DIGITÁLIS TECHNIKA I
|
|
- Rezső Dobos
- 7 évvel ezelőtt
- Látták:
Átírás
1 DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 10. ELŐADÁS 1
2 PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE A D 1 C 1 1 B Három négyes és két kettes hurok jelölhető ki. Pl. a felső sorbeli négyes hurok (a peremeken ellentétesnek kell venni a változókat!) (A + B) Maxtermek: a mintermeket tartalmazó K táblából a 0-t tartalmazó cellákat tekintjük, és a peremen a változókat 2 komplementáljuk!
3 LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK F = A B + B D + A C D + A C D + B C F = (A+B)(B+D)(A+C+D)(A+C+D)(B+C) Természetesen ugyanez olvasható ki a Karnaugh táblázatból is. 3
4 Kódok, kódolás: alapfogalmak 4
5 Code (m) Kód Kód KÓD - francia szó, eredeti szűkebb értelme a rejtjellel kapcsolatos. - információ kifejezésének, közlésének, megjelenítésének egyik formája. - információt hordozó szimbólumok, - szimbólumokból felépített szavak, - szimbólumok és szavak összekapcsolási szabályai. Kód - előírás, mely egyazon információ két ábrázolási formája közötti kapcsolatot adja meg. A hozzárendelésnek nem kell feltétlenül egyértelműen megfordíthatónak lennie. 5
6 SZIMBÓLUMKÉSZLET Azon elemi jelek összessége melyeket a kódolásra felhasználhatunk. Pl. tízes számrendszer (a mennyiségi információ egyik kódja): - tíz darab számjegy, - tizedesvessző, - előjel, - szóköz. Pl. bináris kód a digitális technikában: - csak két szimbólum, 0 és 1. 6
7 KÓDSZÓ, KÓDVEKTOR A szimbólumkészletből alkotott sorozat. Definiálni kell az egyes jelek összekapcsolási, illetve az egyes szavak megkülönböztetésének szabályait. Kétértékű (bináris) kód: az alkotóelem a bit. A kódszavak különböző hosszúságúak lehetnek. 7
8 KÓDSZÓ KÉSZLET Egy rendszerben használt kódszavak összessége. Pl. egy beszélt nyelvben a használt összes szó. A használt szavak a megengedett, az értelmetlen szavak a tiltott kódszavak. Pl. szokásos BCD kód: 0111 megengedett, 1011 tiltott kódszó (tetrád, illetve pszeudotetrád). 8
9 SZÓHOSSZÚSÁG A kódszóban lévő szimbólumok száma. Fix és változó szóhosszúságú rendszerek. Pl. az emberek személyi számai vagy adószámai fix szóhosszúságú, szokásos neveik pedig változó szóhosszúságú kódszavak. 9
10 BINÁRIS ÉS NEM BINÁRIS KÓDOK Bináris kód két elemű szimbólumkészlet. Nem bináris kód többelemű szimbólumkészlet. Gyakorlati megvalósíthatóság: kétállapotú elemek előnyös tulajdonságai bináris kód. 10
11 KÓDSZAVAK MAXIMÁLIS SZÁMA Adott kódban a megkülönböztethető kódszavak maximális száma a szóhosszúságtól és a jelkészlet nagyságától függ. Bináris kód: n kódszavak hossza, akkor 2 n. Pl. n = 8, ekkor 256 kódszó lehet. Lehetőségek: természetes számok (egyenes kód); előjeles számok -128-től +127-ig (2-es komplemens kód); 11
12 HAMMING TÁVOLSÁG Két azonos szóhosszúságú kódszó HAMMING távolságát (D) úgy számítjuk ki, hogy a két kódszó azonos helyén álló elemeit összehasonlítjuk és megszámláljuk, hogy hány helyen áll különböző bit. A kódszókészlet HAMMING távolsága: a kódszó készletelemei közötti legkisebb Hamming távolság. 12
13 KÓDOLT INFORMÁCIÓ TOVÁBBÍTÁSA Soros átvitel Párhuzamos átvitel Vegyes üzemmód 13
