Komputeralgebrai Algoritmusok
|
|
- Eszter Magyar
- 6 évvel ezelőtt
- Látták:
Átírás
1 Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék Ősz
2 Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma, l a számjegyek száma, d i {0, 1,..., B 1} a számjegyek, s az előjel.
3 Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma, l a számjegyek száma, d i {0, 1,..., B 1} a számjegyek, s az előjel. Ábrázolási módok : Fix hosszúságú tömb Előre kell rögzíteni a hosszat, memóriapazarlás
4 Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma, l a számjegyek száma, d i {0, 1,..., B 1} a számjegyek, s az előjel. Ábrázolási módok : Fix hosszúságú tömb Előre kell rögzíteni a hosszat, memóriapazarlás Dinamikus lista A pointerek tárolása nagy memóriaigényű, a feldolgozási idő hosszú
5 Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma, l a számjegyek száma, d i {0, 1,..., B 1} a számjegyek, s az előjel. Ábrázolási módok : Fix hosszúságú tömb Előre kell rögzíteni a hosszat, memóriapazarlás Dinamikus lista A pointerek tárolása nagy memóriaigényű, a feldolgozási idő hosszú Dinamikus tömb Komoly memóriamenedzselést igényel
6 Megvalósítás GMP: MAPLE, Mathematica, Singular, Axiom
7 Megvalósítás GMP: MAPLE, Mathematica, Singular, Axiom MPIR: SAGEMATH, CoCoA
8 Megvalósítás GMP: MAPLE, Mathematica, Singular, Axiom MPIR: SAGEMATH, CoCoA
9 Megvalósítás GMP: MAPLE, Mathematica, Singular, Axiom MPIR: SAGEMATH, CoCoA Megjegyzés: a szabad rendszerekben többnyire cserélhetők
10 A MAPLE egészei Dinamikus adatvektor int± n i 0 i 1... i n
11 A MAPLE egészei Dinamikus adatvektor int± n i 0 i 1... i n Kis egészek: egy szóban (C jellegű adatkezelés)
12 A MAPLE egészei Dinamikus adatvektor int± n i 0 i 1... i n Kis egészek: egy szóban (C jellegű adatkezelés) A számrendszer alapszáma:
13 Az adatabsztrakció forma szintjén eldöntendő kérdések: A) normál- vagy kanonikus reprezentáció;
14 Az adatabsztrakció forma szintjén eldöntendő kérdések: A) normál- vagy kanonikus reprezentáció; B) rekurzív vs disztributív reprezentáció;
15 Az adatabsztrakció forma szintjén eldöntendő kérdések: A) normál- vagy kanonikus reprezentáció; B) rekurzív vs disztributív reprezentáció; C) sűrű vs ritka ábrázolás;
16 Az adatabsztrakció forma szintjén eldöntendő kérdések: A) normál- vagy kanonikus reprezentáció; B) rekurzív vs disztributív reprezentáció; C) sűrű vs ritka ábrázolás; D) a zéruskitevő kérdése.
17 Megjegyzések az A) független a számítógépes ábrázolástól;
18 Megjegyzések az A) független a számítógépes ábrázolástól; rekurzív ábrázolás láncolt lista;
19 Megjegyzések az A) független a számítógépes ábrázolástól; rekurzív ábrázolás láncolt lista; disztributív tömbös;
20 Megjegyzések az A) független a számítógépes ábrázolástól; rekurzív ábrázolás láncolt lista; disztributív tömbös; a rendszerek többsége ritka ábrázolást használ;
21 Megjegyzések az A) független a számítógépes ábrázolástól; rekurzív ábrázolás láncolt lista; disztributív tömbös; a rendszerek többsége ritka ábrázolást használ; a D) nem túl lényeges.
22 Reprezentáció láncolt listával A D[x 2,..., x n ][x 1 ] tartományban kiszorzott kanonikus formát használunk, ezt rekurzíve alkalmazzuk D[x 2,..., x n ]-ben:
23 Reprezentáció láncolt listával A D[x 2,..., x n ][x 1 ] tartományban kiszorzott kanonikus formát használunk, ezt rekurzíve alkalmazzuk D[x 2,..., x n ]-ben: együttható-link exponens következő-link
24 Reprezentáció láncolt listával A D[x 2,..., x n ][x 1 ] tartományban kiszorzott kanonikus formát használunk, ezt rekurzíve alkalmazzuk D[x 2,..., x n ]-ben: együttható-link exponens következő-link Egy ilyen csúcspont egy a i x i 1 tag, ahol a i D[x 2,..., x n ];
25 Reprezentáció láncolt listával A D[x 2,..., x n ][x 1 ] tartományban kiszorzott kanonikus formát használunk, ezt rekurzíve alkalmazzuk D[x 2,..., x n ]-ben: együttható-link exponens következő-link Egy ilyen csúcspont egy a i x i 1 tag, ahol a i D[x 2,..., x n ]; ahol exponens = i, a linkek a szokásosak.
