DIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN
|
|
- Frigyes Kocsis
- 8 évvel ezelőtt
- Látták:
Átírás
1 IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 8. ELİÁS 8. ELİÁS. Kódváltók, kódoló és dekódolók 2. Egyszerő kódátalakító (kombinációs) hálózatok 3. ináris/ és /bináris kódátalakítók 2008/2009 tanév. félév 2 ISMÉTLÉS ÉS KIEGÉSZÍTÉS típusú és egyéb különleges kódok Összeadás kódban: lgoritmus Realizálás RITMETIKI MŐVELETEK TETRÁ KÓN digitális rendszerek, és ezen belül a számítógépek jelentıs része a négy aritmetikai mőveletet, illetve azok egy részét közvetlenül a binárisan kódolt decimális () számokon is el tudja végezni. Pl. a mikroprocesszorok alkalmasak kódú számok összeadására, egy részük kivonására is. Egyes célprocesszorok a kódú, szorzást illetve osztást is el tudják végezni. 3 4 ÖSSZEÁS TETRÁ KÓOKN z összeadást a közönséges bináris összeadásra vezetik vissza. Elv: az operandusok egyes tetrádjait közönséges bináris számoknak tekintve tetrádonként elvégzik az összeadást, majd ha szükséges (pszeudotetrádok keletkeznek) korrigálják az eredményt. 5 ÖSSZEÁS KÖZÖNSÉGES (842 SÚLYOZÁSÚ) KÓN Ha két tetrád összege nem nagyobb mint 9, akkor az eredmény helyes, nincs szükség korrekcióra. Ha az eredmény nagyobb mint 9 (ekkor átvitel és pszeudotetrád lép fel) akkor az eredmény csak binárisan helyes, kódban nem. Ekkor a korrekció 6 (decimális) azaz 00 (bináris) hozzáadásával elvégezhetı. Mindezt a legalacsonyabb helyértéktıl kezdve tetrádról tetrádra haladva kell elvégezni. 6
2 Példa: decimális (842) ÖSSZEÁS Mivel egyetlen helyértéken sem volt az összeg 9nél nagyobb, ezért korrekcióra nem volt szükség 7 ÖSSZEÁS: +6 KORREKIÓ (842) ÖSSZEÁS LGORITMUS PSZEUOTETRÁOK ZONO SÍTÁS KRNUGH TÁLÁN + = + bin ha + bin 9 Minimalizálás után P = + + = + bin + bin 6 ha + bin > 9 9 Hibajelzı: 0 Átvitel két dekád között számok összeadása 4 ináris összeadó 0 S3 S2 S S0 + > 9. érvénytelen kódszó ecimális 6 (bináris 0 0) korrekció ináris összeadó S3 S2 S S0 4 S3 S2 S S0 KIVONÁS TETRÁ KÓOKN bináris számokhoz hasonlóan itt is komplemens kódú összeadásra vezetik vissza a kivonást. Mind a 9es, mind a 0es komplemens használható, de az elızınél itt is kell korrigálni az eredményt a körátvitellel, ha az fellépett
3 MULTIPLIKTÍV MŐVELETEK TETRÁ KÓOKN Léteznek a megfelelı algoritmusok a szorzás és osztás elvégzésére. Mivel gyakori feladat a 2vel való szorzás vagy osztás (pl. bináris, illetve bináris átalakítás), ezért a hatékonyság növelése érdekében erre vannak külön algoritmusok. ináris: egy helyértékkel jobbra vagy balra léptetés. szorzás: egy helyértékkel balra léptetés, és +6 korrekció a pszeudotetrádoknál. 3 KÓÁTLKÍTÓ HÁLÓZTOK, KÓVÁLTÓK, EKÓEREK digitális technikában gyakran van szükség különbözı kódrendszerek közötti átalakításra, kódváltásra. kódátalakító hálózatok lényegében több bemeneti és kimeneti ponttal rendelkezı kombinációs hálózatok. Megvalósíthatók egyedi logikai kapukból a kombinációs hálózatok megvalósítása ismert eljárásai szerint. Sok esetben célszerőbb a memóriaelemeken alapuló megvalósítás. 4 KÓÁTLKÍTÓK Kódátalakítókra akkor van szükség, ha az adatforrás és a nyelı kódrendszere nem egyezik meg. Pl.: EKÓOLÓK, KÓOLÓK Helyzet érzékelı Gray ináris Gray ináris N leggyakrabban szükséges kódátalakító áramkörök készen rendelkezésre állnak mint ún. közepes integráltságú áramkörök (medium scale integrated (MSI) circuits). 