14 ADATÁTVITEL Kódolt információ átvitele: többféle üzemmódban lehet - soros, - párhuzamos, - vegyes. Soros átvitel: csatornák száma kicsi, adatátvitel ideje nagy. Párhuzamos átvitel: egyidejűleg több csatornán. Vegyes üzemmód: a két átvitelfajta valamilyen kombinációja. Az adó és vevőoldali berendezések bonyolultabbak, és költségesebbek. 14
15 KÓDOK HIBAVÉDELMI KÉPESSÉGE Adatforrás Átvivő közeg Zaj, zavar Rendeltetési hely Általánosságban k 2 ³ m + k -1 m információs bithez k ellenőrző bit szükséges 15
16 HIBAFELISMERŐ ÉS HIBAJAVÍTÓ KÓDOK Legegyszerűbb hibafelismerési eljárás: paritásbit átvitele Két lehetőség Kód Paritásbit páros paritás páratlan paritás
17 PÁROS PARITÁSBIT GENERÁLÁS A B C D F X X X X X X Egy F(A,B,C,D) logikai függvény 4-bites BCD karaktereket egészít ki páros paritás bittel. Készítsen logikai hálózatot a megvalósításra. 4 ( ) ( ) ( ) ( ) FA,B,C,D = å 1,2,4,7,
18 PÁROS PARITÁSBIT GENERÁLÁS C 1 1 A 1 X X 1 X X B 1 X X D 18
19 PÁROS PARITÁSBIT GENERÁLÁS C F = A Å B Å C Å D 1 1 A 1 X X 1 X X B =1 =1 =1 1 X X D 19
20 HIBAJAVÍTÁS ADÓ JEL BITEK VEVŐ PARITÁS GEN. PARITÁS BIT PARITÁS VIZSG. PARITÁS HIBA JELZŐ A hibajavítást blokkrendszerű adatátvitel esetén SOR és OSZLOP paritás ellenőrzésével is elvégezhetjük. Ily módon egyetlen hiba a hibás sor és oszlop metszéspontjában van, így a hiba értékcserével javítható 20
21 NUMERIKUS ÉS ALFANUMERIKUS KÓDOK Információk két nagy csoportja: - csak számot tartalmazó, numerikus, - számokat és betűket tartalmazó, alfanumerikus. Pl. numerikus kódokra: - tiszta bináris kód, 1-es és 2-es komplemens kód, - binárisan kódolt decimális (BCD) számjegy kódok, - egyéb bináris kódok, pl. Gray kód. Pl. alfanumerikus kódokra: - telex kód (5 bites) - ASCII (American Standard Code for Information Exchange, 8 bites) 21
22 AZ ÁBRÁZOLANDÓ SZÁM ÉRTÉKÉN ALAPULÓ KÓDOK Fő szempont a műveletek minél egyszerűbb elvégzése - Bináris aritmetikához igazodó kód kell Előjeles számok ábrázolása - Ne legyen szükség külön kivonás műveletre Racionális számok ábrázolása - Pontosság - Nagyságrend 22
23 DECIMÁLIS SZÁMJEGYEK BINÁRIS KÓDOLÁSA Információ ábrázolás és feldolgozás: tiszta bináris (és 1-es, valamint 2-es komplemens) kód. Adat be- és kivitel: tízes számrendszer. 10-es számrendszer egyes számjegyei (a 10 szimbólum, 0, 1,... 9) kifejezése bináris kóddal: binárisan kódolt decimális kód Binary Coded Decimal (BCD) 23
24 TETRÁD KÓDOK TÍPUSAI ÉS ALGORITMUSAI Súlyozott (helyi értékes ) kódok - normál (természetes) BCD kód, Aiken kód, stb. Súlyozatlan kódok - Stibitz (3 többletes) kód, Glixon kód és rokon egylépéses kódok, stb. Tetrád kód: a4a3a2a1 ai = 0,1 Súlyok: s4s3s2s1 Decimális számjegy értéke: d = a4s4 +a3s3 + a2s3 +a1s1 24
25 SÚLYOZOTT TETRÁD KÓDOK A legfontosabb súlyozott tetrád kódok súlyozásai: normál v. természetes BCD kód (Aiken kód) Aiken kód esek számát minimalizáló kód
26 AIKEN KÓD - 4,2,2,1 v. 2,4,2,1 helyértékek - Többféle hozzárendelés lehetséges - Aritmetika: kivonás helyett 9-es komplemens +1 hozzáadása d = 4a 4 + 2a 3 + 2a 2 +1a 0 Tetrádok indexei: 0,1,2,3,6,9,12,13,14,15 26
27 AIKEN-IRODALMI ÁTTEKINTÉS ben H. H. Aiken összefoglalta azokat a mérnöki elveket, melyek alapján - felhasználva a lyukkártya-gépeket, az automatikus telefonközpontok jelfogóit és kapcsoló szerkezeteit - felépíthető a automatikus számítógép augusztusában bemutatták a Harvard Egyetemen az Automatic Sequence Controlled Calculatort -Működési sebessége: 2 szám összeadása 0.3 s, szorzása 6 s, osztása kb. 15 s -72 db huszonháromjegyű szám (+előjel) tárolására vállalkozott -Az adatokat lyukkártyáról, az utasításokat a villanyzongoránál használatoshoz hasonló, 24-csatornás lyukszalagról vitték be. 27