26 Reprezentáció láncolt listával A D[x 2,..., x n ][x 1 ] tartományban kiszorzott kanonikus formát használunk, ezt rekurzíve alkalmazzuk D[x 2,..., x n ]-ben: együttható-link exponens következő-link Egy ilyen csúcspont egy a i x i 1 tag, ahol a i D[x 2,..., x n ]; ahol exponens = i, a linkek a szokásosak. A MathPiper rendszer egy polinomja a ViewList parancsának kimeneteként:
27 Reprezentáció dinamikus tömbbel Többváltozós polinomot disztributív módon ábrázolunk: A polinom: típus/hossz coeff monom-link... coeff monom-link
28 Reprezentáció dinamikus tömbbel Többváltozós polinomot disztributív módon ábrázolunk: A polinom: típus/hossz coeff monom-link... coeff monom-link A monom: típus/hossz exp var... exp var
29 A klasszikus I Irányított körmentes gráf : A MAPLE-ben minden kifejezést egy reprezentál. A polinomok általában: sum expr 1 coeff 1 expr 2 coeff 2...,
30 A klasszikus I Irányított körmentes gráf : A MAPLE-ben minden kifejezést egy reprezentál. A polinomok általában: sum expr 1 coeff 1 expr 2 coeff 2..., vagyis sum = coeff 1 expr 1 + coeff 2 expr
31 A klasszikus I Irányított körmentes gráf : A MAPLE-ben minden kifejezést egy reprezentál. A polinomok általában: sum expr 1 coeff 1 expr 2 coeff 2..., vagyis sum = coeff 1 expr 1 + coeff 2 expr A fenti expr k -k a polinom monomjai, melyek szorzatok: prod expr 1 exponent 1 expr 2 exponent 2...,
32 A klasszikus I Irányított körmentes gráf : A MAPLE-ben minden kifejezést egy reprezentál. A polinomok általában: sum expr 1 coeff 1 expr 2 coeff 2..., vagyis sum = coeff 1 expr 1 + coeff 2 expr A fenti expr k -k a polinom monomjai, melyek szorzatok: prod expr 1 exponent 1 expr 2 exponent 2..., tehát prod = expr exponent 1 1 expr exponent
33 A klasszikus II
34 A klasszikus III Problémák a -gal: Fokszám-számítás, részkifejezés keresés, a gráfon rekurzívan végighaladva sok az elágazás, nagy a memória- és idő igénye: egy n-változós, t tagból álló polinomnál a fokszám O(nt) lépést igényel;
35 A klasszikus III Problémák a -gal: Fokszám-számítás, részkifejezés keresés, a gráfon rekurzívan végighaladva sok az elágazás, nagy a memória- és idő igénye: egy n-változós, t tagból álló polinomnál a fokszám O(nt) lépést igényel; Ha prod/7 x 1 y 3 z 1 szorzatot feldolgoztuk, a következő prod még akármi lehet, pl. x(x + y) 3 z, vagy sin(x 2 )cos(y) 3 z
36 A klasszikus III Problémák a -gal: Fokszám-számítás, részkifejezés keresés, a gráfon rekurzívan végighaladva sok az elágazás, nagy a memória- és idő igénye: egy n-változós, t tagból álló polinomnál a fokszám O(nt) lépést igényel; Ha prod/7 x 1 y 3 z 1 szorzatot feldolgoztuk, a következő prod még akármi lehet, pl. x(x + y) 3 z, vagy sin(x 2 )cos(y) 3 z a monomokkal végzett műveletek különösen lassúak, a prod-ban a változók nem rendezettek, a műveletigény négyzetes (háromváltozós monomok szorzása 200 órajel alatt)
37 A klasszikus III Problémák a -gal: Fokszám-számítás, részkifejezés keresés, a gráfon rekurzívan végighaladva sok az elágazás, nagy a memória- és idő igénye: egy n-változós, t tagból álló polinomnál a fokszám O(nt) lépést igényel; Ha prod/7 x 1 y 3 z 1 szorzatot feldolgoztuk, a következő prod még akármi lehet, pl. x(x + y) 3 z, vagy sin(x 2 )cos(y) 3 z a monomokkal végzett műveletek különösen lassúak, a prod-ban a változók nem rendezettek, a műveletigény négyzetes (háromváltozós monomok szorzása 200 órajel alatt) még a GPL-es konkurrencia is gyorsabb.
