Digitális Rendszerek (BSc)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Digitális Rendszerek (BSc)"

Átírás

1 Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt

2 Jegyzetek, segédanyagok: Könyvfejezetek: -> Oktatás -> Tantárgyak -> Digitális Rendszerek (BSC). (_chapter.pdf) Fóliák, óravázlatok.ppt (.pdf) Feltöltésük folyamatosan 2

3 Függvényminimalizálás Általánosan: Függvényminimalizálást a szomszédos mintermek megkeresésével tehetjük meg. A szomszédosság megállapítása után egyszerűsítünk. Minterm implikáns (egyszerűsíthető) prímimplikáns (tovább nem egyszerűsíthető) 3

4 Függvényegyszerűsítési eljárások.) Algebrai módszer (Boole algebrai azonosságokkal) 2.) Kifejtési módszer 3.) Grafikus módszer: (Karnough tábla, igazság tábla) 4.) Normálformák: DNF: Diszjunktív Normál Forma KNF: Konjunktív Normál Forma 5.) Számjegyes minimalizálás: Quine-McCluskey 4

5 .) Algebrai módszer A Boole-algebra azonosságait használjuk fel az egyszerűsítéshez: F(A,B,C) = A B C+ A B C+ A B C+ A B C= = AC(B + B) + AC(B + B) = AC + AC = = C(A + A) = C 5

6 2.) Kifejtési módszer: Komplexebb függvények esetén egy adott változó értékét először ponáltnak, majd negáltnak definiáljuk, végül pedig az így kiszámított két logikai kifejezést összeadjuk. Ezáltal leegyszerűsödik a függvényminimalizálási feladat. 6

7 Példa: kifejtési módszer Legyen F függvény a következő: F( A, B, C) = A B C+ A B C+ A B C+ A B C Ha A:= F(, B, C) = B C + BC + BC + BC = BC + BC = C ( B+ B) = C Ha A:= F(, B, C) = B C+ B C+ B C + BC = BC + BC = B ( C+ C) = B Végül összeadjuk a kettőt (egyszerűsített alak): F( A, B, C) = A F(, B, C) + A F(, B, C) = = AC + AB 7

8 Az egyszerűsített függvény logikai áramköri realizációja A F( A, B, C) = A C+ A B B F C Inverter szint ÉS kapuk szintje VAGY kapuk szintje 8

9 3.) Grafikus módszer Karnough (Veicht) diagramm Példa: Tömbösítés szabályainak betartása! C BC A B 3 2 A B C+ B C = C ( B + B) C Lehetséges, de nem tömör összevonások Legtömörebb összevonás 9

10 Példa : 7-szegmenses dekóder áramkör tervezése Számjegyek (-9) és spec. hexadecimális karakterek megjelenítésére ( ) nemzetközi elnevezései a szegmenseknek: (a, b, c, d, e, f, g) 6 érték (4 biten ábrázolható): F(X,Y,Z,W) a f e g d b c

11 Példa: 7-szegmenses dekóder tervezése (folyt) Igazságtábla (f szegmensre) Karnough tábla: ZW XY X Kapott f kimeneti függvény: W Z Y sor X Y Z W f f ( X, Y, Z, W) = Z W + X Y + Y W + X Z + X Y Z

12 Példa : A 7-szegmenses dekóder logikai áramköri realizációja X Y Z f W f ( X, Y, Z, W) = Z W + X Y + Y W + X Z + X Y Z 2

13 Példa 2: 7-szegmenses dekóder áramkör tervezése Csak számjegyeket (-9) megjelenítésére BCD: Binárisan kódolt decimális számokra Nemzetközi elnevezései a szegmenseknek: (a, b, c, d, e, f, g) érték (4 biten ábrázolható): F(A,B,C,D) NTSH: használjunk Nem Teljesen Specifikált Hálózatot (igazságtábla kimeneti függvényértékeiben lehetnek don t care - definiált állapotok) n Feladat: n= 4 2 F = (,,3, 4,5,6,7,8,9) x :,,2,3,4,5 i= f e a g d 3 b c

14 Példa 2: 7-szegmenses dekóder tervezése (folyt) Igazságtábla (c szegmensre) Karnough tábla: CD AB A - / Kapott c kimeneti függvény: D C / - / - / - / / 8 9 B sor A B C D c cabcd (,,, ) = A+ B+ C+ D 4

15 Példa 2: 7-szegmenses dekóder logikai áramköri realizációja (BCD) A B c C D cabcd (,,, ) = A+ B+ C+ D 5

16 4.) Normálformák (NF) DNF: Diszjunktív Normál Forma mintermek (szorzattermek) VAGY kapcsolata KNF: Konjunktív Normál Forma Maxtermek (összegtermek) ÉS kapcsolata 6