28 15,5 m hosszú és 2,5 m magas gép tömege kg volt, 800 ezer alkatrészből és 800 km hosszúságú vezetékből állt. (Technikatörténet )
29 STIBITZ - IRODALMI ÁTTEKINTÉS A Bell Telefon Laboratórium munkatársa jelfogókból egy olyan gépet tervezett, amely automatikusan átalakította a komplex számokkal történő számítások logikai műveleteit júliusában, a másikat február univerzális gép építése A normál tizes helyett biquinary kódot használt (mint a japán szoroban). Ebben minden számot 7 jelfogó tárolt. Ebből öt a közötti jegyeket, kettő a 0 és az 5 jegyeket képviselte. Mivel minden számot két jelfogó ábrázolt, lehetővé tette a hibaellenőrzést. Másik sajátosság, hogy minden számot lebegőpontosan ábrázolt. Sebessége: összeadás 300 ms, szorzás 1 s, osztás 2.2 s, négyzetgyökvonás 4.3 s.
30 Önkomplemens kódok, pl.: Excess-3 30
31 KÜLÖNFÉLE KÓDOK 31
32 SÚLYOZOTT BCD KÓDOK 32
33 3-TÖBBLETES (EXCESS-3, STIBITZ) KÓD Előfeszített súlyozott kód d = 8a 4 + 4a 3 + 2a 2 +1a A 3-mal nagyobb szám BCD kódja - Önkomplemens kód - Aritmetika: az ötödik biten jelzi az átvitelt, viszont az eredményt korrigálni kell Tetrádok indexei: 3,4,5,6,7,8,9,10,11,12, 33
34 NEM SÚLYOZOTT BCD KÓDOK 34
35 EGYLÉPÉSES KÓDOK, GRAY-KÓD A Gray-kód olyan kód, amivel a kvantált mintát digitálisan kifejezve, a szomszédos kvantálási szinteket képviselő kódszavak egymástól csak egy bitjükben különböznek. A Gray-kódot minimális változású kód. A Gray-kód speciális esete az ún. egylépéses kódoknak. A Gray-kód 2n számú n-bites bites kódszavak olyan sorrendben, hogy bármelyik két szomszédos kódszó csak egyetlen bitben különbözik. Ez áll az első és utolsó kódszóra is (ciklikusság). Alkalmazás: méréstechnika, lineáris vagy szöghelyzet érzékelése és kódolása (pozíció-kódolás). A műszeriparban és az automatizálásban a legelterjedtebb egylépéses kód ( reflected binary : tükrözött bináris) kód 35
36 4-BITES GRAY KÓD A KARNAUGH TÁBLÁN A Gray kód képzési szabálya 4-biten 36
37 MÁS EGYLÉPÉSES KÓDOK Sok más, hasonló tulajdonságú (egylépéses) kód ismeretes. Pl. Glixon-kód, tetrád kódszavak, sorrendjük 0000 (0) 0001 (1) 0011 (2) 0010 (3) 0110 (4) 0111 (5) 0101 (6) 0100 (7) 1100 (8) 1000 (9) 37
38 KÓDÁTALAKÍTÓ HÁLÓZATOK, KÓDVÁLTÓK, DEKÓDEREK 38
39 KÓDOLÁS ÉS DEKÓDOLÁS ABC1 ABC2 ABC2 ABC1 Kódoló Dekódoló Bár a a kódolás és dekódolás egymással felcserélhető, a gyakorlatban kódolás ha a szokásosabb, vagy eleve adott ABC a kiindulási alap, és dekódolás a fordított eset. Pl. 10-es számrendszer Þ 2-es rendszer - kódolás 2-es számrendszer Þ 10-es rendszer - dekódolás 39
40 A kódolás az a művelet, amikor valamilyen információhalmazt egy rögzített, kölcsönösen megfeleltető, egyértelmű szabályrendszer szerint egy másik információhalmazra leképezünk, pl.: decimális számrendszerbeli számokat kell binárisan megjeleníteni. A dekódolás a kódolás fordított művelete. INFORMÁCIÓFORRÁS KÓDOLÓ CSATORNAILLESZTŐ DEKÓDOLÓ INFORMÁCIÓ NYELŐCSATORNA
