ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA
|
|
- Dezső Ákos Rácz
- 8 évvel ezelőtt
- Látták:
Átírás
1 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk egy vonalat a jobb oldala mellé. Osszuk el a számot 2-vel (a számrendszer alapjával), az eredményt (a hányadost) írjuk a felírt szám alá, a maradékot pedig (0 vagy 1) írjuk a vonal másik oldalára. Ezt mindaddig ismételjük, amíg az osztás folyamán a keletkező hányados 0 nem lesz. Ekkor a vonal jobb oldalán lévő számokat alulról felfelé írjuk egymás mellé, és már meg is kaptuk a decimális szám bináris alakját: b. Nyolcas (oktális) számrendszerbe: A legegyszerűbb átváltani tízes számrendszerből nyolcasba az, ha előbb tízesesből átváltunk kettes számrendszerbe, majd kettesből váltunk nyolcasba. 1. lépés: Tízesből kettesbe (lásd: 1.a pont) 2. lépés: A kettesből nyolcas számrendszerbe történő átváltáskor a számjegyeket a legalacsonyabb helyiértéktől hármasával csoportosítjuk (ha kevesebb számjegy van, kibővíthetjük 0-val a legmagasabb helyiértékeken), és átírjuk a nyolcas számrendszer számjegyeire. Azért hármasával csoportosítunk, mert a nyolc a kettőnek a 3. hatványa. Ahol nullák szerepelnek a kettes számrendszerbeli számban, azokat nem vesszük figyelembe (általában áthúzzuk). Példa: Az nyolcas számrendszerbeli értéke: Tehát a bináris alakja: c. Tizenhatos (hexadecimális) számrendszerbe: A legegyszerűbb átváltani tízes számrendszerből nyolcasba az, ha előbb tízesből átváltunk kettes számrendszerbe, majd kettesből váltunk tizenhatosba. 1. lépés: Tízesből kettesbe (lásd: 1.a pont) 2. lépés: A kettesből tizenhatos számrendszerbe történő átváltáskor a számjegyeket a legalacsonyabb helyiértéktől négyesével csoportosítjuk (ha kevesebb számjegy van, kibővíthetjük 0- val a legmagasabb helyiértékeken), és átírjuk a tizenhatos számrendszer számjegyeire. Azért négyesével csoportosítunk, mert a tizenhat a kettőnek a 4. hatványa. Ahol nullák szerepelnek a 2-es számrendszerbeli számban, azokat nem vesszük figyelembe (általában áthúzzuk). Példa: Nézzük az számot! A E Tehát a hexadecimális számrendszerbeli alakja: 2AE 16.
2 2. Kettes (bináris) számrendszerből a. Tízes (decimális) számrendszerbe: Kettes számrendszerből tízesbe úgy váltunk, hogy a kettes számrendszerbeli szám legkisebb helyiértékétől kezdve felírjuk a kettő hatványait 2 0 -tól, egészen addig, amíg a szám tart. A nullákat lehúzzuk, majd a maradék értékeket kiszámolva összeadjuk őket: Pl: Tehát a szám tizes számrendszerbeli alakja: = b. Nyolcas (oktális) számrendszerbe: Lásd: 1.b pont 2. lépése c. Tizenhatos (hexadecimális) számrendszerbe: Lásd: 1.c pont 2. lépése 3. Nyolcas (oktális) számrendszerből: a. Kettes (bináris) számrendszerbe: Példa: A 8-as számrendszerbeli számot úgy lehet kettesbe átváltani, hogy felírjuk a nyolcas számrendszerbeli szám számjegyeit három helyiértékből álló kettes számrendszerbeli alakjukban, majd ábrázolási sorrendjükben egymás után írjuk. A három számjegyből ki kell választani, melyik(ek) összegeként írható fel az adott szám. A legfelső helyiértékről a kezdő nullák elhagyhatóak Tehát az kettes számrendszerbeli alakja: b. Tízes (decimális) számrendszerbe: Nyolcas számrendszerből tízes számrendszerbe a legegyszerűbb, ha kettes számrendszeren keresztül számolunk. Tehát a nyolcas számrendszerbeli számot átváltjuk kettesbe, majd abból tízesbe váltunk. 