DIGITÁLIS TECHNIKA I

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DIGITÁLIS TECHNIKA I"

Átírás

1 DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 10. ELŐADÁS 1

2 PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE A D 1 C 1 1 B Három négyes és két kettes hurok jelölhető ki. Pl. a felső sorbeli négyes hurok (a peremeken ellentétesnek kell venni a változókat!) (A + B) Maxtermek: a mintermeket tartalmazó K táblából a 0-t tartalmazó cellákat tekintjük, és a peremen a változókat 2 komplementáljuk!

3 LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK F = A B + B D + A C D + A C D + B C F = (A+B)(B+D)(A+C+D)(A+C+D)(B+C) Természetesen ugyanez olvasható ki a Karnaugh táblázatból is. 3

4 Kódok, kódolás: alapfogalmak 4

5 Code (m) Kód Kód KÓD - francia szó, eredeti szűkebb értelme a rejtjellel kapcsolatos. - információ kifejezésének, közlésének, megjelenítésének egyik formája. - információt hordozó szimbólumok, - szimbólumokból felépített szavak, - szimbólumok és szavak összekapcsolási szabályai. Kód - előírás, mely egyazon információ két ábrázolási formája közötti kapcsolatot adja meg. A hozzárendelésnek nem kell feltétlenül egyértelműen megfordíthatónak lennie. 5

6 SZIMBÓLUMKÉSZLET Azon elemi jelek összessége melyeket a kódolásra felhasználhatunk. Pl. tízes számrendszer (a mennyiségi információ egyik kódja): - tíz darab számjegy, - tizedesvessző, - előjel, - szóköz. Pl. bináris kód a digitális technikában: - csak két szimbólum, 0 és 1. 6

7 KÓDSZÓ, KÓDVEKTOR A szimbólumkészletből alkotott sorozat. Definiálni kell az egyes jelek összekapcsolási, illetve az egyes szavak megkülönböztetésének szabályait. Kétértékű (bináris) kód: az alkotóelem a bit. A kódszavak különböző hosszúságúak lehetnek. 7

8 KÓDSZÓ KÉSZLET Egy rendszerben használt kódszavak összessége. Pl. egy beszélt nyelvben a használt összes szó. A használt szavak a megengedett, az értelmetlen szavak a tiltott kódszavak. Pl. szokásos BCD kód: 0111 megengedett, 1011 tiltott kódszó (tetrád, illetve pszeudotetrád). 8

9 SZÓHOSSZÚSÁG A kódszóban lévő szimbólumok száma. Fix és változó szóhosszúságú rendszerek. Pl. az emberek személyi számai vagy adószámai fix szóhosszúságú, szokásos neveik pedig változó szóhosszúságú kódszavak. 9

10 BINÁRIS ÉS NEM BINÁRIS KÓDOK Bináris kód két elemű szimbólumkészlet. Nem bináris kód többelemű szimbólumkészlet. Gyakorlati megvalósíthatóság: kétállapotú elemek előnyös tulajdonságai bináris kód. 10

11 KÓDSZAVAK MAXIMÁLIS SZÁMA Adott kódban a megkülönböztethető kódszavak maximális száma a szóhosszúságtól és a jelkészlet nagyságától függ. Bináris kód: n kódszavak hossza, akkor 2 n. Pl. n = 8, ekkor 256 kódszó lehet. Lehetőségek: természetes számok (egyenes kód); előjeles számok -128-től +127-ig (2-es komplemens kód); 11

12 HAMMING TÁVOLSÁG Két azonos szóhosszúságú kódszó HAMMING távolságát (D) úgy számítjuk ki, hogy a két kódszó azonos helyén álló elemeit összehasonlítjuk és megszámláljuk, hogy hány helyen áll különböző bit. A kódszókészlet HAMMING távolsága: a kódszó készletelemei közötti legkisebb Hamming távolság. 12