17 Példa : Diszjunktív Normál Forma Legyen: n= 4 Karnough tábla: n 2 F = (,,3, 7,,2,4,5) i= CD AB C 3 2 Kapott F függvény: A D F(A,B,C,D) = C D + A B C + A B D B 7

18 Példa 2: Konjunktív Normál Forma Legyen: n= 4 Karnough tábla: n 2 F = (2, 4,5, 6,8,9,,3) i= CD AB C 3 2 Kapott F függvény: A B F(A,B,C,D) = (A + C + D) (A + B + C) (A + C + D) (A + B + D) D 8

19 5.) Számjegyes minimalizálás (Quine-McCluskey módszer) Szomszédosság szükséges feltételei: Decimális indexek különbsége 2^n kell legyen (szükséges, de nem elégséges feltétel!) Pl: i: 6-2=4 (szomszédos), de i:-6=4 (nem szomszédos) Bináris súlyuk különbsége. (Hamming távolság) Pl: (7) vagy (9) (3) (7) jó x xxx rossz (szükséges, de nem elégséges feltétel!) A nagyobb decimális indexűnek kell nagyobb bináris súllyal szerepelnie! (szükséges, de nem elégséges feltétel!) Y Y 4 Y Y 5 Y 2 Y 3 Y 8 Y 9 Y 3 Y 7 9 Y 2 Y 6 Y 5 Y 4 Y Y

20 Példa: Számjegyes minimalizálásra (Quine-McCluskey módszer) Oldjuk meg a következő feladatot a Quine- McCluskey módszerrel Ha adott az F függvény DNF alakban: n= 4 n 2 F = (,,3, 7,,2,4,5) i= CD AB C 3 2 Karnough tábla: A B D 2

21 Számjegyes minimalizálás Quine-McCluskey módszer I.lépés Csoportosítás bináris súlyuk szerint: ahol a kimeneti értékük -s volt. [ bináris súly] [ bináris súly] 3 [2 bináris súly] 2 7 [3 bináris súly] 4 5 [4 bináris súly] bináris súly szerinti csoportképzések 2

22 Számjegyes minimalizálás Quine-McCluskey módszer II.lépés II. Összes létező szomszédos kételemű lefedő tömb összevonása (Karnough tábla alapján) Minterm Decimális különbség, (),3 (2) 3,7 (4) 3, (8) 2,4 (2) 7,5 (8),5 (4) 4,5 () CD AB A C B D 22

23 Számjegyes minimalizálás Quine-McCluskey módszer III.lépés III. Összes létező szomszédos kettesekből képzett négyelemű lefedő tömb összevonása Minterm (Karnough tábla alapján), (),3 (2) 3,7 (4) 3, (8) Decimális különbség Négyes Összevonás 2,4 (2) 3,7,,5 (4,8) 7,5 (8),5 (4) 4,5 () CD AB A D C B

24 Számjegyes minimalizálás Quine-McCluskey módszer IV.lépés IV. Prímimplikáns tábla felírása a megmaradt összevonásokkal (III. lépés alapján) sor *, () * *,3 (2) * * * 2,4 (2) * * 4,5 () * * * 3,7,,5 (4,8) * * * * * : ahol egy adott mintermhez tartozó oszlopban csak egy * van, az a sor jelöli a lényeges prímimplikánst (ahol az implikáns tovább már nem egyszerűsíthető!). Az a sor nem elhagyható! 24

25 Számjegyes minimalizálás Quine-McCluskey módszer V.lépés V. Prímimplikánsokból képzett kimeneti függvény megadása (IV. lépés alapján): (,): (2,4): (3,7,,5): A mintermen belüli egyszerre / tagok kiesnek! Tehát a kimeneti minimalizált F függvény a következő: F= + + F= A B C+ A B D+ C D 25

26 Ajánlott: fejezetek végén a feladatok (Exercises) részek áttekintése. 26

Digitális Technika I. (VEMIVI1112D)

Digitális Technika I. (VEMIVI1112D) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás

Részletesebben

Digitális Rendszerek (BSc)

Digitális Rendszerek (BSc) Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (Sc) 1. előadás: Logikai egyenletek leírása I. oole-algebra axiómái és tételei Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,

Részletesebben

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3 Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék

Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve

Részletesebben

Digitális technika VIMIAA02

Digitális technika VIMIAA02 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:

1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: 1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű

Részletesebben

Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT

Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika

Részletesebben

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104. Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.

