Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész
|
|
- Irma Pintér
- 6 évvel ezelőtt
- Látták:
Átírás
1 Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész 1
2 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL, 5th. Edition Electronics-course.com (Digital Electronics Course I. II.) Boolean Algebra Calculator Karnaugh Map Calculator Végh János: Ismerkedés a digitális elektronikával Mészáros Miklós: Logikai algebra alapjai, logikai függvények I. BME FKE: Logikai áramkörök Logisim szimulátor: Falstad.com: Circuit simulator F-alpha.net: Boolean Algebra Neuproductions-be: The Logic Lab 2
3 Emlékeztető: Kombinációs logikai hálózatok A kombinációs logikai hálózat viselkedése logikai függvényekkel leírható. Kimeneteinek állapota csupán a bemenetek pillanatnyi állapotának függvénye. A kombinációs logikai hálózat összekapcsolt logikai kapukból áll. Az n bemenetnek összesen 2 n állapota lehetséges, amelyek mindegyikéhez a kimenetek egy-egy állapota rendelhető. Így a kombinációs logikai hálózat egyértelműen megadható az igazságtáblázatával, amely leírja a viselkedését. A kombinációs logikai hálózat kimenetei egy-egy n változós logikai függvénnyel is megadhatók. Y i = F i (x 1, x 2,, x n ) 3
4 Kombinációs logikai hálózatok csoportosítása A kombinációs logikai hálózatok legelterjedtebben használt funkcionális moduljai az alábbiak szerint csoportosíthatók: 4
5 Digitális összehasonlító áramkör A komparátor áramkör funkciója a bemenetére adott számok összehasonlítása. Ha csak egyenlőséget jelez, akkor egyenlőség komparátornak (identity comparator) nevezzük. Ha az áramkör azt is jelzi, hogy az A szám nagyobb, vagy kisebb, mint a B szám, akkor magnitúdó komparátornak (magnitude comparator) hívjuk. Az egyenlőség vizsgálata az egyszerűbb feladat, XNOR (ekvivalencia) kapukkal könnyen megvalósítható. Y = (A 0 B 0 ) (A 1 B 1 ) (A 2 B 2 ) (A 3 B 3 ) Lásd: identity_comparator.circ mintapélda Logisim-hez 5
6 Egyenlőség komparátor A nyolcas kapcsolósor első fele az A i, a másik fele pedig a B i bemeneteket állítja be. A LED akkor világít, ha az Y kimenet 1 állapotban van (egyezés). 6
7 1-bites magnitúdó komparátor Az 1 bites alapegység kapcsolása és igazságtáblázata. Itt az X(N)OR kapcsolás eredeti, alapműveletekkel megvalósított kapcsolásához nyúltunk vissza, hogy a részeredményekhez is hozzáférhessünk. A felhasznált kapuk így többszörösen kihasználtak A B A < B A = B A > B
8 4-bites magnitúdó komparátor Az A > B feltétel vizsgálatánál ha a legmagasabb helyiértéken egyezés van, akkor az eggyel alacsonyabb helyiértékű bit dönt. Ha ott is egyezés van, akkor a még alacsonyabb helyiértékű bit dönt, és így tovább. Kis kiegészítéssel az áramkör könnyen bővíthető, melynek segítségével 8 vagy több bites összehasonlítókat is kialakíthatunk. 8
9 8-bites magnitúdó komparátor A 4063 logikai IC olyan 4-bites magnitúdó komparátort tartalmaz, ami áthozat bemeneteket is tartalmaz, tehát kaszkádba köthető. A legelső komparátor kaszkádosító bemeneteit úgy kell beállítani, mintha egy előző komparátor egyenlőséget jelezne. Az alábbi ábrán egy 8-bites összehasonlító kapcsolása látható, amit két 4063 IC-vel építhetünk meg. A megépítéshez az en.f-alpha.net/electronics/digitalelectronics/digital-comparator/lets-go/experiment-8-8-bit-magnitude-comparator/ oldalon találunk útmutatót. Kimenetek 9