13 KÓDOLT INFORMÁCIÓ TOVÁBBÍTÁSA Soros átvitel Párhuzamos átvitel Vegyes üzemmód 13

14 ADATÁTVITEL Kódolt információ átvitele: többféle üzemmódban lehet - soros, - párhuzamos, - vegyes. Soros átvitel: csatornák száma kicsi, adatátvitel ideje nagy. Párhuzamos átvitel: egyidejűleg több csatornán. Vegyes üzemmód: a két átvitelfajta valamilyen kombinációja. Az adó és vevőoldali berendezések bonyolultabbak, és költségesebbek. 14

15 KÓDOK HIBAVÉDELMI KÉPESSÉGE Adatforrás Átvivő közeg Zaj, zavar Rendeltetési hely Általánosságban k 2 ³ m + k -1 m információs bithez k ellenőrző bit szükséges 15

16 HIBAFELISMERŐ ÉS HIBAJAVÍTÓ KÓDOK Legegyszerűbb hibafelismerési eljárás: paritásbit átvitele Két lehetőség Kód Paritásbit páros paritás páratlan paritás

17 PÁROS PARITÁSBIT GENERÁLÁS A B C D F X X X X X X Egy F(A,B,C,D) logikai függvény 4-bites BCD karaktereket egészít ki páros paritás bittel. Készítsen logikai hálózatot a megvalósításra. 4 ( ) ( ) ( ) ( ) FA,B,C,D = å 1,2,4,7,

18 PÁROS PARITÁSBIT GENERÁLÁS C 1 1 A 1 X X 1 X X B 1 X X D 18

19 PÁROS PARITÁSBIT GENERÁLÁS C F = A Å B Å C Å D 1 1 A 1 X X 1 X X B =1 =1 =1 1 X X D 19

20 HIBAJAVÍTÁS ADÓ JEL BITEK VEVŐ PARITÁS GEN. PARITÁS BIT PARITÁS VIZSG. PARITÁS HIBA JELZŐ A hibajavítást blokkrendszerű adatátvitel esetén SOR és OSZLOP paritás ellenőrzésével is elvégezhetjük. Ily módon egyetlen hiba a hibás sor és oszlop metszéspontjában van, így a hiba értékcserével javítható 20

21 NUMERIKUS ÉS ALFANUMERIKUS KÓDOK Információk két nagy csoportja: - csak számot tartalmazó, numerikus, - számokat és betűket tartalmazó, alfanumerikus. Pl. numerikus kódokra: - tiszta bináris kód, 1-es és 2-es komplemens kód, - binárisan kódolt decimális (BCD) számjegy kódok, - egyéb bináris kódok, pl. Gray kód. Pl. alfanumerikus kódokra: - telex kód (5 bites) - ASCII (American Standard Code for Information Exchange, 8 bites) 21

22 AZ ÁBRÁZOLANDÓ SZÁM ÉRTÉKÉN ALAPULÓ KÓDOK Fő szempont a műveletek minél egyszerűbb elvégzése - Bináris aritmetikához igazodó kód kell Előjeles számok ábrázolása - Ne legyen szükség külön kivonás műveletre Racionális számok ábrázolása - Pontosság - Nagyságrend 22

23 DECIMÁLIS SZÁMJEGYEK BINÁRIS KÓDOLÁSA Információ ábrázolás és feldolgozás: tiszta bináris (és 1-es, valamint 2-es komplemens) kód. Adat be- és kivitel: tízes számrendszer. 10-es számrendszer egyes számjegyei (a 10 szimbólum, 0, 1,... 9) kifejezése bináris kóddal: binárisan kódolt decimális kód Binary Coded Decimal (BCD) 23

24 TETRÁD KÓDOK TÍPUSAI ÉS ALGORITMUSAI Súlyozott (helyi értékes ) kódok - normál (természetes) BCD kód, Aiken kód, stb. Súlyozatlan kódok - Stibitz (3 többletes) kód, Glixon kód és rokon egylépéses kódok, stb. Tetrád kód: a4a3a2a1 ai = 0,1 Súlyok: s4s3s2s1 Decimális számjegy értéke: d = a4s4 +a3s3 + a2s3 +a1s1 24