1. lépés: nyolcasból kettesbe: lásd: 3.a pont 2. lépés: kettesből tízesbe: lásd: 2.a pont c. Tizenhatos (hexadecimális) számrendszerbe: Nyolcas számrendszerből tizenhatos számrendszerbe a legegyszerűbb, ha kettes számrendszeren keresztül számolunk. Tehát a nyolcas számrendszerbeli számot átváltjuk kettesbe, majd abból tizenhatosba váltunk. 1. lépés: nyolcasból kettesbe: lásd: 3.a pont 2. lépés: kettesből tizenhatosba: lásd: 1.c pont 2. lépése 4. Tizenhatos (hexadecimális) számrendszerből a. Kettes (bináris) számrendszerbe Példa: F3A 16 A tizenhatos számrendszerbeli számot úgy lehet kettesbe átváltani, hogy felírjuk a tizenhatos számrendszerbeli szám számjegyeit négy helyiértékből álló kettes számrendszerbeli alakjukban, majd ábrázolási sorrendjükben egymás után írjuk. A négy számjegyből ki kell választani,
3 melyik/melyek összegeként írható fel az adott szám. A legfelső helyiértékről a kezdő nullák elhagyhatóak. F (=15) 3 A (=10) Tehát az F3A 16 kettes számrendszerbeli alakja: b. Tízes (decimális) számrendszerbe Tizenhatos számrendszerből tízes számrendszerbe a legegyszerűbb, ha kettes számrendszeren keresztül számolunk. Tehát a tizenhatos számrendszerbeli számot átváltjuk kettesbe, majd abból tízesbe váltunk. 1. lépés: tizenhatosból kettesbe: lásd: 4.a pont 2. lépés: kettesből tízesbe: lásd: 2.a pont c. Nyolcas (oktális) számrendszerbe Tizenhatos számrendszerből nyolcas számrendszerbe a legegyszerűbb, ha kettes számrendszeren keresztül számolunk. Tehát a tizenhatos számrendszerbeli számot átváltjuk kettesbe, majd abból nyolcasba váltunk. 1. lépés: tizenhatosból kettesbe: lásd: 4.a pont 2. lépés: kettesből nyolcasba: lásd: 1.b pont 2. lépése Összeadás és kivonás kettes számrendszerben Az összeadás gyakorlatilag ugyanúgy működik, mint a tízes számrendszer esetében, csak kevesebb számjeggyel. Az összeadás szabályai a következők: Két egyes esetén az összeg 0, és a következő helyiértékre továbbviszünk egy egyest. Így előfordulhat, hogy 3 egyes kerül összeadásra, aminek az eredménye 1, és ismét továbbviszünk egy 1-est. Példa: A félkövérrel jelölt oszlopokban az összeadást elvégezve tovább kell vinni egy egyest a következő helyiértékre. A szám elején továbbvitel miatt még egy egyest le kell írni az eredmény elejére, de mivel 8 biten dolgozunk, ez túlcsordulásnak számít, így át kell húzni. Kivonás: A kivonást kettes számrendszerben összeadásra vezetjük vissza. Ez úgy tesszük meg, hogy a kivonandó számot negatívvá alakítjuk. A negatívvá alakítást kettes komplemens képzésével végezzük. Ez annyit tesz, hogy az adott szám számjegyeit az ellenkezőjére váltjuk (ahol egyes volt, oda 0-át, ahol nulla volt, oda 1-est írunk), majd a kettes számrendszerbeli összeadásra vonatkozó szabállyal hozzáadunk egyet. Ha ezzel megkaptuk a negatív számot, akkor ezt már csak hozzá kell adni az eredetihez.
