOM Arató Péter: Lgikai rendszerek
RészletesebbenÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK
TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK 1. Egyenáramú hálózat számítása 13 pont Az ábrán egy egyenáramú ellenállás hálózat látható, melyre Ug = 12 V feszültséget kapcsoltak. a)
Részletesebben1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
Részletesebben