25 SÚLYOZOTT TETRÁD KÓDOK A legfontosabb súlyozott tetrád kódok súlyozásai: normál v. természetes BCD kód (Aiken kód) Aiken kód esek számát minimalizáló kód

26 AIKEN KÓD - 4,2,2,1 v. 2,4,2,1 helyértékek - Többféle hozzárendelés lehetséges - Aritmetika: kivonás helyett 9-es komplemens +1 hozzáadása d = 4a 4 + 2a 3 + 2a 2 +1a 0 Tetrádok indexei: 0,1,2,3,6,9,12,13,14,15 26

27 AIKEN-IRODALMI ÁTTEKINTÉS ben H. H. Aiken összefoglalta azokat a mérnöki elveket, melyek alapján - felhasználva a lyukkártya-gépeket, az automatikus telefonközpontok jelfogóit és kapcsoló szerkezeteit - felépíthető a automatikus számítógép augusztusában bemutatták a Harvard Egyetemen az Automatic Sequence Controlled Calculatort -Működési sebessége: 2 szám összeadása 0.3 s, szorzása 6 s, osztása kb. 15 s -72 db huszonháromjegyű szám (+előjel) tárolására vállalkozott -Az adatokat lyukkártyáról, az utasításokat a villanyzongoránál használatoshoz hasonló, 24-csatornás lyukszalagról vitték be. 27

28 15,5 m hosszú és 2,5 m magas gép tömege kg volt, 800 ezer alkatrészből és 800 km hosszúságú vezetékből állt. (Technikatörténet )

29 STIBITZ - IRODALMI ÁTTEKINTÉS A Bell Telefon Laboratórium munkatársa jelfogókból egy olyan gépet tervezett, amely automatikusan átalakította a komplex számokkal történő számítások logikai műveleteit júliusában, a másikat február univerzális gép építése A normál tizes helyett biquinary kódot használt (mint a japán szoroban). Ebben minden számot 7 jelfogó tárolt. Ebből öt a közötti jegyeket, kettő a 0 és az 5 jegyeket képviselte. Mivel minden számot két jelfogó ábrázolt, lehetővé tette a hibaellenőrzést. Másik sajátosság, hogy minden számot lebegőpontosan ábrázolt. Sebessége: összeadás 300 ms, szorzás 1 s, osztás 2.2 s, négyzetgyökvonás 4.3 s.

30 Önkomplemens kódok, pl.: Excess-3 30

31 KÜLÖNFÉLE KÓDOK 31

32 SÚLYOZOTT BCD KÓDOK 32

33 3-TÖBBLETES (EXCESS-3, STIBITZ) KÓD Előfeszített súlyozott kód d = 8a 4 + 4a 3 + 2a 2 +1a A 3-mal nagyobb szám BCD kódja - Önkomplemens kód - Aritmetika: az ötödik biten jelzi az átvitelt, viszont az eredményt korrigálni kell Tetrádok indexei: 3,4,5,6,7,8,9,10,11,12, 33

34 NEM SÚLYOZOTT BCD KÓDOK 34

35 EGYLÉPÉSES KÓDOK, GRAY-KÓD A Gray-kód olyan kód, amivel a kvantált mintát digitálisan kifejezve, a szomszédos kvantálási szinteket képviselő kódszavak egymástól csak egy bitjükben különböznek. A Gray-kódot minimális változású kód. A Gray-kód speciális esete az ún. egylépéses kódoknak. A Gray-kód 2n számú n-bites bites kódszavak olyan sorrendben, hogy bármelyik két szomszédos kódszó csak egyetlen bitben különbözik. Ez áll az első és utolsó kódszóra is (ciklikusság). Alkalmazás: méréstechnika, lineáris vagy szöghelyzet érzékelése és kódolása (pozíció-kódolás). A műszeriparban és az automatizálásban a legelterjedtebb egylépéses kód ( reflected binary : tükrözött bináris) kód 35