5 6 INTEGRÁLT ÁRMKÖRÖK OSZTÁLYOZÁS Integrált áramkörök osztályozása komplexitás (integráltsági fok) szerint: EKÓOLÓ (EOER) ÁRMKÖR Kódolt információ dekódolása (konverzió) SSI Small Scale Integration: kb. 0 alacsony szintő elem (kapu) MSI Medium Scale Integration: 000 LSI Large Scale Integration: VLSI Very Large Scale Integration: > 000 ULSI Ultra Large Scale Integration: > 0000 GLSI Giga Large Scale Integration: > RLSI Ridiculously (?) Large Scale Integration : Egyidıbenegyszerre csak egy logikai kimeneti változó (tehát a dekódolt) lehet igaz, a többi hamis! 2 N kimenet dekódolásához N bemenet kell! Gyakran alkalmazott eszköz, kapható 2, 3, 4, bemenető I formájában >
4 TIPIKUS FELTOK, TIPIKUS ÁRMKÖRÖK emeneti kód Kimeneti kód nbites bináris kódszó a 2 n bıl (számjegy) tiszta decimális számjegy ( a 0bıl) 3többletes tiszta decimális számjegy ( a 0bıl) 7szegmenses kijelzı tiszta bináris (szám) tiszta bináris 9 Z N KÖZÜL EKÓOLÓK az N közül ( out of N vagy of N) dekódolók: Kombinációs áramkör, melynek n bemente és m kimenete van. bemeneti kombinációk lehetséges száma 2 n, a kimenetek száma pedig m 2 n. kimenetek közül mindig csak az egyik és az összes többi 0, vagy fordítva, az egyik 0 és a többi. z nbites bináris bemeneti kóddal kiválaszt egyet az m kimeneti vonal közül, mely csak az adott bemeneti kód megjelenése esetén lesz aktív. legtöbbször MSI integrált áramkörként megvalósított hálózat tartalmazhat egyéb kényelmi vezérlı bemeneteket (pl. engedélyezı) is. 20 2to4 ecoder 3to8 ecoder data address 2 22 PÉL: 8 KÖZÜL EKÓÓLÓ ecoder with enable: 2to4 E E 2 3/8 O 0 O O 7 Háromból nyolcvonalas dekódoló engedélyezı bemenettel. kimeneti kapuk négy bemenetőek, három fogadja a bemeneti kódot, az engedélyezı jel a kimeneti kapuk negyedik bemenetére kerül. ekóder engedélyezı bemenettel 23 24
5 EKÓER İVÍTÉS LKLMZÁSOK: (IN)/EIMÁLIS EKÓOLÓ /E 00 bin 5 dec Gyakori alkalmazás a /E átalakító. bemenetek száma 4, a kimeneteké pedig 0. z aktív kimenet lehet akár H szintő () akár L szintő () a realizálástól függıen (IN)/EIMÁLIS EKÓOLÓ X X X X X X X X X X... X X X X X X X X X X 27 ÖSSZEVONT ÁRÁZOLÁS KRNUGH TÁLÁN K0 K K3 K2 K4 K8 K5 K9 K7 K6 K0 és K nem egyszerősíthetı. K3... K7 tagok egyszerősíthetık egy egy don t care mintermmel való összevonással. K8, illetve K9 körül négyes hurkok alakíthatók ki. 28 MINIMLIZÁLÁS EREMÉNYE /E EKÓOLÓ K0 K K3 K2 K4 K5 K7 K6 K8 K9 K0 = K = K2 =... K8 = MSI realizálásban nem kell takarékoskodni a kapukkal és így nem szükséges minimalizálni, ekkor a tiltott kombinációk kihasználásával kiegészítı áramköri funkciók valósíthatók meg. Pl. a tiltott kombinációknál a kimenetek letilthatók. Lehet más elıírást is alkalmazni, de a fı, hogy a tiltott bemenetekre is lehet a kimenetek állapotát definiálni. K9 = 29 30
6 /E EKÓOLÓ MINT IN/OKTÁLIS EKÓOLÓ /E Engedélyezı bemenetként tilt 0 engedélyez /E dekódolót bináris/oktális dekódolónak használva csak a kimenetek lényegesek, a 8 és 9 kimeneteket nem használják. 3 /7SZEGMENSES KIJELZİ EKÓOLÓ emenet : 4 bit digit (,,, ) Kimenet : 7 szegmens vezérlıjele (06) c5 c4 c0 c6 c3 c0 c c2 c3 c4 c5 c6 to 7 segment control signal decoder c c2 32 Formalize the problem Truth table Show don't cares hoose implementation target If ROM, we are done on't cares imply PL/PL may be attractive Follow implementation procedure Implementation as Minimized SumofProducts 5 unique product terms when minimized individually 0 X 0 X 0 X X X X X X X X 0 X 0 = ' ' 0 X 0 X = ' ' + + ' 2 = + ' X X 0 X X 3 = ' ' + ' + ' + ' 0 X X X X 4 = ' ' + ' 5 = + ' ' + ' + ' 6 = + ' + ' + ' Minimization using Kmaps 33 on t care termek: erıs egyszerősítések adódnak! 