10 Bináris dekódolók A bináris dekódoló olyan kombinációs logikai áramkör, ami az n bemenetre érkező bináris információt m 2 n egyedi kimenő jellé alakítja. Tipikus alkalmazásai: cím- és utasításdekódolól, kijelző vezérlő dekódoló (pl. BCD -> 7 szegmens dekódoló). Az inverter (NEM kapu) például 1 bites bináris dekódolónak tekinthető. Általánosságban az n bitről m kimenetre dekódoló áramkör m darab mintermet (a bemeneti változókból vagy azok komplemenséből képzett szorzatok) valósít meg. Példa: 2 bitről 4 vonalra dekódoló áramkör A B Q0 Q1 Q2 Q
11 Negált kimenetű bináris dekódolók Némelyik dekódoló NAND (Nem-ÉS) áramkörökkel valósítják meg, ilyenkor a kimenetek aktív állapota alacsony szint (0). Egyidejűleg legfeljebb egy kimenet lehet aktív. Ha a kapubemenetek számát bővítjük, akkor egy engedélyező jelet is bevezethetünk. Az alábbi kapcsolásban az engedélyező jel is alacsony szintű jelre aktiválja a dekódolót. Az ábrán láthatóhoz hasonló áramkör a 74LS138 TTL IC (3 bitről 8 vonalra dekódoló). 11
12 ISA buszos mérőkártya részlet A 74LS138 bináris dekódoló itt a periféria cím A1, A2, A3 bitjeit dekódolja az IOW vezérlő jellel szinkronban, s ad 8 különféle vezérlő jelet a címzés szerint. desca.atomki.hu/spmi 12
13 ISA buszos mérőkártya vezérlő parancsai Az előző oldalon kiemelt 74LS138 IC az itt bekeretezett utasításokat dekódolja. Link: desca.atomki.hu/spmi 13
14 CD4028: BCD decimális dekódoló Lásd: decoder4-10.circ Mintaáramkör Logosim-hez 14
15 Kombinációs logikai áramkörök megvalósítása dekódolókkal Minden kombinációs logikai hálózat felírható a bemenetek ponált vagy negált állapotai szorzatának összegeként (kanonikus alak), a bináris dekódoló pedig éppen ezen szorzatokat állítja elő, így egyetlen külső VAGY kapu hozzáadásával tetszés szerinti kombinációs logikai áramkört megépíthetünk. (A NAND kapukkal megvalósított negált kimenetű dekódereket pedig a De Morgan szabály szerint külső NAND kapuval kell kiegészíteni.) Példa: teljes összeadó Az eredeti kapcsolás Az új megvalósítás Sorsz
16 Kódoló áramkörök (encoders) A kódoló áramkör feladata a fordítottja a dekódolónak, plédául 2 n bemenő vonal állapotának megfelelően kiad egy n bites bináris kódot a kimenetén. Egy egyszerű példa a 8 bemenetet hárombites bináris számmá alakító kódoló, melynek az igazságtáblázata alább látható. A kimenetek az alábbi formulák szerint egy-egy négybemenetű VAGY áramkörrel egyszerűen megépíthetőek. Ennek az áramkörnek azonban komoly hátrányai vannak: Egyszerre csak egy bemenet lehet aktív, különben hamis kódot kapunk. Ha egyik bemenet sem aktív, ugyanúgy 000 kódot kapunk, mint amikor a D 0 bemenet aktív. A következő példánál gondot fordítunk majd ezen hátrányok kiküszöbölésére. 16
17 Prioritás kódoló A prioritás kódoló több aktív bemenet esetén csak a legmagasabb prioritásút veszi figyelembe. A prioritás előre behuzalozott, a bemenetek sorszámától függ. A tétlen állapot megkülönböztetésére (amikor egyik bemenet sem aktív) egy külön jelet is előállítunk, ami azt jelzi, hogy van-e aktív bemenet. A mikroprocesszoros buszon beérkező megszakítási kérelmek priorizálására is használtak ilyen áramköröket. Az alábbi példában egy 4 bemenetű prioritás kódolót mutatunk be. Lásd: priority_encoder.circ mintaáramkör Logisim-hez 17