4 Példa: A kivonás elvégzéséhez a kivonandó (második) számot negatívvá alakítjuk át kettes komplemens képzésével: Kiindulási szám: Számjegyek megfordítva: Hozzáadva egyet: + 1 Kettes komplemens: Így már csak ezt a végeredmény kell hozzáadni az eredeti számhoz ( ): És ezzel meg is kaptuk a végeredményt Lebegőpontos számábrázolás kettes számrendszerben A lebegőpontos számábrázolás valós, azaz tört számok ábrázolására készült. Kettes számrendszerben azonban az egészrész és a törtrész között nem tizedesvessző, hanem úgynevezett kettedespont áll, ami gyakorlatilag egy kettőspont. Az átváltás menete a következő: 1. A kettes számrendszerbeli számot felírjuk normál alakban. Nézzünk példát mindkét esetre a következő két számmal: 1. szám: 10110: , 2.szám: 0: A bináris pontot addig toljuk, míg az első értékes (1) helyiértékjegy elé nem ér. A normál alak kettes számrendszerben mindig 0:-tal kezdődik, majd utána jön megszakítás nélkül az adott szám az első értékes (1-es) helyiértéktől. Utána, mivel kettes számrendszerben vagyunk, meg kell szorozni a leírt számot 2-nek annyiadik hatványával, amennyivel arrébb kellett vinni a kettedespontot az első 1-esig. Ez az első esetben 5, a másodikban 3. Mivel azonban kettes számrendszerben vagyunk, át kell írni ezeket a számokat is kettes számrendszerbelibe (5 = 101, 3 = 11). Emellett a kitevő lehet pozitív vagy negatív. Ez attól függ, merre vittük a kettedespontot, hogy az első egyes elé érjünk. Ha balra, akkor pozitív, ha jobbra, akkor negatív : =0: * vagy 0: =0,101101* A számrendszer alapszáma rögzített, így azt nem szükséges tárolni, valamint mivel mindegyik szám 0:-tal kezdődik, így azt sem. Ezeket lehúzva kapjuk a lebegőpontos alakot úgy, hogy leírjuk a 0: utáni számot, majd pozitív kievőnél 1-et, negatívnál 0-át írunk utána, és végül leírjuk a kitevőben szereplő számot: , illetve
5 Boole-algebrai feladatok megoldása Szükséges előismeret: a logikai műveletek igazságtáblái (igaz = 1, hamis = 0) (Összefoglalva: negáció (not): ítélet értékét ellenkezőjére váltja konjunkció (and): csak akkor igaz, ha mindkét ítélet igaz diszjunkció (or): csak akkor hamis, ha mindkét állítás hamis kizáró vagy (xor): akkor igaz, ha pontosan az egyik állítás igaz impliláció (imp): akkor hamis, amikor az első állítás igaz, a második hamis) A műveletek megoldásánál a művelei sorrend sem mindegy. A legmagasabb szintű művelet a not, majd a zárójeles kifejezések, végül pedig a többi művelet ugyanazon a szinten áll. Feladat: Mi a végeredménye a következő logikai műveletsorozatnak: (not A or B) imp (A and not B) xor (not A imp not B) Kiinduló táblázat: A B Első lépésként először az első zárójelet vizsgáljuk meg, mert a zárójeles kifejezéseket kell először megjeleníteni. A zárójelben szerepel egy negáció, azaz not művelet, és mivel ez a legmagasabb rendű, ezt kell először elvégezni: A B not A Ebben az esetben az A értékeit az ellenkezőjükre kell váltani minden sorban Ahol eredetileg 0 az érték, ott 1-re, ahol 1, ott pedig 0-ra váltunk. (Érdemes figyelni arra, hogy mindig a megfelelő ítéletet nézzük (itt most az A szolgál kiindulásként). Ettől kezdve a dőlt oszlopok jelölik azt, amit a művelet megoldásához nézni kell, a félkövér számok pedig az eredmények. Ezek után el kell végezni a zárójeles kifejezést: A B not A not A or B Ez a kiindulási táblázat mindig ugyanaz, a feladat megkezdésekor meg van adva. Mivel A és B ítéletek csak igaz vagy hamis értékeket vehetnek fel, így összesen 4 variációt lehet kirakni ebből a kettőből. Sorrendben: A hamis B hamis, A hamis B igaz, A igaz B hamis és A igaz B igaz. A következő lépés a második zárójel megoldása, amelyben szintén szerepel egy not művelet, amit ismét előre kell venni. Ezután az A és a not B oszlopokat nézve meg kell oldani az and műveletet (csak akkor igaz, ha mindkét ítélet igaz). A B not A not A or B not B A B not A not A or B not B A and not B Itt a két oszlop, amit a művelethez nézni kell, az a not A-s és a B-s. A művelet az or, azaz a vagy, amely esetben csak akkor hamis a művelet értéke, ahol mindkét ítélet hamis, a többi esetben igaz.