36 4-BITES GRAY KÓD A KARNAUGH TÁBLÁN A Gray kód képzési szabálya 4-biten 36

37 MÁS EGYLÉPÉSES KÓDOK Sok más, hasonló tulajdonságú (egylépéses) kód ismeretes. Pl. Glixon-kód, tetrád kódszavak, sorrendjük 0000 (0) 0001 (1) 0011 (2) 0010 (3) 0110 (4) 0111 (5) 0101 (6) 0100 (7) 1100 (8) 1000 (9) 37

38 KÓDÁTALAKÍTÓ HÁLÓZATOK, KÓDVÁLTÓK, DEKÓDEREK 38

39 KÓDOLÁS ÉS DEKÓDOLÁS ABC1 ABC2 ABC2 ABC1 Kódoló Dekódoló Bár a a kódolás és dekódolás egymással felcserélhető, a gyakorlatban kódolás ha a szokásosabb, vagy eleve adott ABC a kiindulási alap, és dekódolás a fordított eset. Pl. 10-es számrendszer Þ 2-es rendszer - kódolás 2-es számrendszer Þ 10-es rendszer - dekódolás 39

40 A kódolás az a művelet, amikor valamilyen információhalmazt egy rögzített, kölcsönösen megfeleltető, egyértelmű szabályrendszer szerint egy másik információhalmazra leképezünk, pl.: decimális számrendszerbeli számokat kell binárisan megjeleníteni. A dekódolás a kódolás fordított művelete. INFORMÁCIÓFORRÁS KÓDOLÓ CSATORNAILLESZTŐ DEKÓDOLÓ INFORMÁCIÓ NYELŐCSATORNA

41 KÓDÁTALAKÍTÓ HÁLÓZATOK, KÓDVÁLTÓK, DEKÓDEREK A digitális technikában gyakran van szükség különböző kódrendszerek közötti átalakításra, kódváltásra. A kódátalakító hálózatok lényegében több bemeneti és kimeneti ponttal rendelkező kombinációs hálózatok. Megvalósíthatók egyedi logikai kapukból a kombinációs hálózatok megvalósítása ismert eljárásai szerint. Sok esetben célszerűbb a memóriaelemeken alapuló megvalósítás. 41

42 KÓDÁTALAKÍTÓK Kódátalakítókra akkor van szükség, ha az adatforrás és a nyelő kódrendszere nem egyezik meg. Pl.: Helyzet érzékelő Gray Bináris Bináris NBCD Gray

43 EGYSZERŰ PÉLDA: 3-BITES BIN/GRAY ÁTALAKÍTÁS Dec Bin Gray Bin/Gray átalakítás: - Gray első bitje azonos a bináris kód 1. (MSB) bitjével, - a második bit a bináris szám 1. és 2. bitjének KIZÁRÓ-VAGY függvénye, - a harmadik bit a bináris kód 2. és 3. bitjének KIZÁRÓ-VAGY függvénye, - és így tovább. 43

44 BINÁRIS/GRAY ÉS GRAY/BINÁRIS KONVERZIÓ ALGORITMUSAI Bináris: b3b2b1b0 Gray: g3g2g1g0 Bináris Gray Gray Bináris g3 = b3 b3 = g3 g2 = b3 Å b2 b2 = g3 Å g2 g1 = b2 Å b1 b1 = g3 Å g2 Å g1 = b2 Å g1 g0 = b1 Å b0 b0 = g3 Å g2 Å g1 Å g0 = stb. Bináris Gray: Gray Bináris: gi = bi+1 Å bi bi = bi+1 Å gi 44