41 KÓDÁTALAKÍTÓ HÁLÓZATOK, KÓDVÁLTÓK, DEKÓDEREK A digitális technikában gyakran van szükség különböző kódrendszerek közötti átalakításra, kódváltásra. A kódátalakító hálózatok lényegében több bemeneti és kimeneti ponttal rendelkező kombinációs hálózatok. Megvalósíthatók egyedi logikai kapukból a kombinációs hálózatok megvalósítása ismert eljárásai szerint. Sok esetben célszerűbb a memóriaelemeken alapuló megvalósítás. 41
42 KÓDÁTALAKÍTÓK Kódátalakítókra akkor van szükség, ha az adatforrás és a nyelő kódrendszere nem egyezik meg. Pl.: Helyzet érzékelő Gray Bináris Bináris NBCD Gray
43 EGYSZERŰ PÉLDA: 3-BITES BIN/GRAY ÁTALAKÍTÁS Dec Bin Gray Bin/Gray átalakítás: - Gray első bitje azonos a bináris kód 1. (MSB) bitjével, - a második bit a bináris szám 1. és 2. bitjének KIZÁRÓ-VAGY függvénye, - a harmadik bit a bináris kód 2. és 3. bitjének KIZÁRÓ-VAGY függvénye, - és így tovább. 43
44 BINÁRIS/GRAY ÉS GRAY/BINÁRIS KONVERZIÓ ALGORITMUSAI Bináris: b3b2b1b0 Gray: g3g2g1g0 Bináris Gray Gray Bináris g3 = b3 b3 = g3 g2 = b3 Å b2 b2 = g3 Å g2 g1 = b2 Å b1 b1 = g3 Å g2 Å g1 = b2 Å g1 g0 = b1 Å b0 b0 = g3 Å g2 Å g1 Å g0 = stb. Bináris Gray: Gray Bináris: gi = bi+1 Å bi bi = bi+1 Å gi 44
45 BINÁRIS/GRAY KONVERZIÓ Bináris Gray
46 BINÁRIS/GRAY KÓDÁTALAKÍTÓ 0 b3 0 g3 1 b2 =1 1 g2 1 b1 =1 0 g1 1 b0 =1 0 g0 46
47 FUNKCIONÁLIS ELEMEK I
48 FUNKCIONÁLIS ELEMEK Funkcionális elemek a digitális rendszerek építőkövei 48
49 FUNKCIONÁLIS ELEMEK Kombinációs funkcionális elemek Sorrendi funkcionális elemek Memória elemek Kombinációs funkcionális elemek XOR Kódoló (encoder) Dekódoló (decoder) Multiplexer (MUX) Demultiplexer (DEMUX) Komparátor Aritmetikai elemek (fél-és teljes összeadó, stb.) 49
50 TERVEZÉS KAPUÁRAMKÖRÖKKEL A logikai hálózatok tervezésének és realizálásának hagyományos módszere a kapuáramkörök alkalmazásán alapul. Korszerűbb változata a programozható logikai elemeken (PLD) alapul, de ma már egyre inkább alkalmazzák az ún. FPGA (Field Programmable Gate Array) eszközöket. Ezek kapu- illetve tranzisztor szintű elemeket tartalmaznak, a chip felületén többnyire egyenletes elhelyezett konfigurálható logikai blokkokban, melyet hierarchikus huzalozási erőforrások egészítenek ki. Sokszor azonban előnyösen alkalmazható a funkcionális elemek felhasználását is alapul vevő tervezési eljárás. 50
51 FUNKCIONÁLIS ELEMEK: INTEGRÁLT ÁRAMKÖRÖK OSZTÁLYOZÁSA A legfontosabb funkcionális áramkörök készen rendelkezésre állnak mint ún. közepes integráltságú áramkörök (medium scale integrated (MSI) circuits). Integrált áramkörök osztályozása komplexitás (integráltsági fok) szerint: SSI Small Scale Integration: kb. 10 alacsony szintű elem (kapu) MSI Medium Scale Integration: LSI Large Scale Integration: VLSI Very Large Scale Integration: > ULSI Ultra Large Scale Integration: > GLSI Giga Large Scale Integration: > RLSI Ridiculously (?) Large Scale Integration : >
52 DEKÓDOLÓ (DECODER) ÁRAMKÖR Kódolt információ dekódolása (konverzió) Egyidőben-egyszerre csak egy logikai kimeneti változó (tehát a dekódolt) lehet igaz, a többi hamis! 2 N kimenet dekódolásához N bemenet kell! Gyakran alkalmazott eszköz, kapható 2-, 3-, 4-, bemenetű IC formájában 52