6 Miután ez elkészült, a két zárójeles kifejezés között kell elvégezni az imp műveletet. Ez az egyetlen olyan művelet, ahol nem mindegy, melyik oszlop értékeit nézzük először, és melyiket másodszor, mivel az eredmény akkor lesz hamis, ha az ELSŐ ítélet igaz és a MÁSODIK hamis. A B not A not A or B (elsőként) not B A and not B (másodikként) (not A or B) imp (A and not B) A következő lépés a harmadik zárójel kiszámítása, amihez szükség van a not A és not B értékekre, amiket már előzőleg kiszámoltunk, így nem kell újra megoldani, egyből rátérhetünk az imp műveletre, ügyelve a sorrendre. A B not A (elsőként) not A or B not B (másodikként) A and not B (not A or B) imp (A and not B) not A imp not B Az utolsó lépés, hogy az (első két zárójelből előállított) hosszú kifejezésünk ((not A or B) imp (A and not B)) és a harmadik zárójeles kifejezés között elvégezzük a xor műveletet (ami akkor igaz, ha pontosan az egyik ítélet igaz). Mivel a hosszú kifejezés nem fér ki, ezért kif1-fel rövidíthető. A B not A not A or B not B A and not B kif1 not A imp not B kif1 xor (not A imp not B) Az utolsó oszlopban megkaptuk az eredményt.
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
RészletesebbenSZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
RészletesebbenSZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
RészletesebbenAssembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
RészletesebbenSegédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
RészletesebbenBevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
RészletesebbenBevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
RészletesebbenKedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.
Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással
RészletesebbenProgramozás II. Segédlet az első dolgozathoz
Programozás II. Segédlet az első dolgozathoz 1 Tartalomjegyzék 1. Bevezető 4 2. Számrendszerek közötti átváltások 5 2.1 Tízes számrendszerből tetszőleges számrendszerbe................. 5 2.1.1 Példa.....................................
RészletesebbenLEBEGŐPONTOS SZÁMÁBRÁZOLÁS
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli
RészletesebbenSzámrendszerek. Bináris, hexadecimális
Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk
RészletesebbenDr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
Részletesebben3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
RészletesebbenFixpontos és lebegőpontos DSP Számrendszerek
Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos
RészletesebbenA feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.
Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk,
Részletesebben10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.
Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív
RészletesebbenMáté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
Részletesebben5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél
5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris
Részletesebben2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
RészletesebbenS z á m í t á s t e c h n i k a i a l a p i s m e r e t e k
S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k T a r t a l o m Mintafeladatok... 4 Számrendszerek, logikai mőveletek... 4 Gyakorló feladatok... 19 Számrendszerek, logikai mőveletek... 19 Megoldások...
Részletesebben(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek
Egész számok ábrázolása (jegyzet) Bérci Norbert 2015. szeptember 10-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 1 1.2. Alaki- és
Részletesebben4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
RészletesebbenSzámrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat.
Számrendszerek A római számok írására csak hét jelt használtak Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat Római számjegyek I V X L C D M E számok értéke 1 5 10
RészletesebbenThe Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
RészletesebbenHatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Részletesebben2019/02/11 10:01 1/10 Logika
2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát
RészletesebbenA számrendszerekrl általában
A számrendszerekrl általában Készítette: Dávid András A számrendszerekrl általában Miért foglalkozunk vele? (Emlékeztet) A mai számítógépek többsége Neumann-elv. Neumann János a következ elveket fektette
RészletesebbenInformatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant
Részletesebben1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció
1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága
Részletesebben3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
RészletesebbenMáté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
RészletesebbenI+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
RészletesebbenDIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.
26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben
RészletesebbenHardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.
Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény
Részletesebben3. óra Számrendszerek-Szg. történet
3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1
RészletesebbenBevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
RészletesebbenPélda:
Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika
RészletesebbenIT - Alapismeretek. Feladatgyűjtemény
IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program
Részletesebben1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?
1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?