34 X 0 X X X X X X 0 X X 0 X 0 X X 0 0 X X 0 0 X X X X 0 X X X MINIMLIZÁLÁS EREMÉNYE (0) = Implementation as Minimized SoP (cont'd) Van jobb megoldás! 9 különbözı szorzat tag (5 helyett) Közös termek z egyes kimenetek nem szükségképen minimális 2 X X X X 0 X X 0 = ' ' = ' ' + + ' 2 = + ' + 3 = ' ' + ' + ' + ' 4 = ' ' + ' 5 = + ' ' + ' + ' 6 = + ' + ' + ' 2 X X X X 0 X X 0 = ' + + ' ' + ' + = ' + ' ' + + ' ' 2 = ' + ' + ' ' + + ' 3 = ' + ' + ' ' + ' 4 = ' ' + ' 5 = ' + ' ' + + ' 6 = ' + ' + ' + 36
7 PL MEGVLÓSÍTÁS ' ' ' ' '' '' ' LOGIKI FÜGGVÉNYEK RELIZÁLÁS EKÓERREL Tetszıleges kombinációs hálózat realizálható dekóder(ek) és VGY kapuk felhasználásával! Példa: Teljes összeadó (TÖ) megvalósítása egy dekóderrel és két VGY kapuval. TÖ logikai összefüggései (a bemenetek X, Y, és Z): S(X,Y,Z) = X plus Y plus Z = Σ3(,2,4,7) (X,Y,Z) = Σ3(3, 5, 6, 7). Mivel 3 bemenet és összesen 8 minterm van, egy 3to8 dekóderre van szükség. 38 Implementing a inary dder Using a ecoder KÓOLÓ (ENOER) S(X,Y,Z) = SUM m(,2,4,7) (X,Y,Z) = SUM m(3,5,6,7) dekódoló ellentéte: 2 N bemeneti és N kimeneti vonala van. Pl. 6 bemenet és 4 kimenet. kimeneti vonalakon azon bemeneti vonal sorszáma bináris ekvivalense jelenik meg, mely vonalon logikai szint van KÓOLÓ PÉL Példa 8ból 3ra bináris kódóló (octaltobinary) 0 = = OKTÁLIS/INÁRIS KÓOLÓ = Oktális/bináris aktív bemenető, aktív kimenető kódoló 2 2
8 Encoder Example (cont.) EIMÁLIS/ ÉS OKTÁLIS/INÁRIS KÓOLÓK ecimális/ kódoló: emenet 9 vezeték, sorszámozva... 9 Kimenet négy vezeték (), az aktív bementi vezetéknek megfelelı kód. Elvi megvalósítás: VGY kapuk, pl. = ( helyérték súlya 2 = 2) 44 PRIORITÁS KÓOLÓ Prioritás kódoló (priority encoder), decimális/, MSI áramkör: Prioritási elven kódol, ha egyszerre több bemeneti vonal aktív, akkor a legmagasabb sorszámút kódolja át alakká. EGYLÉPÉSES KÓOK, GRYKÓ Graykód olyan kód, amivel a kvantált mintát digitálisan kifejezve, a szomszédos kvantálási szinteket képviselı kódszavak egymástól csak egy bitjükben különböznek. Graykódot minimális változású kód. Graykód speciális esete az ún. egylépéses kódoknak. Fı felhasználási területe: különbözı jelek sorrendbe állítása, a legmagasabb prioritású jel lkalmazás: méréstechnika és automatika, lineáris vagy szöghelyzet érzékelése és kódolása (pozíció hatása érvényesül. 45 kódolás). 46 4ITES GRY KÓ KRNUGH TÁLÁN EGYSZERŐ PÉL: 3ITES GRYKÓ ec in Gray in/gray átalakítás: Gray elsı bitje azonos a bináris kód. (MS) bitjével, a második bit a bináris szám. és 2. bitjének KIZÁRÓVGY függvénye, a harmadik bit a bináris kód 2. és 3. bitjének KIZÁRÓVGY függvénye, és így tovább. Gray kód képzési szabálya 4biten 47 48
9 GRYKÓ, HMMINGTÁVOLSÁG Graykód 2n számú nbites bites kódszavak olyan sorrendben, hogy bármelyik két szomszédos kódszó csak egyetlen bitben különbözik. Ez áll az elsı és utolsó kódszóra is (ciklikusság). Ha n = 3, a kódszavak ciklikus sorrendje: HMMING TÁVOLSÁG Két kódszó Hamming távolságát úgy határozzák meg, hogy a két kódszó azonos helyen álló elemeit összehasonlítják, és megállapítják hány helyen áll különbözı bit. z így kapott szám a Hamming távolság. Gray kód bármely két szomszédos kódszava csak egy bitben különbözik INÁRIS/GRY ÉS GRY/INÁRIS KONVERZIÓ LGORITMUSI ináris: b3b2bb0 Gray: a3a2aa0 ináris Gray Gray ináris a3 = b3 b3 = a3 a2 = b3 b2 b2 = a3 a2 a = b2 b b = a3 a2 a = b2 a a0 = b b0 b0 = a3 a2 a a0 = stb. INÁRIS/GRY KÓÁTLKÍTÓ 0 b3 0 a3 = b2 a2 b = 0 a ináris Gray: Gray ináris: ai = bi+ bi bi = bi+ ai 53 b0 = 0 a0 54