45 BINÁRIS/GRAY KONVERZIÓ Bináris Gray

46 BINÁRIS/GRAY KÓDÁTALAKÍTÓ 0 b3 0 g3 1 b2 =1 1 g2 1 b1 =1 0 g1 1 b0 =1 0 g0 46

47 FUNKCIONÁLIS ELEMEK I

48 FUNKCIONÁLIS ELEMEK Funkcionális elemek a digitális rendszerek építőkövei 48

49 FUNKCIONÁLIS ELEMEK Kombinációs funkcionális elemek Sorrendi funkcionális elemek Memória elemek Kombinációs funkcionális elemek XOR Kódoló (encoder) Dekódoló (decoder) Multiplexer (MUX) Demultiplexer (DEMUX) Komparátor Aritmetikai elemek (fél-és teljes összeadó, stb.) 49

50 TERVEZÉS KAPUÁRAMKÖRÖKKEL A logikai hálózatok tervezésének és realizálásának hagyományos módszere a kapuáramkörök alkalmazásán alapul. Korszerűbb változata a programozható logikai elemeken (PLD) alapul, de ma már egyre inkább alkalmazzák az ún. FPGA (Field Programmable Gate Array) eszközöket. Ezek kapu- illetve tranzisztor szintű elemeket tartalmaznak, a chip felületén többnyire egyenletes elhelyezett konfigurálható logikai blokkokban, melyet hierarchikus huzalozási erőforrások egészítenek ki. Sokszor azonban előnyösen alkalmazható a funkcionális elemek felhasználását is alapul vevő tervezési eljárás. 50

51 FUNKCIONÁLIS ELEMEK: INTEGRÁLT ÁRAMKÖRÖK OSZTÁLYOZÁSA A legfontosabb funkcionális áramkörök készen rendelkezésre állnak mint ún. közepes integráltságú áramkörök (medium scale integrated (MSI) circuits). Integrált áramkörök osztályozása komplexitás (integráltsági fok) szerint: SSI Small Scale Integration: kb. 10 alacsony szintű elem (kapu) MSI Medium Scale Integration: LSI Large Scale Integration: VLSI Very Large Scale Integration: > ULSI Ultra Large Scale Integration: > GLSI Giga Large Scale Integration: > RLSI Ridiculously (?) Large Scale Integration : >

52 DEKÓDOLÓ (DECODER) ÁRAMKÖR Kódolt információ dekódolása (konverzió) Egyidőben-egyszerre csak egy logikai kimeneti változó (tehát a dekódolt) lehet igaz, a többi hamis! 2 N kimenet dekódolásához N bemenet kell! Gyakran alkalmazott eszköz, kapható 2-, 3-, 4-, bemenetű IC formájában 52

53 1 AZ N KÖZÜL DEKÓDOLÓK Kombinációs áramkör: n bemenete és m kimenete van. A bemeneti kombinációk lehetséges száma 2 n, a kimenetek száma pedig m 2 n. A kimenetek közül mindig csak az egyik 1 és az összes többi 0, vagy fordítva, az egyik 0 és a többi 1. Az n-bites bináris bemeneti kóddal kiválaszt egyet az m kimeneti vonal közül, mely csak az adott bemeneti kód megjelenése esetén lesz aktív. Természetesen a legtöbbször MSI integrált áramkörként megvalósított hálózat tartalmazhat egyéb kényelmi vezérlő bemeneteket (pl. engedélyező) is. 53

54 N 2 N DEKÓDOLÓ LSB x 0 y 0 y 1 x 1 n-to-2 n Decoder MSB x n-1 y 2 n -1 54

55 2-to-4 Decoder 4-vonalas dekóder, kapu-szintű logikai vázlat 55

56 3-to-8 Decoder data address 8-vonalas dekóder, kapu-szintű logikai vázlat 56

57 DEKODOLÓ MEGVALÓSÍTÁSOK LSB A LSB A MSB B m 0 MSB B m 0 m 1 m 1 m 2 m 2 m 3 m 3 (a) (b) m 1 LSB A MSB B m 0 m 2 (c) m 3 57