RészletesebbenA programozás alapjai előadás. A C nyelv típusai. Egész típusok. C típusok. Előjeles egészek kettes komplemens kódú ábrázolása
A programozás alapjai 1 A C nyelv típusai 4. előadás Híradástechnikai Tanszék C típusok -void - skalár: - aritmetikai: - egész: - eger - karakter - felsorolás - lebegőpontos - mutató - függvény - union
RészletesebbenMechatronika Modul 1: Alapismeretek
Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus
Részletesebben5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Részletesebben7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
RészletesebbenJelátalakítás és kódolás
Jelátalakítás és kódolás Információ, adat, kódolás Az információ valamely jelenségre vonatkozó értelmes közlés, amely új ismereteket szolgáltat az információ felhasználójának. Valójában információnak tekinthető
RészletesebbenAritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
RészletesebbenBizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.
Bizonyítási módszerek - megoldások 1. Igazoljuk, hogy menden természetes szám esetén ha (a) 9 n 3 n (b) 4 n 2 n (c) 21 n 3 n (d) 21 n 7 n (e) 5 n 25 n (f) 4 n 16 n (g) 15 n (3 n 5 n) 9 n n = 9k = 3 3k
Részletesebben5. Fejezet : Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Részletesebben1. Halmazok, számhalmazok, alapműveletek
1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza
RészletesebbenKnoch László: Információelmélet LOGIKA
Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke
RészletesebbenNegatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
RészletesebbenSzámrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva:
. Elméleti alapok Számrendszerek.. A kettes számrendszerről Számlálás közben mi tízesével csoportosítunk (valószínűleg azért, mert ujjunk van). Ezt a számírásunk is követi. A helyiértékek: egy, tíz, száz
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Részletesebben(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték...
Számábrázolás és karakterkódolás (jegyzet) Bérci Norbert 2014. szeptember 15-16-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 2 1.2.
RészletesebbenAmit a törtekről tudni kell Minimum követelményszint
Amit a törtekről tudni kell Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat írtunk.
RészletesebbenHajnal Péter. Bolyai Intézet, TTIK, SZTE, Szeged április 8.
Fibonacci- számok és tányérok Hajnal Péter Bolyai Intézet, TTIK, SZTE, Szeged 2017. április 8. A Fibonacci-sorozat A Fibonacci-sorozat Rekurzív definíció F 0 = 0, F 1 = 1, F n = F n 1 + F n 2. A Fibonacci-sorozat
RészletesebbenHHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
RészletesebbenAmit a törtekről tudni kell 5. osztály végéig Minimum követelményszint
Amit a törtekről tudni kell. osztály végéig Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat
RészletesebbenDigitális technika VIMIAA02 1. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
Részletesebbenb) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?
A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat
RészletesebbenA logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le "Analitika" című művében, Kr.e. IV. században.
LOGIKA A logika tudománnyá válása az ókori Görögországban kezdődött. Maga a logika szó is görög eredetű, a logosz szó jelentése: szó, fogalom, ész, szabály. Már az első tudósok, filozófusok, és politikusok
RészletesebbenEXPONENCIÁLIS EGYENLETEK
Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok
RészletesebbenDigitális technika VIMIAA02 1. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek
RészletesebbenÉrtékes jegyek fogalma és használata. Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék
Értékes jegyek fogalma és használata Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Értékes jegyek száma Az értékes jegyek számának meghatározását
RészletesebbenEgész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
RészletesebbenDIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.