10 MÁS EGYLÉPÉSES KÓOK Sok más, hasonló tulajdonságú (egylépéses) kód ismeretes. Vannak pl. decimális () egylépéses kódok: PÉL: GRY/IKEN KÓ ÁTLKÍTÓ Pl. Glixonkód, tetrád kódszavak, sorrendjük 0000 (0) 000 () 00 (2) 000 (3) 00 (4) 0 (5) (7) 00 (8) 000 (9) 55 kódátalakító 08ig mőködjön! z átalakító igazságtáblázatának kitöltése Logikai függvények egyszerősítése Realizálás NN/NN hálózattal 56 GRY/IKEN: IGZSÁGTÁLÁZT Gray kód iken kód EGYSZEŐSÍTETT FÜGGVÉNYEK _ X = + Y = + _ Z = + + _ K = Redundáns (don t care) mintermek: i = 8, RELIZÁLÁS (X) RELIZÁLÁS (Y) _ X = + 59 Y = + 60
11 RELIZÁLÁS (Z) RELIZÁLÁS (K) _ Z = _ K = INÁRIS/ KONVERZIÓ Korrekció (+6): pszeudotetrád fellépésekor, dekádok közötti határ átlépésekor. Konverzió végrehajtása: bináris számot a MStól kezdve balra léptetjük, minden lépés után megvizsgáljuk kelle korrekció, ha igen elvégezzük. 63 INÁRIS/ KONVERZIÓ LGORITMUS * 0 0 (bin) = 57(dec) * 0 0 balra lép * 0 0 balra lép * 0 0 balra lép * 0 * 0 balra lép pszeudotetrád +0 0 * korrigál * * 0 balra blép 0 * * balra lép dekád 0 * * balra lép átlépés +0 0 * korrigál 0 * 0 0 * INÁRIS/ KONVERZIÓ Mindkét, a léptetés utáni korrekció +6 hozzáadása. Léptetés elıtt is elvégezhetı, ekkor +3 a korrekció, ha a tetrád decimális értéke nagyobb mint 5. Elınye: az állandóan elvégzett pszeudotetrád korrekció miatt 9nél nagyobb szám sosem fordul elı, a dekádhatár átlépési korrekció is automatikusan elvégzıdik. Így csak egyfajta korrekciós hálózatra van szükség. VÉGE 65 66
DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2
DIGITÁLIS THNIK I Dr. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet. LİDÁS. LİDÁS. Kódátalakítások: bináris/gray, bináris/d. Multiplexerek és demultiplexerek. Komparátorok. Kódok: hibajelzés
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
DIGITÁLIS TECHNIKA I PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK. Kódok, kódolás: alapfogalmak
206..28. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 0. ELŐDÁS PÉLD LEGEGYSZERŰ KONJUNKTÍV LK KÉPZÉSÉRE D Három négyes és két kettes
DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS
DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 10. ELŐADÁS 1 PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE A 1 1
DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint
6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,
DIGITÁLIS TECHNIKA I KÓD IRODALOM SZIMBÓLUMKÉSZLET KÓDOLÁS ÉS DEKÓDOLÁS
DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 7. ELİADÁS 7. ELİADÁS 1. Kódok és kódolás alapfogalmai 2. Numerikus kódok. Tiszta bináris kódok (egyenes kód, 1-es
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.
6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet
DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS
IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 5. ELİÁS 5. ELİÁS. Karnaugh táblázat programok. Nem teljesen határozott logikai függvények. Karnaugh táblázat, logikai tervezési
DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA
206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,
DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III
22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited
4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2)
DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 1. ELİADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. ELİADÁS 1. Általános bevezetés az 1. félév anyagához. 2. Bevezetés
Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István
Kombinációs áramkörök modelezése Laborgyakorlat Dr. Oniga István Funkcionális kombinációs egységek A következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
LOGIKAI TERVEZÉS PROGRAMOZHATÓ. Elő Előadó: Dr. Oniga István
LOGIKI TERVEZÉS PROGRMOZHTÓ ÁRMKÖRÖKKEL Elő Előadó: Dr. Oniga István Funkcionális kombinációs ió egységek következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,
Dr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés
A Gray-kód Bináris-kóddá alakításának leírása
A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül
DIGITÁLIS TECHNIKA I 6. ELİADÁS SZÁMRENDSZEREK BEVEZETİ ÁTTEKINTÉS. Római számok és rendszerük. Helyérték
DIGITÁLIS TECHNIK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet. ELİDÁS: BINÁRIS SZÁMRENDSZER. ELİDÁS. elıadás témája a digitális rendszerekben központi szerepet játszó számrendszerek
DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS NORMÁL BCD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
DIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
DIGITÁLIS TECHNIKA I FÜGGVÉNYEK KANONIKUS ALAKJAI MINTERMEK ÉS MAXTERMEK DISZJUNKTÍV KANONIKUS ALAK, MINTERM
IGITÁLIS THNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 4. LİÁS 4. LİÁS. Logikai üggvények kanonikus algebrai alakjai, diszjunktív és konjunktív normálalakok 2. Logikai üggvények
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole
Analóg és digitális mennyiségek
nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű
DIGITÁLIS TECHNIKA I A JELTERJEDÉSI IDİK HATÁSA A KOMBINÁCIÓS HÁLÓZATOK MŐKÖDÉSÉRE A JELTERJEDÉS KÉSLELTETÉSE
IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 0. ELİÁS 0. ELİÁS. jelterjedési idık hatása a kombinációs hálózatok mőködésére 2. Kódok: hibajelzés és javítás 2008/2009
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL
DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint Kutatók éjszakája 2016. szeptember 30. Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1
34-35. Kapuáramkörök működése, felépítése, gyártása
34-35. Kapuáramkörök működése, felépítése, gyártása I. Logikai áramkörcsaládok Diszkrét alkatrészekből épülnek fel: tranzisztorok, diódák, ellenállások Két típusa van: 1. TTL kivitelű kapuáramkörök (Tranzisztor-Tranzisztor
TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához
XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput
Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
Digitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
Aszinkron sorrendi hálózatok
Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
SZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. DE TTK v.0.1 (2007.03.13.) 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;
SZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.03.13.) 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;
A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók.