58 C B A m 0 = CBA m 1 = CBA m 2 = CBA m 3 = CBA m 4 = CBA m 5 = CBA B C B B C A A A A A A A. m 0 m 1 m 2 m 3 m 4 m 5 m 6 8- és 16-vonalas dekóderek, kapu-szintű logikai vázlat m 6 = CBA m 7 = CBA B A (b) m 7 (a) m0 m1 m2 m3 k0 m4 m5 m6 m7 C D MSB 2-to-4 k1 k2 m8 m9 m10 m11 k3 m12 m13 m14 m15 l0 l1 l2 l3 2-to-4 (c) B A LSB 58

59 Decoder with enable: 2-to-4 Dekóder engedélyező bemenettel A kapu-szintek száma nagyobb, késleltetés megnő 59

DIGITÁLIS TECHNIKA I PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK. Kódok, kódolás: alapfogalmak

DIGITÁLIS TECHNIKA I PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK. Kódok, kódolás: alapfogalmak 206..28. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 0. ELŐDÁS PÉLD LEGEGYSZERŰ KONJUNKTÍV LK KÉPZÉSÉRE D Három négyes és két kettes

Részletesebben

DIGITÁLIS TECHNIKA I KÓD IRODALOM SZIMBÓLUMKÉSZLET KÓDOLÁS ÉS DEKÓDOLÁS

DIGITÁLIS TECHNIKA I KÓD IRODALOM SZIMBÓLUMKÉSZLET KÓDOLÁS ÉS DEKÓDOLÁS DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 7. ELİADÁS 7. ELİADÁS 1. Kódok és kódolás alapfogalmai 2. Numerikus kódok. Tiszta bináris kódok (egyenes kód, 1-es

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1

Részletesebben

DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 2

Dr. Oniga István DIGITÁLIS TECHNIKA 2 Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8

Részletesebben

DIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN

DIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 8. ELİÁS 8. ELİÁS. Kódváltók, kódoló és dekódolók 2. Egyszerő kódátalakító (kombinációs) hálózatok 3. ináris/ és /bináris

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK 5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások

Részletesebben

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök 4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

Digitális technika VIMIAA02 1. EA

Digitális technika VIMIAA02 1. EA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek

Részletesebben

Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT

Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

DIGITÁLIS TECHNIKA feladatgyűjtemény

DIGITÁLIS TECHNIKA feladatgyűjtemény IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3) DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti

Részletesebben

Kombinációs hálózatok Számok és kódok

Kombinációs hálózatok Számok és kódok Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

I+K technológiák. Számrendszerek, kódolás

I+K technológiák. Számrendszerek, kódolás I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép

Részletesebben

Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István

Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István Kombinációs áramkörök modelezése Laborgyakorlat Dr. Oniga István Funkcionális kombinációs egységek A következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,

Részletesebben

DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2

DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2 DIGITÁLIS THNIK I Dr. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet. LİDÁS. LİDÁS. Kódátalakítások: bináris/gray, bináris/d. Multiplexerek és demultiplexerek. Komparátorok. Kódok: hibajelzés

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III 22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

A Gray-kód Bináris-kóddá alakításának leírása

A Gray-kód Bináris-kóddá alakításának leírása A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül

Részletesebben

2. Fejezet : Számrendszerek

2. Fejezet : Számrendszerek 2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló

Részletesebben

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint Kutatók éjszakája 2016. szeptember 30. Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1

Részletesebben

Analóg és digitális mennyiségek

Analóg és digitális mennyiségek nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások

DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu

Részletesebben

Előadó: Nagy István (A65)

Előadó: Nagy István (A65) Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

Kombinációs hálózatok Adatszelektorok, multiplexer

Kombinációs hálózatok Adatszelektorok, multiplexer Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék

Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa

Részletesebben

26.B 26.B. Analóg és digitális mennyiségek jellemzıi

26.B 26.B. Analóg és digitális mennyiségek jellemzıi 6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2)

DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2) DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 1. ELİADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. ELİADÁS 1. Általános bevezetés az 1. félév anyagához. 2. Bevezetés