53 1 AZ N KÖZÜL DEKÓDOLÓK Kombinációs áramkör: n bemenete és m kimenete van. A bemeneti kombinációk lehetséges száma 2 n, a kimenetek száma pedig m 2 n. A kimenetek közül mindig csak az egyik 1 és az összes többi 0, vagy fordítva, az egyik 0 és a többi 1. Az n-bites bináris bemeneti kóddal kiválaszt egyet az m kimeneti vonal közül, mely csak az adott bemeneti kód megjelenése esetén lesz aktív. Természetesen a legtöbbször MSI integrált áramkörként megvalósított hálózat tartalmazhat egyéb kényelmi vezérlő bemeneteket (pl. engedélyező) is. 53
54 N 2 N DEKÓDOLÓ LSB x 0 y 0 y 1 x 1 n-to-2 n Decoder MSB x n-1 y 2 n -1 54
55 2-to-4 Decoder 4-vonalas dekóder, kapu-szintű logikai vázlat 55
56 3-to-8 Decoder data address 8-vonalas dekóder, kapu-szintű logikai vázlat 56
57 DEKODOLÓ MEGVALÓSÍTÁSOK LSB A LSB A MSB B m 0 MSB B m 0 m 1 m 1 m 2 m 2 m 3 m 3 (a) (b) m 1 LSB A MSB B m 0 m 2 (c) m 3 57
58 C B A m 0 = CBA m 1 = CBA m 2 = CBA m 3 = CBA m 4 = CBA m 5 = CBA B C B B C A A A A A A A. m 0 m 1 m 2 m 3 m 4 m 5 m 6 8- és 16-vonalas dekóderek, kapu-szintű logikai vázlat m 6 = CBA m 7 = CBA B A (b) m 7 (a) m0 m1 m2 m3 k0 m4 m5 m6 m7 C D MSB 2-to-4 k1 k2 m8 m9 m10 m11 k3 m12 m13 m14 m15 l0 l1 l2 l3 2-to-4 (c) B A LSB 58
59 Decoder with enable: 2-to-4 Dekóder engedélyező bemenettel A kapu-szintek száma nagyobb, késleltetés megnő 59
DIGITÁLIS TECHNIKA I PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK. Kódok, kódolás: alapfogalmak
206..28. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 0. ELŐDÁS PÉLD LEGEGYSZERŰ KONJUNKTÍV LK KÉPZÉSÉRE D Három négyes és két kettes
RészletesebbenDIGITÁLIS TECHNIKA I KÓD IRODALOM SZIMBÓLUMKÉSZLET KÓDOLÁS ÉS DEKÓDOLÁS
DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 7. ELİADÁS 7. ELİADÁS 1. Kódok és kódolás alapfogalmai 2. Numerikus kódok. Tiszta bináris kódok (egyenes kód, 1-es
RészletesebbenDIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
RészletesebbenDIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
RészletesebbenDr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
RészletesebbenDIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN
IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 8. ELİÁS 8. ELİÁS. Kódváltók, kódoló és dekódolók 2. Egyszerő kódátalakító (kombinációs) hálózatok 3. ináris/ és /bináris
RészletesebbenDIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
Részletesebben1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
RészletesebbenDIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
Részletesebben3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
RészletesebbenMáté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
Részletesebben5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások
Részletesebben4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
Részletesebben5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
RészletesebbenMáté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
RészletesebbenDigitális technika VIMIAA02 1. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek
RészletesebbenDigitális technika VIMIAA02 1. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
RészletesebbenDIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
RészletesebbenDr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
RészletesebbenDIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)
DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
RészletesebbenDIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS
DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti
RészletesebbenKombinációs hálózatok Számok és kódok
Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
RészletesebbenI+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
RészletesebbenKombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István
Kombinációs áramkörök modelezése Laborgyakorlat Dr. Oniga István Funkcionális kombinációs egységek A következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,
RészletesebbenDIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2
DIGITÁLIS THNIK I Dr. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet. LİDÁS. LİDÁS. Kódátalakítások: bináris/gray, bináris/d. Multiplexerek és demultiplexerek. Komparátorok. Kódok: hibajelzés
Részletesebben4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
RészletesebbenBevezetés a számítástechnikába
Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.
RészletesebbenDigitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
RészletesebbenBevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
RészletesebbenDIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III
22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited
RészletesebbenTARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
RészletesebbenA Gray-kód Bináris-kóddá alakításának leírása
A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül
Részletesebben2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
RészletesebbenDigitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
RészletesebbenDIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL
DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint Kutatók éjszakája 2016. szeptember 30. Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1
RészletesebbenAnalóg és digitális mennyiségek
nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű
RészletesebbenThe Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
RészletesebbenDIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
RészletesebbenElőadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
RészletesebbenAssembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
RészletesebbenKombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
RészletesebbenGépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve
RészletesebbenLogikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
RészletesebbenSZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
RészletesebbenAdattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa
Részletesebben26.B 26.B. Analóg és digitális mennyiségek jellemzıi
6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!
RészletesebbenInformatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant
RészletesebbenInformatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László
RészletesebbenDIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2)
DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 1. ELİADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. ELİADÁS 1. Általános bevezetés az 1. félév anyagához. 2. Bevezetés
RészletesebbenInformatika érettségi vizsga
Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés
RészletesebbenProgramozott soros szinkron adatátvitel
Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.