Részletesebben

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ) I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,

Részletesebben

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint 6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,

Részletesebben

Quine-McCluskey Módszer

Quine-McCluskey Módszer Quine-McCluskey Módszer ECE-331, Digital Design Prof. Hintz Electrical and Computer Engineering Fordította: Szikora Zsolt, 2000 11/16/00 Forrás = http://cpe.gmu.edu/courses/ece331/lectures/331_8/index.htm

Részletesebben

DIGITÁLIS TECHNIKA feladatgyűjtemény

DIGITÁLIS TECHNIKA feladatgyűjtemény IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki

Részletesebben

DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások

DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu

Részletesebben

Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc)

Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc). hét - Boole algebra (függvény, igazságtábla, kanonikus alak). Kombinációs Hálózatok

Részletesebben

IRÁNYÍTÁSTECHNIKA I.

IRÁNYÍTÁSTECHNIKA I. IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos

Részletesebben

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole

Részletesebben

Digitális technika - Ellenőrző feladatok

Digitális technika - Ellenőrző feladatok igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális

Részletesebben

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA 206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,

Részletesebben

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.

Részletesebben

3. LOGIKAI FÜGGVÉNYEK GRAFIKUS EGYSZERŰSÍTÉSE ÉS REALIZÁLÁSA

3. LOGIKAI FÜGGVÉNYEK GRAFIKUS EGYSZERŰSÍTÉSE ÉS REALIZÁLÁSA 3. LOGIKI FÜGGVÉNYEK GRFIKUS EGYSZERŰSÍTÉSE ÉS RELIZÁLÁS tananyag célja: a többváltzós lgikai függvények grafikus egyszerűsítési módszereinek gyakrlása. Elméleti ismeretanyag: r. jtnyi István: igitális

Részletesebben

Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései

Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Elméleti anyag: Lényegtelen kombináció (don t care) fogalma Kombinációs hálózatok

Részletesebben

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK 5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások

Részletesebben

Digitális technika I.

Digitális technika I. Digitális technika I. ELSŐ JAVÍTOTT KIADÁS 4 Utolsó frissítés időpontja: 4--8 (terjedelem: 48 A4-es lap) (A jegyzetben található estleges hibákért, elírásokért elnézést kérek, és a hibák jelzését köszönettel

Részletesebben

Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest Az előadások ezen könyvek megfelelő fejezetein alapulnak.

Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest Az előadások ezen könyvek megfelelő fejezetein alapulnak. 06.0.. DIGITÁLIS TECHNIKA Dr. Lvassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikrelektrnikai és Technlógia Intézet. ELŐADÁS: LOGIKAI (BOOLE) FÜGGVÉNYEK ÉS ALKALMAZÁSAIK IRODALOM Arató Péter: Lgikai rendszerek

Részletesebben

2. hét Kombinációs hálózatok leírási módjai

2. hét Kombinációs hálózatok leírási módjai 2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS. Somogyi Miklós DIGITÁLIS HÁLÓZATOK

SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS. Somogyi Miklós DIGITÁLIS HÁLÓZATOK SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS Somogyi Miklós DIGITÁLIS HÁLÓZATOK A tantárgy célja: a kapu szintű digitális hálózatok tervezési elveinek bemutatása és az elvek gyakorlati alkalmazásának elsajátítatása

Részletesebben

Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK

Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK Dr Keresztes Péter DIGITÁLIS HÁLÓZATOK A jegyzet a HEFOP támogatásával készült Széchenyi István Egyetem Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

Analóg és digitális mennyiségek

Analóg és digitális mennyiségek nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű

Részletesebben

Boole algebra, logikai függvények

Boole algebra, logikai függvények Boole algebra, logikai függvények Benesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése

Részletesebben

Digitális Technika I. (VEMIVI1112D)

Digitális Technika I. (VEMIVI1112D) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 6. hét Hazárd jelenségek Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu Kapcsolódó jegyzet, segédanyag: http://www.virt.vein.hu

Részletesebben

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök 4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016

Részletesebben

IRÁNYÍTÁSTECHNIKA I.

IRÁNYÍTÁSTECHNIKA I. IRÁNYÍTÁSTECHNIKA I. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika

Részletesebben

Elektronikai műszerész Elektronikai műszerész

Elektronikai műszerész Elektronikai műszerész A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Digitális technika I

Digitális technika I Digitális technika I Dr. Göllei Attila, Dr. Holczinger Tibor, Dr. Vörösházi Zsolt 2014 A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0104 A felsőfokú informatikai oktatás minőségének fejlesztése, modernizációja

Részletesebben

Bevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l :

Bevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l : Bevezetés Forrás: http://e-oktat.pmmf.hu/digtech1 Jelen jegyzet a Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Karán folyó Műszaki Informatika képzés Robotirányítási rendszerek I-II. tantárgyaihoz

Részletesebben

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3) DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés

Részletesebben

D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1.