Részletesebben

Informatika érettségi vizsga

Informatika érettségi vizsga Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés

Részletesebben

Programozott soros szinkron adatátvitel

Programozott soros szinkron adatátvitel Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Összeadás BCD számokkal

Összeadás BCD számokkal Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok

Részletesebben

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA 206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,

Részletesebben

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika

Részletesebben

Digitális technika kidolgozott tételek

Digitális technika kidolgozott tételek Digitális technika kidolgozott tételek 1. digit jel, kódok Analóg jel: általában lineáris egységek dolgozzák fel, időben folyamatos, valamilyen függvénnyel leírhatóak. Jellemzői: egyenszint átvitel, jel-zaj

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök Hobbi Elektronika Bevezetés az elektronikába: Logikai kapuáramkörök 1 Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja BME FKE: Logikai áramkörök Colin Mitchell: 200 Transistor

Részletesebben

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3 Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1.

D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. Kötelezően megoldandó feladatok: A kódoláselmélet alapjai részből: 6. feladat 16. feladat A logikai függvények részből: 19. feladat

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Digitális Rendszerek (BSc)

Digitális Rendszerek (BSc) Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

Digitális Technika II.

Digitális Technika II. Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika II. (VEMIVI2112D) 1. hét Digitális tervezés: Kombinációs hálózatok építőelemei Előadó: Dr. Vassányi István vassanyi@almos.vein.hu

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 1

Digitális technika (VIMIAA02) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 1

Digitális technika (VIMIAA02) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

LOGIKAI TERVEZÉS PROGRAMOZHATÓ. Elő Előadó: Dr. Oniga István

LOGIKAI TERVEZÉS PROGRAMOZHATÓ. Elő Előadó: Dr. Oniga István LOGIKI TERVEZÉS PROGRMOZHTÓ ÁRMKÖRÖKKEL Elő Előadó: Dr. Oniga István Funkcionális kombinációs ió egységek következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Máté: Számítógép architektúrák 20100922 Programozható logikai tömbök: PLA (315 ábra) (Programmable Logic Array) 6 kimenet Ha ezt a biztosítékot kiégetjük, akkor nem jelenik meg B# az 1 es ÉS kapu bemenetén

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. DE TTK v.0.1 (2007.03.13.) 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;

Részletesebben

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.03.13.) 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;

Részletesebben

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483

Részletesebben

34-35. Kapuáramkörök működése, felépítése, gyártása

34-35. Kapuáramkörök működése, felépítése, gyártása 34-35. Kapuáramkörök működése, felépítése, gyártása I. Logikai áramkörcsaládok Diszkrét alkatrészekből épülnek fel: tranzisztorok, diódák, ellenállások Két típusa van: 1. TTL kivitelű kapuáramkörök (Tranzisztor-Tranzisztor

Részletesebben

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Digitális technika - Ellenőrző feladatok

Digitális technika - Ellenőrző feladatok igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális

Részletesebben

A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta.

A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta. Kezdetek A gyors számolás vágya egyidős a számolással. Mind az egyiptomiak mind a babilóniaiak számoló táblázatokat használtak. A helyiérték és a 10-es számrendszer egyesítése volt az első alapja a különböző

Részletesebben

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 2. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 3

Digitális technika (VIMIAA02) Laboratórium 3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,

Részletesebben

1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6

1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6 1. INFORMATIKAI ALAPFOGALMAK... 2 1.1 AZ INFORMÁCIÓ... 2 1.2 MODELLEZÉS... 2 2. HÍRKÖZLÉSI RENDSZER... 3 2.1 REDUNDANCIA... 3 2.2 TÖMÖRÍTÉS... 3 2.3 HIBAFELISMERŐ ÉS JAVÍTÓ KÓDOK... 4 2.4 KRIPTOGRÁFIA...

Részletesebben

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk 1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 3

Digitális technika (VIMIAA02) Laboratórium 3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,

Részletesebben