38 I Tekintsük a 9xy 3 z 4y 3 z 2 6xy 2 z 8x 3 5 polinomot megvalósítását a POLY szerkezetben:
39 II Magyarázat:
40 II Magyarázat: a változók egy rendezett sorozatban vannak;
41 II Magyarázat: a változók egy rendezett sorozatban vannak; egy tagban egy változó a kitevőjével együtt 16 bitet foglal;
42 II Magyarázat: a változók egy rendezett sorozatban vannak; egy tagban egy változó a kitevőjével együtt 16 bitet foglal; az xy 2 z 3 monom ábrázolása (6, 1, 2, 3), ahol a 6 a monom teljes fokszáma ez kiszámítva
43 Előnyök kompakt: pl. egy 3-változós polinom ábrázolásához tagonként 2 tömbbeli szó kell (egy 8-szavas láncolt gráfszerkezet helyett);
44 Előnyök kompakt: pl. egy 3-változós polinom ábrázolásához tagonként 2 tömbbeli szó kell (egy 8-szavas láncolt gráfszerkezet helyett); monomiálok: az összehasonlítás gépi szavak összehasonlítása, a szorzás összeadás, az osztás kivonás lesz (ha nincs túlcsordulás);
45 Előnyök kompakt: pl. egy 3-változós polinom ábrázolásához tagonként 2 tömbbeli szó kell (egy 8-szavas láncolt gráfszerkezet helyett); monomiálok: az összehasonlítás gépi szavak összehasonlítása, a szorzás összeadás, az osztás kivonás lesz (ha nincs túlcsordulás); az egyszerű függvények rendkívül gyorsak: indets(p), degree(p), has(f, x), type(f, polynom)
46 Előnyök kompakt: pl. egy 3-változós polinom ábrázolásához tagonként 2 tömbbeli szó kell (egy 8-szavas láncolt gráfszerkezet helyett); monomiálok: az összehasonlítás gépi szavak összehasonlítása, a szorzás összeadás, az osztás kivonás lesz (ha nincs túlcsordulás); az egyszerű függvények rendkívül gyorsak: indets(p), degree(p), has(f, x), type(f, polynom) sok bonyolultabb függvény is jóval gyorsabb a soros memóriaelrendezés miatt: deg(f, x), diff(f, x), coeff(f, x, i);
47 Előnyök kompakt: pl. egy 3-változós polinom ábrázolásához tagonként 2 tömbbeli szó kell (egy 8-szavas láncolt gráfszerkezet helyett); monomiálok: az összehasonlítás gépi szavak összehasonlítása, a szorzás összeadás, az osztás kivonás lesz (ha nincs túlcsordulás); az egyszerű függvények rendkívül gyorsak: indets(p), degree(p), has(f, x), type(f, polynom) sok bonyolultabb függvény is jóval gyorsabb a soros memóriaelrendezés miatt: deg(f, x), diff(f, x), coeff(f, x, i); nagy polinomok esetén sem keletkezik sok apróbb objektum
48 Megjegyzések az elv elég régi (ALTRAN, Buchberger);
49 Megjegyzések az elv elég régi (ALTRAN, Buchberger); csak egész együtthatós polinomokra működik;
50 Megjegyzések az elv elég régi (ALTRAN, Buchberger); csak egész együtthatós polinomokra működik; egy kitevő egy legfeljebb 16-bites szám lehet;
51 Megjegyzések az elv elég régi (ALTRAN, Buchberger); csak egész együtthatós polinomokra működik; egy kitevő egy legfeljebb 16-bites szám lehet; a változók száma legfeljebb 32 lehet (64 bites gépen);
52 Megjegyzések az elv elég régi (ALTRAN, Buchberger); csak egész együtthatós polinomokra működik; egy kitevő egy legfeljebb 16-bites szám lehet; a változók száma legfeljebb 32 lehet (64 bites gépen); a többi esetben a régi szerkezetet használja;
53 Megjegyzések az elv elég régi (ALTRAN, Buchberger); csak egész együtthatós polinomokra működik; egy kitevő egy legfeljebb 16-bites szám lehet; a változók száma legfeljebb 32 lehet (64 bites gépen); a többi esetben a régi szerkezetet használja; sok a háttérben zajló konverzió a két forma között.
54 eldöntendő kérdések csonkolt ábrázolás (TPS);
55 eldöntendő kérdések csonkolt ábrázolás (TPS); együttható függvény.