D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. Kötelezően megoldandó feladatok: A kódoláselmélet alapjai részből: 6. feladat 16. feladat A logikai függvények részből: 19. feladat

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1

Részletesebben

2. Alapfogalmak. 1. ábra

2. Alapfogalmak. 1. ábra 1. Bevezetés A Pécsi Tudományegyetem Pollack Mihály Műszaki Karán tanuló műszaki informatikus hallgatók mindezidáig más oktatási intézmények által kiadott jegyzetekből és a kereskedelemben kapható drága

Részletesebben

Példa:

Példa: Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika

Részletesebben

DIGITÁLIS TECHNIKA I FÜGGVÉNYEK KANONIKUS ALAKJAI MINTERMEK ÉS MAXTERMEK DISZJUNKTÍV KANONIKUS ALAK, MINTERM

DIGITÁLIS TECHNIKA I FÜGGVÉNYEK KANONIKUS ALAKJAI MINTERMEK ÉS MAXTERMEK DISZJUNKTÍV KANONIKUS ALAK, MINTERM IGITÁLIS THNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 4. LİÁS 4. LİÁS. Logikai üggvények kanonikus algebrai alakjai, diszjunktív és konjunktív normálalakok 2. Logikai üggvények

Részletesebben

INFORMATIKA ALAPJAI-II

INFORMATIKA ALAPJAI-II INFORMATIKA ALAPJAI-II Tartalomjegyzék BEVEZETŐ... RELÁCIÓ- ÉS LOGIKAI EGYENLETEK... 4. RELÁCIÓ EGYENLETEK... 4. LOGIKAI EGYENLETEK... 4.. Egyszerű logikai művelet... 5.. Elemi logikai függvények azonosságai...

Részletesebben

Kombinációs hálózatok Adatszelektorok, multiplexer

Kombinációs hálózatok Adatszelektorok, multiplexer Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 2. Laboratóriumi gyakorlat gyakorlat célja: oolean algebra - sszociativitás tétel - Disztributivitás tétel - bszorpciós tétel - De

Részletesebben

Hazárdjelenségek a kombinációs hálózatokban

Hazárdjelenségek a kombinációs hálózatokban Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése

Részletesebben

4. KOMBINÁCIÓS HÁLÓZATOK. A tananyag célja: kombinációs típusú hálózatok analízise és szintézise.

4. KOMBINÁCIÓS HÁLÓZATOK. A tananyag célja: kombinációs típusú hálózatok analízise és szintézise. . KOMBINÁCIÓS HÁLÓZATOK A tananyag célja: kombinációs típusú hálózatok analízise és szintézise. Elméleti ismeretanyag: Dr. Ajtonyi István: Digitális rendszerek I. 2., 5., 5.2. fejezetek Elméleti áttekintés..

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Zalotay Péter Digitális technika I

Zalotay Péter Digitális technika I Zalotay Péter Digitális technika I Távoktatás előadási anyaga Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...5 1. LOGIKAI ALAPISMERETEK...8 1.1. Halmazelméleti alapfogalmak...8 1.2. A logikai

Részletesebben

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította: Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 3

Digitális technika (VIMIAA02) Laboratórium 3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,

Részletesebben

Zalotay Péter Digitális technika

Zalotay Péter Digitális technika Zalotay Péter Digitális technika Elektronikus jegyzet Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...3 1. A DIGITÁLIS TECHNIKA ELMÉLETI ALAPJAI...7 1.1. Logikai alapismeretek...7 1.2. Halmazelméleti

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 3

Digitális technika (VIMIAA02) Laboratórium 3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

DIGITÁLIS TECHNIKA I LOGIKAI (BOOLE-) FÜGGVÉNYEK LOGIKAI FÜGGVÉNYEK ÉS KOMBINÁCIÓS HÁLÓZATOK MI A BOOLE (LOGIKAI) FÜGGVÉNY?