RészletesebbenAz Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
RészletesebbenÖsszeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
RészletesebbenDIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA
206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,
RészletesebbenBevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika
RészletesebbenDigitális technika kidolgozott tételek
Digitális technika kidolgozott tételek 1. digit jel, kódok Analóg jel: általában lineáris egységek dolgozzák fel, időben folyamatos, valamilyen függvénnyel leírhatóak. Jellemzői: egyenszint átvitel, jel-zaj
RészletesebbenHobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök
Hobbi Elektronika Bevezetés az elektronikába: Logikai kapuáramkörök 1 Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja BME FKE: Logikai áramkörök Colin Mitchell: 200 Transistor
RészletesebbenElőadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
RészletesebbenSegédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
RészletesebbenD I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1.
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. Kötelezően megoldandó feladatok: A kódoláselmélet alapjai részből: 6. feladat 16. feladat A logikai függvények részből: 19. feladat
RészletesebbenDigitális jelfeldolgozás
Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés
RészletesebbenDigitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
RészletesebbenDigitális Technika II.
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika II. (VEMIVI2112D) 1. hét Digitális tervezés: Kombinációs hálózatok építőelemei Előadó: Dr. Vassányi István vassanyi@almos.vein.hu
Részletesebben3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
RészletesebbenMegoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai
Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
RészletesebbenÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA
1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk
RészletesebbenLOGIKAI TERVEZÉS PROGRAMOZHATÓ. Elő Előadó: Dr. Oniga István
LOGIKI TERVEZÉS PROGRMOZHTÓ ÁRMKÖRÖKKEL Elő Előadó: Dr. Oniga István Funkcionális kombinációs ió egységek következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,
RészletesebbenBevezetés az elektronikába
Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:
Részletesebben3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
RészletesebbenBevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
RészletesebbenMáté: Számítógép architektúrák
Máté: Számítógép architektúrák 20100922 Programozható logikai tömbök: PLA (315 ábra) (Programmable Logic Array) 6 kimenet Ha ezt a biztosítékot kiégetjük, akkor nem jelenik meg B# az 1 es ÉS kapu bemenetén
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti
RészletesebbenBevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
RészletesebbenHobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog
Részletesebben13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem
1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,
RészletesebbenSZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. DE TTK v.0.1 (2007.03.13.) 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;
RészletesebbenSZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.03.13.) 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;
RészletesebbenGyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék
Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483
Részletesebben34-35. Kapuáramkörök működése, felépítése, gyártása
34-35. Kapuáramkörök működése, felépítése, gyártása I. Logikai áramkörcsaládok Diszkrét alkatrészekből épülnek fel: tranzisztorok, diódák, ellenállások Két típusa van: 1. TTL kivitelű kapuáramkörök (Tranzisztor-Tranzisztor
RészletesebbenDigitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton
Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika
RészletesebbenAlapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök
RészletesebbenKÓDOLÁSTECHNIKA PZH. 2006. december 18.
KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)
RészletesebbenDigitális technika - Ellenőrző feladatok
igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális
RészletesebbenA fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta.
Kezdetek A gyors számolás vágya egyidős a számolással. Mind az egyiptomiak mind a babilóniaiak számoló táblázatokat használtak. A helyiérték és a 10-es számrendszer egyesítése volt az első alapja a különböző
Részletesebben10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.
Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
RészletesebbenBevezetés az informatikába
Bevezetés az informatikába 2. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Részletesebben1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6
1. INFORMATIKAI ALAPFOGALMAK... 2 1.1 AZ INFORMÁCIÓ... 2 1.2 MODELLEZÉS... 2 2. HÍRKÖZLÉSI RENDSZER... 3 2.1 REDUNDANCIA... 3 2.2 TÖMÖRÍTÉS... 3 2.3 HIBAFELISMERŐ ÉS JAVÍTÓ KÓDOK... 4 2.4 KRIPTOGRÁFIA...
RészletesebbenA továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Részletesebben