18 Multiplexerek A multiplexer olyan kombinációs logikai áramkör, ami több bemenet egyikéről a bináris információt a kimenetre irányítja át. A kiválasztás az úgynevezett kiválasztó bemenetek beállításával történik, s 2 n bemenet estén n darab kiválasztó bemenő jel szükséges, melyek bináris kombinációja kiválaszt egy adatbemenetet. Az alábbi ábrákon egy 2 bemenetű és egy 4 bemenetű multiplexert mutatunk be. Blokkvázlat A mikrovezérlő adatlapokban találkozhatunk ilyen jelöléssel. 18
19 Alkalmazás: Logikai függvény megvalósítása multiplexerrel Egy n változós logikai függvényt egy n-1 bemenetválasztós multiplexerrel is megépíthetünk. Például: (F oszlopában az 1., 2., 6. és 7. sorokban áll egyes). A bemenetválasztók x és y lesznek, a négy bemenetre pedig az igazságtáblázat alapján z, z, 0 és 1 kötendő. Vegyük észre, hogy az F oszlopban két-két soronként nézve a függvény értéke vagy megegyezik z-vel, vagy ellentétes vele, vagy csupa nulla, vagy csupa 1-es, más lehetőség nincs. 19
20 Analóg multiplexerek 4051 CMOS Single 8-Channel Analog Multiplexer/Demultiplexer with Logic-Level Conversion 4052 CMOS Differential 4-Channel Analog Multiplexer/Demultiplexer with Logic-Level Conversion 4053 CMOS Triple 2-Channel Analog Multiplexer/Demultiplexer with Logic-Level Conversion A kiválasztás digitális, a csatorna viszont analóg jeleket visz át
21 Analóg multiplexer alkalmazása Digitálisan változtatható erősítés. Link: 21
22 CD4511: 7-szegmens dekóder A 7-szegmes dekóder feladata az, hogy a bemenetekre kapcsolt bináris (BCD) kód függvényében a hétszegmenses kijelző egyes Szegmenseinek állapotát meghatározza. Alkalmazási példa: NEMO KAT120B számkijelző panel 22
23 A 4000-es sorozat tipikus tagjai 4001 CMOS Quad 2-Input NOR Gate 4011 CMOS Quad 2-Input NAND Gate 4013 CMOS Dual D-Type Flip Flop 4017 CMOS Decade Counter with 10 Decoded Outputs 4021 CMOS 8-Stage Static Shift Register 4022 CMOS Octal Counter with 8 Decoded Outputs 4023 CMOS Triple 3-Input NAND Gate 4025 CMOS Triple 3-Input NOR Gate 4026 CMOS Decade Counter/Divider with Decoded 7-Segment Display Outputs and Display Enable 4027 CMOS Dual J-K Master-Slave Flip-Flop 4028 CMOS BCD-to-Decimal or Binary-to-Octal Decoders/Drivers 4043 CMOS Quad NOR R/S Latch with 3-State Outputs 4046 CMOS Micropower Phase-Locked Loop 4049 CMOS Hex Inverting Buffer/Converter 4050 CMOS Hex Non-Inverting Buffer/Converter 4051 CMOS Single 8-Channel Analog Multiplexer/Demultiplexer with Logic-Level Conversion 4052 CMOS Differential 4-Channel Analog Multiplexer/Demultiplexer with Logic-Level Conversion 4053 CMOS Triple 2-Channel Analog Multiplexer/Demultiplexer with Logic-Level Conversion 4060 CMOS 14-Stage Ripple-Carry Binary Counter/Divider and Oscillator 4066 CMOS Quad Bilateral Switch 4069 CMOS Hex Inverter 4070 CMOS Quad Exclusive-OR Gate 4071 CMOS Quad 2-Input OR Gate 4072 CMOS Dual 4-Input OR Gate 4073 CMOS Triple 3-Input AND Gate 4075 CMOS Triple 3-Input OR Gate 4081 CMOS Quad 2-Input AND Gate 4082 CMOS Dual 4-Input AND Gate 4093 CMOS Quad 2-Input NAND Schmitt Triggers 4094 CMOS 8-Stage Shift-and-Store Bus Register 23
24 A 4000-es sorozat tipikus tagjai 24
25 A 4000-es sorozat tipikus tagjai 25
26 A 4000-es sorozat tipikus tagjai
Hobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek
Hobbi Elektronika A digitális elektronika alapjai: További logikai műveletek 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL, 5th.
Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog
Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész
Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész
Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 4. rész
Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 4. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
Hobbi Elektronika. Bevezetés az elektronikába: Boole algebra, logikai kapuáramkörök
Hobbi Elektronika Bevezetés az elektronikába: Boole algebra, logikai kapuáramkörök 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
Dr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
Kombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
Hobbi Elektronika. Bevezetés az elektronikába: Boole algebra, logikai kifejezések
Hobbi Elektronika Bevezetés az elektronikába: Boole algebra, logikai kifejezések 1 Felhasznált anyagok Mészáros Miklós: Logikai algebra alapjai, logikai függvények I. BME FKE: Logikai áramkörök Electronics-course.com:
Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István
Kombinációs áramkörök modelezése Laborgyakorlat Dr. Oniga István Funkcionális kombinációs egységek A következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
DIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016
Programozás és digitális technika II. Logikai áramkörök Pógár István pogari@eng.unideb.hu Debrecen, 2016 Gyakorlatok célja 1. Digitális tervezés alapfogalmainak megismerése 2. A legelterjedtebb FPGA-k
EB134 Komplex digitális áramkörök vizsgálata
EB34 Komplex digitális áramkörök vizsgálata BINÁRIS ASZINKRON SZÁMLÁLÓK A méréshez szükséges műszerek, eszközök: - EB34 oktatókártya - db oszcilloszkóp (6 csatornás) - db függvénygenerátor Célkitűzés A
Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?
Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök
Hobbi Elektronika Bevezetés az elektronikába: Logikai kapuáramkörök 1 Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja BME FKE: Logikai áramkörök Colin Mitchell: 200 Transistor
DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS
DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti
Digitális Technika II.
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika II. (VEMIVI2112D) 1. hét Digitális tervezés: Kombinációs hálózatok építőelemei Előadó: Dr. Vassányi István vassanyi@almos.vein.hu
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:
Vegyes témakörök. A KAT120B kijelző vezérlése Arduinoval
Vegyes témakörök A KAT120B kijelző vezérlése Arduinoval 1 KAT120B hívószám kijelző A KAT120B kijelző a NEMO-Q International AB egy régi terméke. A cég ma is fogalmaz különféle hívószám kijelzőket bankok,
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
SZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. DE TTK v.0.1 (2007.03.13.) 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;
SZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.03.13.) 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Dr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István
IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
LOGIKAI TERVEZÉS PROGRAMOZHATÓ. Elő Előadó: Dr. Oniga István
LOGIKI TERVEZÉS PROGRMOZHTÓ ÁRMKÖRÖKKEL Elő Előadó: Dr. Oniga István Funkcionális kombinációs ió egységek következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,
Digitális technika (VIMIAA02) Laboratórium 2
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 2 Fehér Béla Raikovich Tamás,
DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés
Bevezetés az elektronikába
Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:
Példa:
Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika
Digitális Technika 2. Logikai Kapuk és Boolean Algebra
Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.
DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL
DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint Kutatók éjszakája 2016. szeptember 30. Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1
Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 2. Laboratóriumi gyakorlat gyakorlat célja: oolean algebra - sszociativitás tétel - Disztributivitás tétel - bszorpciós tétel - De
6. LOGIKAI ÁRAMKÖRÖK
6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.
LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István
LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN Dr. Oniga István 1. Ismerkedés az ISE fejlesztőrendszerrel és a LOGSYS kártyával 2. Első projekt (Rajz) egyszerű logikai kapuk 3. Második projekt (Verilog) egyszerű
Digitális technika - Ellenőrző feladatok
igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális
Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.
Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok
F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától
Digitális technika kidolgozott tételek
Digitális technika kidolgozott tételek 1. digit jel, kódok Analóg jel: általában lineáris egységek dolgozzák fel, időben folyamatos, valamilyen függvénnyel leírhatóak. Jellemzői: egyenszint átvitel, jel-zaj
DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2)
DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 1. ELİADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. ELİADÁS 1. Általános bevezetés az 1. félév anyagához. 2. Bevezetés
3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK
3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek
2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához
XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput
LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István
LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi
DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III
22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited
Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár
Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.