DIGITÁLIS TECHNIKA I LOGIKAI (BOOLE-) FÜGGVÉNYEK LOGIKAI FÜGGVÉNYEK ÉS KOMBINÁCIÓS HÁLÓZATOK MI A BOOLE (LOGIKAI) FÜGGVÉNY? DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikrelektrnikai és Technlógia Intézet. ELİADÁS: LOGIKAI FÜGGVÉNYEK 8/9 tanév. félév LOGIKAI (BOOLE-) FÜGGVÉNYEK. Lgikai függvények: alapfgalmak. Kétváltzós

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK É RETTSÉGI VIZSGA 2005. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2005. október 24., 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Logikai feladat-oknak hívjuk azokat a feladatokat, amelyeknek a megoldása során véges számú feltételek közül valamely feltételek teljesüléséhez egyértelmüen hozzá kell rendelni a véges

Részletesebben

Széchenyi István Egyetem. dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK

Széchenyi István Egyetem. dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK Széchenyi István Egyetem dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK 1 TARTALOMJEGYZÉK Bevezető 10 1. rész. Kombinációs hálózatok tervezése 11 1.1. LOGIKAI ÉRTÉKEK ÉS ALAPMŰVELETEK 11 1.1.1. A logikai változók

Részletesebben

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK 28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök

Részletesebben

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint Kutatók éjszakája 2016. szeptember 30. Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1

Részletesebben

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE . EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének

Részletesebben

2019/02/11 10:01 1/10 Logika

2019/02/11 10:01 1/10 Logika 2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Hardver leíró nyelvek (HDL)

Hardver leíró nyelvek (HDL) Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

L O G I K A I H Á L Ó Z A T O K

L O G I K A I H Á L Ó Z A T O K ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 L O G I K A I H Á L Ó Z A T O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Alapfogalmak...3 Digitális technikában alkalmazott számrendszerek...3

Részletesebben

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP-2.2.5.

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola Az új szakképzés bevezetése a Keményben TÁMOP-2.2.5. Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 12.a Évfolyam: 12. 32 hét, heti 2 óra, évi 64 óra Ok Dátum: 2013.09.21

Részletesebben

Digitális Technika 2. Logikai Kapuk és Boolean Algebra

Digitális Technika 2. Logikai Kapuk és Boolean Algebra Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.

Részletesebben

Zalotay Péter DIGITÁLIS TECHNIKA

Zalotay Péter DIGITÁLIS TECHNIKA Zalotay Péter DIGITÁLIS TECHNIKA 3oldal BEVEZETÉS 5 DIGITÁLISTECHNIKA ALAPJAI 7 LOGIKAI ALAPISMERETEK 7 2 A LOGIKAI ALGEBRA 8 2 Logikai változók, és értékük 8 22 A Boole algebra axiómái 9 23 Logikai műveletek

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40.) Töltse ki a táblázat üres celláit! A táblázatnak

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 3. Laboratóriumi gyakorlat A gyakorlat célja: Négy változós AND, OR, XOR és NOR függvények realizálása Szimulátor használata ciklussal

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?

Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

2017/2018. Matematika 9.K

2017/2018. Matematika 9.K 2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő

Részletesebben

DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR

DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR Írta: MATIJEVICS ISTVÁN Szegedi Tudományegyetem DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Matijevics István, Szegedi Tudományegyetem Természettudományi és

Részletesebben

DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS

DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 5. ELİÁS 5. ELİÁS. Karnaugh táblázat programok. Nem teljesen határozott logikai függvények. Karnaugh táblázat, logikai tervezési

Részletesebben

1. hét: A Boole - algebra. Steiner Henriette Egészségügyi mérnök

1. hét: A Boole - algebra. Steiner Henriette Egészségügyi mérnök 1. hét: A Boole - algebra Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Elérhetőségek Dr. Steiner Henriette steiner.henriette@nik.uni-obuda.hu Féléves követelmények Heti óraszámok:

Részletesebben

A logikai következmény

A logikai következmény Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák

Digitális Rendszerek és Számítógép Architektúrák Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 1. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Vörösházi Zsolt Szolgay

Részletesebben

MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

Kombinációs hálózatok egyszerűsítése

Kombinációs hálózatok egyszerűsítése Komináiós hálóztok egyszerűsítése enesózky Zoltán 24 jegyzetet szerzői jog véi. zt ME hllgtói hsználhtják, nyomtthtják tnulás éljáól. Minen egyé felhsználáshoz szerző elegyezése szükséges. él: speifikáióvl

Részletesebben

5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze!

5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze! 1 1. Rendezd a következő polinomokat a bennük lévő változó növekedő hatvánkitevői szerint! a) 2 + + 2 b) 2 + + 2 + 6 2. Melek egnemű algebrai kifejezések? a) a 2 b; 2ab; a 2 b; 2a b; 1,a 2 b b) 2 ; 2 ;

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A digitális tervezésben gyakran szükséges a logikai jelek változását érzékelni és jelezni. A változásdetektorok készülhetnek csak egy típusú változás (0 1, vagy

Részletesebben

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika

Részletesebben