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Számkezelés Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 53 TARTALOMJEGYZÉK 1 TARTALOMJEGYZÉK 2 Az egzakt aritmetika Bignum aritmetika
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Polinomok Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 80 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Egyváltozós polinomok Alapfogalmak
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Normálformák, algebrai reprezentáció Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. április 8. TARTALOMJEGYZÉK 1 of 113 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Az absztrakció
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
Fixpontos és lebegőpontos DSP Számrendszerek
Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos
2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
Klasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
Algebrai egész kifejezések (polinomok)
Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
Negatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
Komputeralgebra rendszerek
Komputeralgebra rendszerek III. Változók Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2009-2010 ősz Index I 1 Szimbolikus konstansok kezelés A konstansok Nevek levédése
Komputeralgebra rendszerek
Komputeralgebra rendszerek III. Változók Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2009-2010 ősz Index I 1 Szimbolikus konstansok kezelés A konstansok Nevek levédése
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.
Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
egy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra
Algebra Műveletek tulajdonságai: kommutativitás (felcserélhetőség): a b = b a; a b = b a asszociativitás (átcsoportosíthatóság): (a b) c = a (b c); a (b c) = (a b) c disztributivitás (széttagolhatóság):
FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.
TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Konstansok, változók, típusok Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 110 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Nevek kezelése
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
Polinomosztás. Összeállította: Bogya Norbert. Diszkrét matematika I.gyakorlat
Diszkrét matematika I. gyakorlat Összeállította: Bogya Norbert Tartalom Elméleti bevezető 1 Elméleti bevezető 2 1. példa 2. példa 3. példa Elmélet I. Elméleti bevezető Definíció (polinom) p = a n x n +
Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.
Komplex számok Komplex számok és alakjaik, számolás komplex számokkal. 1. Komplex számok A komplex számokra a valós számok kiterjesztéseként van szükség. Ugyanis már középiskolában el kerülnek olyan másodfokú
5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
Számítógépes Hálózatok 2012
Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód
Assembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Nagypontosságú aritmetika I.
Nagypontosságú aritmetika I. Nagypontosságú aritmetika Problémák: sokjegyű (100 vagy 1000 vagy...) egész számok kellenek több alkalmazásban; jó lenne, ha 1/3*3 értéke 1 lenne, azaz kellenének racionális
3. OSZTÁLY A TANANYAG ELRENDEZÉSE
Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
16. modul: ALGEBRAI AZONOSSÁGOK
MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
Algoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Programozás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. február 23. TARTALOMJEGYZÉK 1 of 28 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Értékadás MAPLE -ben SAGE -ben 3
10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.
Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Komputeralgebra rendszerek
Komputeralgebra rendszerek I. Bevezetés Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar D2.711A 2009-2010 tavasz Tartalomjegyzék 1 Előzetes 2 Komputeralgebra 3 Történeti
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az
5. Fejezet : Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
Algoritmusok Tervezése. 1. Előadás MATLAB 1. Dr. Bécsi Tamás
Algoritmusok Tervezése 1. Előadás MATLAB 1. Dr. Bécsi Tamás Tárgy adatok Előadó: Bécsi Tamás, St 106, becsi.tamas@mail.bme.hu Előadás:2, Labor:2 Kredit:5 Félévközi jegy 2 db Zh 1 hallgatói feladat A félév
2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Számítógépes Hálózatok. 7. gyakorlat
Számítógépes Hálózatok 7. gyakorlat Gyakorlat tematika Hibajelző kód: CRC számítás Órai / házi feladat Számítógépes Hálózatok Gyakorlat 7. 2 CRC hibajelző kód emlékeztető Forrás: Dr. Lukovszki Tamás fóliái
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA
Rejtett részcsoportok és kvantum-számítógépek
Ivanyos Gábor MTA SZTAKI MTA, 2007 május 23. Kvantum bitek Kvantum kapuk Kvantum-ármakörök Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció,
Bevezetés az informatikába
Bevezetés az informatikába 2. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
2. Hatványozás, gyökvonás
2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Bevezető és történeti áttekintés Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 17. TARTALOMJEGYZÉK 1 of 73 TARTALOMJEGYZÉK 1 TARTALOMJEGYZÉK 2 Mi a komputeralgebra
Aritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Előfeldolgozó rendszer Tömbök. Dr. Bécsi Tamás 4. Előadás
Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Előfeldolgozó rendszer Tömbök Dr. Bécsi Tamás 4. Előadás A?: operátor Nézzük meg a következő kifejezést: if (a>b) z=a; else z=b; Ez felírható
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)
I+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli
A C programozási nyelv III. Pointerek és tömbök.
A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,
Műveletek lebegőpontos adatokkal
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Műveletek lebegőpontos adatokkal Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Műveletek az IEEE 754
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad- és negyedfokú egyenlet
1. Bevezetés A félév anyaga Komplex számok Műveletek Kapcsolat a geometriával Gyökvonás Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad- és
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
A C programozási nyelv III. Pointerek és tömbök.
A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4