6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet
RészletesebbenElemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az
RészletesebbenKészítette: Nagy Tibor István
Készítette: Nagy Tibor István Operátorok Műveletek Egy (vagy több) műveleti jellel írhatók le A műveletet operandusaikkal végzik Operátorok fajtái operandusok száma szerint: egyoperandusú operátorok (pl.:
RészletesebbenGyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék
Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483
RészletesebbenEgész számok értelmezése, összehasonlítása
Egész számok értelmezése, összehasonlítása Mindennapi életünkben jelenlevő ellentétes mennyiségek kifejezésére a természetes számok halmazát (0; 1; 2; 3; 4; 5 ) ki kellett egészítenünk. 0 +1, +2, +3 +
RészletesebbenKifejezések. Kozsik Tamás. December 11, 2016
Kifejezések Kozsik Tamás December 11, 2016 Kifejezés versus utasítás C/C++: kifejezés plusz pontosvessző: utasítás kiértékeli a kifejezést jellemzően: mellékhatása is van például: értékadás Ada: n = 5;
RészletesebbenSzámrendszerek és az informatika
Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány
RészletesebbenLINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép
Részletesebben1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
RészletesebbenDigitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
RészletesebbenA számolás története
A számolás története Tulajdonképpen az ember azóta tud számolni, hogy ember lett. Igaz, a kezdet kezdetén, az ősember még nem úgy számolt, mint ahogyan ma számolunk. De összeadni, és kivonni bizonyos határok
RészletesebbenAlapismeretek. Tanmenet
Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Történeti áttekintés 2. Számítógépes alapfogalmak 3. A számítógép felépítése, hardver A központi egység 4. Hardver
RészletesebbenKombinációs hálózatok Számok és kódok
Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az
RészletesebbenInformatika elméleti alapjai. January 17, 2014
Szám- és kódrendszerek Informatika elméleti alapjai Horváth Árpád January 17, 2014 Contents 1 Számok és ábrázolásuk Számrendszerek Helyiérték nélküliek, pl római számok (MMVIIII) Helyiértékesek a nulla
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!
Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!
RészletesebbenDigitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
RészletesebbenSzámítógépes architektúrák I. Antal Péter
Számítógépes architektúrák I. Antal Péter MÉDIAINFORMATIKAI KIADVÁNYOK Számítógépes architektúrák I. Antal Péter Eger, 2013 Korszerű információtechnológiai szakok magyarországi adaptációja TÁMOP-4.1.2-A/1-11/1-2011-0021
RészletesebbenDIGITÁLIS TECHNIKA I 6. ELİADÁS SZÁMRENDSZEREK BEVEZETİ ÁTTEKINTÉS. Római számok és rendszerük. Helyérték
DIGITÁLIS TECHNIK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet. ELİDÁS: BINÁRIS SZÁMRENDSZER. ELİDÁS. elıadás témája a digitális rendszerekben központi szerepet játszó számrendszerek
RészletesebbenANTILOP A-8200C ÉS A8200B HASZNÁLATI UTASÍTÁS
ANTILOP A-8200C ÉS A8200B HASZNÁLATI UTASÍTÁS BEVEZETÉS A számológép fedelét a képen látható módon távolítsa el, és helyezze vissza: számológépének, hogy a számításokat a megfelelő módon tudja elvégezni.
RészletesebbenC programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi
C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási
RészletesebbenMatematika 7. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály III. rész: Számelmélet Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III.
RészletesebbenI. el adás, A számítógép belseje
2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után
Részletesebben2, a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész öt tized e) Egymillió - hét.
X 000 X00 X0 X X / /0 /00 / 000 Tízezres Ezres Százas Tízes Egyes Tize. vessző Tized Század Ezred Tízezred,, 0 7 a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész
RészletesebbenTANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
RészletesebbenBEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK
BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. RÉSZ... 1 TARTALOMJEGYZÉK... 1 AZ INFORMÁCIÓ... 2 Az információ fogalma... 2 Közlemény, hír, adat, információ... 3 Az információ
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
RészletesebbenA továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
RészletesebbenAnalóg és digitális mennyiségek
nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű
RészletesebbenA Gray-kód Bináris-kóddá alakításának leírása
A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül
RészletesebbenSzámrendszerek, számábrázolás
Számrendszerek, számábrázolás Nagy Zsolt 1. Bevezetés Mindannyian, nap, mint nap használjuk a következ fogalmakat: adat, információ. Adatokkal találkozunk az utcán, a médiumokban, a boltban. Információt
Részletesebben1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor
1. előadás Adatok, számrendszerek, kódolás Dr. Kallós Gábor 2014 2015 1 Tartalom Adat, információ, kód Az információ áramlásának klasszikus modellje Számrendszerek Út a 10-es számrendszerig 10-es és 2-es
Részletesebben5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.
A pivotálás hasznáról és hatékony módjáról Adott M mátrixra pivotálás alatt a következ½ot értjük: Kijelölünk a mátrixban egy nemnulla elemet, melynek neve pivotelem, aztán az egész sort leosztjuk a pivotelemmel.
Részletesebben