6. LOGIKAI ÁRAMKÖRÖK
6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti
11.2. A FESZÜLTSÉGLOGIKA
11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy
Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.
4. KOMBINÁCIÓS HÁLÓZATOK. A tananyag célja: kombinációs típusú hálózatok analízise és szintézise.
. KOMBINÁCIÓS HÁLÓZATOK A tananyag célja: kombinációs típusú hálózatok analízise és szintézise. Elméleti ismeretanyag: Dr. Ajtonyi István: Digitális rendszerek I. 2., 5., 5.2. fejezetek Elméleti áttekintés..
Máté: Számítógép architektúrák
Kívánalom: sok kapu kevés láb Kombinációs áramkörök efiníció: kimeneteket egyértelműen meghatározzák a pillanatnyi bemenetek Multiplexer: n vezérlő bemenet, 2 n adatbemenet, kimenet z egyik adatbemenet
Digitális technika házi feladat III. Megoldások
IV. Szinkron hálózatok Digitális technika házi feladat III. Megoldások 1. Adja meg az alábbi állapottáblával megadott 3 kimenetű sorrendi hálózat minimális állapotgráfját! a b/x1x c/x0x b d/xxx e/x0x c
Standard cellás tervezés
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Standard cellás tervezés A tanszéken rendelkezésre álló CENSORED technológia bemutatás és esettanulmány Figyelmeztetés! Ez
Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta
Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Elektronikus Eszközök Tanszék Mai témák Transzfer kapu Kombinációs logikai elemek különböző CMOS megvalósításokkal Meghajtó áramkörök
I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)
I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,
DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2
DIGITÁLIS THNIK I Dr. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet. LİDÁS. LİDÁS. Kódátalakítások: bináris/gray, bináris/d. Multiplexerek és demultiplexerek. Komparátorok. Kódok: hibajelzés
Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Irányítástechnika Elıadás. A logikai hálózatok építıelemei
Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök
A + B = B + A, A + ( B + C ) = ( A + B ) + C.
6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az
Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika
Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 3. Laboratóriumi gyakorlat A gyakorlat célja: Négy változós AND, OR, XOR és NOR függvények realizálása Szimulátor használata ciklussal
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
Hobbi Elektronika. A digitális elektronika alapjai: Újrakonfigurálható logikai eszközök
Hobbi Elektronika A digitális elektronika alapjai: Újrakonfigurálható logikai eszközök 1 Programozható logikai eszközök Programozható logikai áramkörök (Programmable Logic Devices) a kombinációs logikai
Bevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l :
Bevezetés Forrás: http://e-oktat.pmmf.hu/digtech1 Jelen jegyzet a Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Karán folyó Műszaki Informatika képzés Robotirányítási rendszerek I-II. tantárgyaihoz
IRÁNYÍTÁSTECHNIKA I.
IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos
Laborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István
Laborgyakorlat 3 A modul ellenőrzése szimulációval Dr. Oniga István Szimuláció és verifikáció Szimulációs lehetőségek Start Ellenőrzés után Viselkedési Funkcionális Fordítás után Leképezés után Időzítési
Előadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat vesszük sorra. Elsőként arra térünk ki, hogy a logikai értékek
Hardver leíró nyelvek (HDL)
Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
Újrakonfigurálható eszközök
Újrakonfigurálható eszközök 5. A Verilog sűrűjében: véges állapotgépek Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom és segédanyagok Icarus Verilog Simulator:
1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE
. EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének
MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása
Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások
Ellenőrző mérés mintafeladatok Mérés laboratórium 1., 2011 őszi félév
Ellenőrző mérés mintafeladatok Mérés laboratórium 1., 2011 őszi félév (2011-11-27) Az ellenőrző mérésen az alábbiakhoz hasonló feladatokat kapnak a hallgatók (nem feltétlenül ugyanazeket). Logikai analizátor
DIGITÁLIS TECHNIKA II
IGIÁLIS ECHNIA II r Lovassy Rita r Pődör Bálint Óbudai Egyetem V Mikroelektronikai és echnológia Intézet 3 ELŐAÁS 3 ELŐAÁS ELEMI SORRENI HÁLÓZAO: FLIP-FLOPO (2 RÉSZ) 2 AZ ELŐAÁS ÉS A ANANYAG Az előadások