Megoldás Digitális technika II. (vimia111) 1. gyakorlat: Digit alkatrészek tulajdonságai, funkcionális elemek (MSI) szerepe, multiplexer, demultiplexer/dekóder Elméleti anyag: Digitális alkatrészcsaládok
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
DIGITÁLIS TECHNIKA II
IGITÁLIS TEHNIKA II r. Lovassy Rita r. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐAÁS AZ ELŐAÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése
LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István
LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi
Digitális jelfeldolgozás
Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés
Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika
Digitális technika VIMIAA02 1. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
Digitális technika - Ellenőrző feladatok
igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális
Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Elméleti anyag: Amikor a hazárd jó: élekből impulzus előállítás Sorrendi hálózatok alapjai,
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016
Programozás és digitális technika II. Logikai áramkörök Pógár István pogari@eng.unideb.hu Debrecen, 2016 Gyakorlatok célja 1. Digitális tervezés alapfogalmainak megismerése 2. A legelterjedtebb FPGA-k
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.
Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
KÓDOLÁSTECHNIKA PZH. 2006. december 18.
KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)
Dr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései
Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Elméleti anyag: Lényegtelen kombináció (don t care) fogalma Kombinációs hálózatok
A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással
.. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás
DIGITÁLIS TECHNIKA II
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS 1 AZ ELŐADÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
26.B 26.B. Analóg és digitális mennyiségek jellemzıi
6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1.
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. Kötelezően megoldandó feladatok: A kódoláselmélet alapjai részből: 6. feladat 16. feladat A logikai függvények részből: 19. feladat
Máté: Számítógép architektúrák
Máté: Számítógép architektúrák 20100922 Programozható logikai tömbök: PLA (315 ábra) (Programmable Logic Array) 6 kimenet Ha ezt a biztosítékot kiégetjük, akkor nem jelenik meg B# az 1 es ÉS kapu bemenetén
Dr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Digitális Technika II.
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika II. (VEMIVI2112D) 1. hét Digitális tervezés: Kombinációs hálózatok építőelemei Előadó: Dr. Vassányi István vassanyi@almos.vein.hu
Quine-McCluskey Módszer
Quine-McCluskey Módszer ECE-331, Digital Design Prof. Hintz Electrical and Computer Engineering Fordította: Szikora Zsolt, 2000 11/16/00 Forrás = http://cpe.gmu.edu/courses/ece331/lectures/331_8/index.htm
I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)
I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 2. Laboratóriumi gyakorlat gyakorlat célja: oolean algebra - sszociativitás tétel - Disztributivitás tétel - bszorpciós tétel - De
Kombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész
Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
Kombinációs hálózatok Számok és kódok
Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti
Kombinációs hálózatok egyszerűsítése
Komináiós hálóztok egyszerűsítése enesózky Zoltán 24 jegyzetet szerzői jog véi. zt ME hllgtói hsználhtják, nyomtthtják tnulás éljáól. Minen egyé felhsználáshoz szerző elegyezése szükséges. él: speifikáióvl
10. Digitális tároló áramkörök
1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok)
30.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a szekvenciális hálózatok jellemzıit! Mutassa be a két- és többszintő logikai hálózatok realizálásának módszerét! Mutassa be a tároló áramkörök
Digitális technika házi feladat III. Megoldások
IV. Szinkron hálózatok Digitális technika házi feladat III. Megoldások 1. Adja meg az alábbi állapottáblával megadott 3 kimenetű sorrendi hálózat minimális állapotgráfját! a b/x1x c/x0x b d/xxx e/x0x c
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog