4. Fejezet : Az egész számok (integer) ábrázolása
|
|
- Csenge Oroszné
- 9 évvel ezelőtt
- Látták:
Átírás
1 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda Senne, Bentley College Számábrázolás Egészszámok ábrázolásához a következő információt kell tárolnunk: Egészszám abszolút értéke (value, magnitude) Előjel (plusz vagy mínusz) 4. Fejezet: Az integer ábrázolása 4-2 1
2 32 bites adat szó 4. Fejezet: Az integer ábrázolása 4-3 Előjel nélküli egész számok: Integerek Bináris ábrázolás: Előjel nélküli egész szám vagy integer BCD ábrázolás: Decimális egész közvetlen bináris megfelelője (Binary Coded Decimal) Decimális érték (legnagyobb 8 biten ábrázolható szám BCD kódolással) 255 (legnagyobb 8 biten ábrázolható szám bináris kódolással) 4 bit: 0-tól 9-ig 8 bit: 0-tól 99-ig Bináris ábrázolás bit: 0-tól ig bit: 0-tól ig BCD ábrázolás Fejezet: Az integer ábrázolása 4-4 2
3 Ábrázolható értékek összehasonlítása: Bináris vs. BCD Ábrázolható értékek BCD kódolással < ábrázolható értékek hagyományos bináris ábrázolás Bináris: 4 bit 16 különböző értéket képes tárolni (0-tól 15-ig) BCD: 4 bit csak 10 különböző értéket tud tárolni (0-tól 9-ig) Bitek száma BCD határ számjegy számjegy számjegy számjegy számjegy számjegy számjegy 0-( ) 16 számjegy Bináris határ számjegy számjegy számjegy számjegy 0-1 million 6+ számjegy 0-16 million 7+ számjegy 0-4 billion 9+ számjegy 0-16 quintillion 19+ számjegy 4. Fejezet: Az integer ábrázolása 4-5 Hagyományos bináris vs. BCD Bináris ábrázolás kedveltebb Nagyobb értéket képes tárolni adott számú biten (helyiértéken) Számolási műveletek elvégzése egyszerűbb BCD gyakran használatos vállalati rendszereknél, főként a tizedes kerekítés és a tizedes pontosság miatt 4. Fejezet: Az integer ábrázolása 4-6 3
4 Egyszerű BCD szorzás 4. Fejezet: Az integer ábrázolása 4-7 Előjeles egész számok ábrázolása Nincs nyilvánvaló, közvetlen ábrázolása az előjelnek bináris ábrázolásban Lehetőségek: Előjel-és-érték ábrázolás 1-es komplemens 2-es komplemens (gyakoribb) 4. Fejezet: Az integer ábrázolása 4-8 4
5 Előjel-és-érték A baloldali legszélső bit használata előjelként 0 pozitív; 1 negatív Az ábrázolható értékek száma nem változik Számok fele pozitív, fele negatív A legnagyobb ábrázolt érték feleakkora lesz, mint előjel nélkül Példa 8 biten: Előjel nélküli: (+)255 Előjeles: Megjegyzés: kettő érték a 0-ra: és Fejezet: Az integer ábrázolása 4-9 Bonyolult számítási algoritmusok Előjel-és-érték algoritmusok összetettek és bonyolultak ahhoz, hogy hardver hajtsa végre Vizsgálni kell a 0 mindkét értékét BCD kódolás esetén használható Az előjeles szám és a carry/átvitel sorrendje hibát okoz Példa: Decimális összeadó algoritmus Összeadás: 2 pozitív szám Összeadás: 1 előjeles szám Fejezet: Az integer ábrázolása
6 Komplemens ábrázolás A szám előjelét nem kell elkülönítve kezelni Megegyezik minden különböző előjelű bemeneti számkombinációra Két módszer Alapszám: alap (abszolút) érték Csökkentett alap: alap értéke mínusz 1 p 9-es komplemens: a 10-es alap csökkentett alapja p 1-es komplemens: a 2-es alap csökkentett alapja 4. Fejezet: Az integer ábrázolása es decimális komplemens Komplemens számítás: az érték kivonása az alap eredeti értékéből Decimális (10-es alap) rendszer csökkentett alapja Alapmínusz számjegyű példa: alap eredeti értéke 999 A számok 0-tól 999-ig terjedhetnek, választóvonal 500-nál Számok Megjelenítési mód Decimális szám terjedelme Számítási algoritmus Ábrázolási példa Negatív Pozitív Komplemens Szám önmaga mínusz szám nincs növekvő érték + 4. Fejezet: Az integer ábrázolása
7 9-es decimális komplemens Fontos meghatározni a számjegyek számát vagy a szóhosszúságot Példa: 3 jegyű számok ábrázolása Első számjegy 0-tól 4-ig Első számjegy 5-tól 9-ig pozitív szám negatív szám Előjel-és-érték szám konvertálása 9-es komplemensű számmá 321: eredmény : vegyük a komplemensét ( ) Fejezet: Az integer ábrázolása 4-13 Modulus aritmetika (számolás) A műveletek eredménye megadja a (számolás alapjaként használt értékkel) modulus történő osztás maradékát Példa: p 4 mod 4 0 p 5 mod 4 1 p 1000 mod A modulusos aritmetika legfontosabb jellemzője A számolást nullától újrakezdjük, ha a számolás során túllépnénk a moduluson 4. Fejezet: Az integer ábrázolása
8 Számábrázolás választásának indokai Legyen konzisztens (hasonló logikájú) a megszokott aritmetikával -(-érték) érték Ha egy értéknek kétszer kiszámoljuk a komplemensét, akkor az eredeti értéket kapjuk vissza: komplemens alap érték Egy komplemens értékre még egyszer alkalmazzuk a komplemens számolást: p alap komplemens alap (alap érték) érték (!!!) 4. Fejezet: Az integer ábrázolása 4-15 Összeadás modulus aritmetikával A számegyenesen való előrehaladás megegyezik az összeadással Példa a 9-es komplemensben: Három helyiértéken ábrázolt számok A példában a számolás során nem keresztezzük a modulust Ábrázolás Ábrázolt szám Fejezet: Az integer ábrázolása
9 Összeadás körkörös számegyenessel Negatív szám hozzáadásakor is haladjunk jobbra a számegyenesen Körkörösen ismétlődő számegyenest használjunk, hogy kiterjesszük a számegyenest a negatív értékek ábrázolására Balra haladás keresztezné a modulust és helytelen eredményt adna, mert két értéke van a 0-nak (+0 és -0) +699 Ábrázolás Ábrázolt szám Rossz megoldás!! +699 Ábrázolás Ábrázolt szám Fejezet: Az integer ábrázolása 4-17 Összeadás: túlcsordulás átvitellel A jobbra haladás keresztezné a modulust Túlcsordulás átvitellel 2 számjegy összeadása 9-es komplemenses aritmetikával Ha az eredmény több számjegyből áll a meghatározottnál, akkor a carry-t (az átvitelt) az eredményhez adjuk +300 (1099) Ábrázolás Ábrázolt szám Fejezet: Az integer ábrázolása
10 Túlcsordulás Rögzített szó (word) méretnek rögzített a terjedelme Túlcsordulás: számok azon kombinációja, amelyek összege a határon kívül esik Túlcsordulás átvitellel, ezt a problémát kerüli ki Komplemenses aritmetika: határon kívüli számoknak ellentétes előjelük van Teszt: Ha összeadásnál mindkét bemeneti szám azonos előjelű és az eredmény előjele más, akkor túlcsordulás lépett fel 4. Fejezet: Az integer ábrázolása es bináris komplemens Komplemens számítás: az érték kivonása az alap eredeti értékéből Bináris (2-es alap) csökkentett alapú komplemense Alap mínusz mint az alap Invertálás: egyesek és nullák felcserélése (1->0, 0->1) 0-val kezdődő számok pozitívak 1-el kezdődő számok negatívak Két értéke van a nullának (-0, +0) Példa 8 bites bináris számokkal Számok Megjelenítési mód Decimális szám terjedelme Számolás Ábrázolási példa Negatív Pozitív Komplemens Szám önmaga Invertálás Nincs Fejezet: Az integer ábrázolása
11 1-es bináris komplemens kB +95 D kB negatív a negáltja amely egyben az abszolút értéke is(!!!): B 95 D tehát az eredmény: -95 D 4. Fejezet: Az integer ábrázolása 4-21 Komplemensek közötti váltás Nem lehet közvetlenül 9-es komplemensből 1-es komplemensbe váltani 3 számjegyű decimális modulus: 999 p Pozitív terjedelem499 8 bites bináris modulus: vagy p Pozitív terjedelem vagy Közbeeső lépés: előjel-és-érték ábrázolás 4. Fejezet: Az integer ábrázolása
12 Összeadás Adjunk össze 2 db 8 bit-es pozitív számot Adjunk össze 2db 8 bit-es különböző előjelű számot Vegyük az 58 egyes komplemensét (invertáljuk) Invertáljuk, hogy megkapjuk az értéket Fejezet: Az integer ábrázolása 4-23 Összeadás átvitellel (carry-vel) Fejezet: Az integer ábrázolása
13 Összeadás átvitellel (carry-vel) 8 bites szám Negatív érték hozzáadása: Invertálás (2 10 ) Összeadás 9 bit Túlcsordulás átvitellel Fejezet: Az integer ábrázolása 4-25 Kivonás átvitellel (carry-vel) 8 bites számábrázolás szám kivonása szám -1 szeresének hozzáadása invertálás (90 10 ) (+90) Összeadás 9 bit Túlcsordulás átvitellel! Fejezet: Az integer ábrázolása
14 Kivonás 8 bites számábrázolás szám kivonása szám -1 szeresének hozzáadása invertálás (-9 10 ) összeadás (-9) Fejezet: Az integer ábrázolása 4-27 Kivonás 8 bites szám invertálás (90 10 ) Összeadás Túlcsordulás! Rosszmegoldás!!! 4. Fejezet: Az integer ábrázolása
15 Túlcsordulás 8 bites szám 256 különböző szám Pozitív számok: 0 to 127 Összeadás Túlcsordulás tesztelése 2 pozitív bemenetre negatív eredményt adott túlcsordulás! Rossz megoldás! Invertáljuk, hogy megkapjuk az értéket Programozók óvakodjatok: néhány magas-szintű nyelv pl.: a BASIC néhány verziója nem ellenőrzi a túlcsordulást megfelelően! 4. Fejezet: Az integer ábrázolása es komplemens Komplemens rendszer alkotása egy 0-val Alap komplemens: használjuk az alapot a komplemens műveletekhez 10-es alap: 10-es komplemens Példa: Modulus 1000 mint tükrözési pont Számok Megjelenítési mód Decimális szám terjedelme Számolás Ábrázolási példa Negatív Komplemens mínusz szám Pozitív Szám önmaga nincs Fejezet: Az integer ábrázolása
16 Példák 3 jegyű számokkal Példa 1: A 247 mint szám, 10-es komplemens ábrázolása: p 247 (pozitív szám) A 247 mint szám, 10-es komplemense: p (negatív szám) Példa 2: A 17 mint szám, 10-es komplemense: p Példa 3: A 777 mint szám, 10-es komplemense: p Negatív szám, mert az első számjegye 7 p p Előjeles érték Fejezet: Az integer ábrázolása 4-31 Alternatív módszer a 10-es komplemensre A 9-es komplemensen alapszik Példa 3 jegyű számokkal Megjegyzés: es komplemens 999 érték Átírva p 10-es komplemens 1000 érték érték Vagy: 10-es komplemens 9-es komplemens + 1 Számítás egyszerűbb különösen bináris számok esetén 4. Fejezet: Az integer ábrázolása
17 2-es komplemens Modulus 2-es alapú 1 -es után nullák 8-biten a modulus Két módszer van megtalálni a komplemenst Kivonjuk a szám értékét a modulusból vagy invertálunk Számok Megjelenítési mód Decimális szám értéke Számolás Megjelelenítési példa Negatív Pozitív Komplemens Szám önmaga Invertálás Nincs Fejezet: Az integer ábrázolása es vs. 2-es komplemens A választás a számítógép tervezőitől függ 1-es komplemens Egyszerű előjelet váltani Összeadásnak szüksége van egy extra túlcsordulás átvitelre Algoritmusnak tesztelnie és konvertálnia kell a -0 -át 2-es komplemens egyszerűbb Negálás után egy 1 hozzáadás szükséges 4. Fejezet: Az integer ábrázolása
18 2-es bináris komplemens kB +95 D kB negatív a negáltja amely nem az abszolút értéke(!!!): B 1 hozzáadása a negálthoz így: B + 1 B B 96 D tehát az eredmény: -96 D 4. Fejezet: Az integer ábrázolása 4-35 Egy összetett példa Határozza meg a decimális és hexadecimális értékét a következő 8 bit-es bináris számoknak, ha közönséges binárisként, vagy 1-es komplemensként illetve 2-es komplemensként értelmezük őket. A hexadecimális számoknál az előjeleket kezelje a decimális számoknál megszokott módon! B : közönséges: 116 D és 74 H 1-es: +116 D és +74 H 2-es: +116 D és +74 H B : közönséges: 213 D és D5 H B 1-es: -42 D és-2a H B 2-es: -43 D és -2B H 4. Fejezet: Az integer ábrázolása
19 Egy még összetettebb példa Végezze el a következő kivonást 8 bit-es bináris számokkal úgy, hogy a számpár első tagját 1-es komplemensként a második tagját 2-es komplemensként értelmezük. Az eredményt adja meg bináris 1-es komplemensként, majd váltsa át azt decimális számrendszerbe: B1K B2K B1K - ( B + 1 B B > ) B1K B1K B B1K 1 B B1K +12 D 4. Fejezet: Az integer ábrázolása 4-37 Integer mérete Pozitív számok 0-val kezdődnek Kicsi, negatív számok (közel a 0-hoz) több 0-val kezdődnek B2K -2 8-bites 2-es komplemens B2K -128, nagyobb negatív szám 2-es komplemense Cseréljünk fel minden 1-est és 0-ást és határozzuk meg az értéket 4. Fejezet: Az integer ábrázolása
20 Túlcsordulás és Átvitel közötti különbség Átvitel (carry) bit: Jelzi, ha egy adott helyiértéken elvégzett művelet eredménye meghaladja az ott ábrázolható értéket. Túlcsordulás (Overflow): ha egy összeadás vagy kivonás művelet eredménye kívül esik az aktuális számábrázolási tartományon. 4. Fejezet: Az integer ábrázolása 4-39 Túlcsordulás/Átvitel példák Példa 1: 0100 (+ 4) Helyes eredmény (+ 2) Se túlcsordulás, se átvitel 0110 (+ 6) 0100 (+ 4) Példa 2: (+ 6) Helytelen eredményt 1010 ( 6) kapunk Van túlcsordulás, és átvitel is Négy bit-es 2-es komplemens számábrázolás! 4. Fejezet: Az integer ábrázolása
21 Túlcsordulás/Átvitel példák Példa 3: Az átvitelt elhagyva az eredmény helyes Van átvitel, de nincs túlcsordulás ( 6) Példa 4: 1100 ( 4) Helytelen eredmény ( 6) Van túlcsordulás, átvitel (+ 6) mellőzve Négy bit-es 2-es komplemens számábrázolás! ( 4) + ( 2) 4. Fejezet: Az integer ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
5. Fejezet : Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
1. Fejezet: Számítógép rendszerek
1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
Matematikai alapok. Dr. Iványi Péter
Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1
Adatok ábrázolása, adattípusok
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
1. Fejezet: Számítógép rendszerek. Tipikus számítógép hirdetés
1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Assembly Utasítások, programok. Iványi Péter
Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben
7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák
7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák A TMS320C50 processzor Ez a DSP processzor az 1.3. fejezetben lett bemutatva. A TMS320C50 ##LINK: http://www.ti.com/product/tms320c50## egy
Számrendszerek. Átváltás a számrendszerek között: Általában 10-es számrendszerből váltunk tetszőlegesre és tetszőlegest 10-esre.
Számrendszerek Tízes számrendszer: Ez az általános, informatikán kívül is használt legelterjedtebb számrendszer. Alapja 10 szám 0,1,2,3 9. Decimális számrendszernek is nevezzük. Egyik felhasználása az
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
4. KOMBINÁCIÓS HÁLÓZATOK. A tananyag célja: kombinációs típusú hálózatok analízise és szintézise.
. KOMBINÁCIÓS HÁLÓZATOK A tananyag célja: kombinációs típusú hálózatok analízise és szintézise. Elméleti ismeretanyag: Dr. Ajtonyi István: Digitális rendszerek I. 2., 5., 5.2. fejezetek Elméleti áttekintés..
- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez
1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak
2. Hatványozás, gyökvonás
2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője
E-Laboratórium 1 Kombinációs digitális áramkörök alkalmazása Elméleti leírás
E-Laboratórium 1 Kombinációs digitális áramkörök alkalmazása Elméleti leírás 1. Bevezetés A gyakorlat elvégzésére digitális integrált áramköröket alkalmazunk és hardver struktúrát vezérlő szoftvert is.
Aritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
Digitális technika II. (vimia111) 5. gyakorlat: Mikroprocesszoros tervezés, egyszerű feladatok HW és SW megvalósítása gépi szintű programozással
Digitális technika II. (vimia111) 5. gyakorlat: Mikroprocesszoros tervezés, egyszerű feladatok HW és SW megvalósítása gépi szintű programozással Megoldás Elméleti anyag: Processzor belső felépítése, adat
Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006
Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2004/2005 tanév 4. szemeszter A PROCESSZOR A processzorok jellemzése A processzor felépítése A processzorok üzemmódjai Regiszterkészlet Utasításfelépítés,
Programozott soros szinkron adatátvitel
Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.
Az INTEL D-2920 analóg mikroprocesszor alkalmazása
Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan
The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003
10. Fejezet Számítógép-perifériák The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
INFORMATIKA MATEMATIKAI ALAPJAI
INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:
Szupermikroprocesszorok és alkalmazásaik
Szupermikroprocesszorok és alkalmazásaik VAJDA FERENC MTA Központi Fizikai Kutató Intézet Mérés- és Számítástechnikai Kutató Intézet 1. Bevezetés ÖSSZEFOGLALÁS Egy rétegezett modell alapján mutatjuk be
10. fejezet Az adatkapcsolati réteg
10. fejezet Az adatkapcsolati réteg Az adatkapcsolati réteg (Data Link Layer) Előzetesen összefoglalva, az adatkapcsolati réteg feladata abban áll, hogy biztosítsa azt, hogy az adó oldali adatok a vevő
10. Fejezet Számítógép-perifériák
10. Fejezet Számítógép-perifériák Hardver és Szoftver rendszerek architektúrája: Egy Információ Technológiai Szemlélet 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Feladat: Hogyan tudunk létrehozni egy olyan vector nevű tömb típust, amely egy háromdimenziós térbeli vektort reprezentál?
Típus definiálás Ennek általános alakja: typedef típus név Feladat: Hogyan tudunk létrehozni egy olyan vector nevű tömb típust, amely egy háromdimenziós térbeli vektort reprezentál? typedef double vector[3];
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
Novák Attila (2003): Milyen a jó Humor? In: Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2003). Szegedi Tudományegyetem, 138-145
Milyen a jó Humor? Novák Attila MorphoLogic Kft., Budapest novak@morphologic.hu Kivonat. Magyar nyelvű szövegek morfológiai elemzésére elterjedten alkalmazzák a MorphoLogic Kft. által kifejlesztett Humor
7. Fejezet A processzor és a memória
7. Fejezet A processzor és a memória The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
REKURZIÓ. Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát.
1. A REKURZIÓ FOGALMA REKURZIÓ Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát. 1.1 Bevezető példák: 1.1.1 Faktoriális Nemrekurzív
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
SZÁMOLÁSTECHNIKAI ISMERETEK
SZÁMOLÁSTECHNIKAI ISMERETEK Műveletek szögekkel Geodéziai számításaink során gyakran fogunk szögekkel dolgozni. Az egyszerűbb írásmód kedvéért ilyenkor a fok ( o ), perc (, ), másodperc (,, ) jelét el
Multimédia hardver szabványok
Multimédia hardver szabványok HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler
TERMÉK TERVEZÉSE. Tervezés: Minden termelésre vonatkozó tudatos tevékenység. A tervezés minden termelési tevékenységre jellemző.
TERMÉK TERVEZÉSE A termék fogalma: Tevékenységek, vagy folyamatok eredménye /folyamat szemlélet /. (Minden terméknek értelmezhető, amely gazdasági potenciált közvetít /közgazdász szemlélet /.) Az ISO 8402
Assembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
A MAGYAR KIEGYENLÍTŐENERGIA-PIACI ÁRKÉPZÉSI RENDSZER VIZSGÁLATA
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Villamos Energetika Tanszék Kondor Máté András A MAGYAR KIEGYENLÍTŐENERGIA-PIACI ÁRKÉPZÉSI RENDSZER VIZSGÁLATA Tudományos
rtórendszerek rendszerek tervezése gyakorlat
Gyárt rtórendszerek rendszerek tervezése 1 gyakorlat G Miskolci Egyetem Gépgyártástechnológiai Tanszék Miskolc, 2005. 2 1. előadás Műveleti sorrendtervezés 3 Követelmények Személyre szóló tervezési feladat
SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet
Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei Kutató Intézet kisszámítógépes rendszerekben Tudományos számításokban gyakran nagy mennyiségű aritmetikai művelet elvégzésére van
SZÍNES KÉPEK FELDOLGOZÁSA
SZÍNES KÉPEK FELDOLGOZÁSA Színes képek feldolgozása Az emberi szem többezer színt képes megkülönböztetni, de csupán 20-30 különböző szürkeárnyalatot A színes kép feldolgozása két csoportba sorolható -
Kvantumkriptográfia III.
LOGO Kvantumkriptográfia III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu A kvantumkriptográfia
Bevezetés az informatikába Dr. Nyakóné dr. Juhász, Katalin Dr. Terdik, György Biró, Piroska Dr. Kátai, Zoltán
Bevezetés az informatikába Dr. Nyakóné dr. Juhász, Katalin Dr. Terdik, György Biró, Piroska Dr. Kátai, Zoltán Bevezetés az informatikába Dr. Nyakóné dr. Juhász, Katalin Dr. Terdik, György Biró, Piroska
VALIDÁCIÓS KÉZIKÖNYV
VALIDÁCIÓS KÉZIKÖNYV A BELSŐ MINŐSÍTÉSEN ALAPULÓ MÓDSZEREK ÉS A MŰKÖDÉSI KOCKÁZAT FEJLETT MÉRÉSI MÓDSZEREINEK (AMA) BEVEZETÉSÉRŐL, ÉRTÉKELÉSÉRŐL, JÓVÁHAGYÁSÁRÓL II. RÉSZ: MŰKÖDÉSI KOCKÁZAT 2008. június
Dr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
Táblázatkezelő alkalmazása
1. oldal, összesen: 6 Táblázatkezelő alkalmazása 5-6. osztályos tanulók számára Készítsd el a képen látható táblázatot! Az F3, F4 és F5 cella értékeit képlettel határozd meg! Ügyelj arra, hogy a táblázat
Memóriák - tárak. Memória. Kapacitás Ár. Sebesség. Háttértár. (felejtő) (nem felejtő)
Memóriák (felejtő) Memória Kapacitás Ár Sebesség Memóriák - tárak Háttértár (nem felejtő) Memória Vezérlő egység Központi memória Aritmetikai Logikai Egység (ALU) Regiszterek Programok Adatok Ez nélkül
KIR-STAT2009 Internetes Adatgyűjtő Rendszer. Kitöltési útmutató
KIR-STAT2009 Internetes Adatgyűjtő Rendszer Kitöltési útmutató Kitöltési útmutató a KIR-STAT internetes adatgyűjtési program használatához Tartalomjegyzék Milyen lépések szükségesek az adatszolgáltatás
Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat
PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Számítógépes grafika
Számítógépes grafika XVII. rész A grafikai modellezés A modellezés A generatív számítógépes grafikában és a képfeldolgozás során nem a valódi objektumokat (valóságbeli tárgyakat), hanem azok egy modelljét
DSP architektúrák dspic30f család
DSP architektúrák dspic30f család A Microchip 2004 nyarán piacra dobta a dspic30f családot, egy 16 bites fixpontos DSC. Mivel a mikróvezérlők tantárgy keretén belül a PIC családdal már megismerkedtetek,
I+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
ÉS TESZTEK A DEFINITSÉG
MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001
Assembly Programozás Rodek Lajos Diós Gábor
Assembly Programozás Rodek Lajos Diós Gábor Tartalomjegyzék Ábrák jegyzéke Táblázatok jegyzéke Előszó Ajánlott irodalom IV V VI VII 1. Az Assembly nyelv jelentősége 1 2. A PC-k hardverének felépítése 4
E7-DTSZ konfigurációs leírás
Dokumentum azonosító: PP-13-20354 Budapest, 2014.március Verzió információ Verzió Dátum Változtatás Szerkesztő Előzetes 2011.11.24. Petri 2.0 2014.01.22. 2. ábra módosítása: Az E7-DTSZ alap konfiguráció
SZERVIZELÉSI ÚTMUTATÓ
CODE PERFECT C60 típusú ugrókódos, motorblokkolás funkciójával rendelkező autóriasztó-berendezés, GSM-modullal, amelynek feladata hangüzenetek formájában telefonon keresztül tájékoztatni a tulajdonost
Digitális Rendszerek és Számítógép Architektúrák
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 1. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Vörösházi Zsolt Szolgay
Sorompó kezelés mérlegműszerrel
METRISoft Mérleggyártó KFT PortaWin (PW2) Jármű mérlegelő program 6800 Hódmezővásárhely Jókai u. 30 Telefon: (62) 246-657, Fax: (62) 249-765 e-mail: merleg@metrisoft.hu Web: http://www.metrisoft.hu Módosítva:
Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése
Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális
Operációs rendszerek 2 3. alkalom - Reguláris kifejezések, grep, sed. Windisch Gergely windisch.gergely@nik.uni-obuda.hu 2010-2011 2.
Operációs rendszerek 2 3. alkalom - Reguláris kifejezések, grep, sed Windisch Gergely windisch.gergely@nik.uni-obuda.hu 2010-2011 2. félév Reguláris kifejezések Reguláris kifejezésekkel lehet keresni egy
Szervizelési útmutató
CODE PERFECT GN7 típusú ugrókódos, motorblokkolás funkciójával rendelkező autóriasztóberendezés, GSM-modullal, amelynek feladata hangüzenetek formájában telefonon keresztül tájékoztatni a tulajdonost a
Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések
Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 2.4. Relációs algebra (áttekintés) 5.1.
ORPHEUS. Felhasználói kézikönyv. C o p y r i g h t : V a r g a B a l á z s 2 0 1 2 Oldal: 1
ORPHEUS Felhasználói kézikönyv C o p y r i g h t : V a r g a B a l á z s 2 0 1 2 Oldal: 1 Tartalomjegyzék Rendszerkövetelmények... 5 Telepítés... 6 A program célja... 10 A program indítása... 10 Rendszeradminisztráció...
2. Digitális hálózatok...60
2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk
A tömörítési eljárás megkezdéséhez jelöljük ki a tömöríteni kívánt fájlokat vagy mappát.
Operációs rendszerek Windows Xp (13-16 óra) FÁJLTÖMÖRÍTŐ PROGRAMOK KEZELÉSE A tömörítés fogalma A tömörítő eljárás során az állomány felhasználásának szempontjából két műveletet hajtunk végre. Az állományok
Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján.
Tevékenység: Rajzolja le a koordinaátarendszerek közti transzformációk blokkvázlatait, az önvezérelt szinkronmotor sebességszabályozási körének néhány megjelölt részletét, a rezolver felépítését és kimenőjeleit,
MS Access Feladatgyűjtemény
SZENT ISTVÁN EGYETEM GAZDASÁG- ÉS TÁRSADALOMTUDOMÁNYI KAR MS Access Feladatgyűjtemény Klárné Barta Éva 2014.01.01. Microsoft Access - Feladatok 1 Feladatok 1. Hozzon létre egy új adatbázist SZÁMÍTÓGÉPEK
Számítógép összeszerelése
3. tétel Távmunka végzésre van lehetősége. Munkahelye biztosít Önnek egy számítógépes munkaállomást, amelyet gyorspostán le is szállítottak. Feladata a munkaállomás és tartozékainak üzembe helyezése. Ismertesse
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar
Kvantumszámítógép hálózat zat alapú prímfaktoriz mfaktorizáció Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Elemi kvantum-összead sszeadók, hálózati topológia vizsgálata Az elemi
Számviteli tanácsadás. IFRS felmérés - 2011 Fókuszban a pénzügyi beszámolók
Számviteli tanácsadás IFRS felmérés - 11 Fókuszban a pénzügyi beszámolók Tartalomjegyzék 1. Vezetői összefoglaló. A felmérés célja. A pénzügyi kimutatások áttekintése 7. A pénzügyi teljesítményre vonatkozó
Fixpontos és lebegőpontos DSP Számrendszerek
Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos
Mérési útmutató. Széchenyi István Egyetem Távközlési Tanszék. QPSK moduláció jellemzőinek vizsgálata
Széchenyi István Egyetem Távközlési Tanszék Mérési útmutató Rádiórendszerek (NGB_TA049_1) laboratóriumi gyakorlathoz QPSK moduláció jellemzőinek vizsgálata Készítette: Garab László, Gombos Ákos Konzulens:
INFORMATIKAI ALAPISMERETEK
Informatikai alapismeretek emelt szint 0802 ÉRETTSÉGI VIZSGA 2008. október 20. INFORMATIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Karbantartás. Az ESZR Karbantartás menüjébentudjuk elvégezni az alábbiakat:
Karbantartás Az ESZR Karbantartás menüjébentudjuk elvégezni az alábbiakat: Jelszó módosítása: A felhasználói jelszavunkat módosíthatjuk ebben a menüpontban, a régi jelszavunk megadása után. Általánosan
PARAMÉTERES GÖRBÉK ALKALMAZÁSA VALÓSIDE- JŰ DIGITÁLIS HANGFELDOLGOZÁS SORÁN
Multidiszciplináris tudományok, 3. kötet. (2013) sz. pp. 251-258. PARAMÉTERES GÖRBÉK ALKALMAZÁSA VALÓSIDE- JŰ DIGITÁLIS HANGFELDOLGOZÁS SORÁN Lajos Sándor Mérnöktanár, Miskolci Egyetem,Ábrázoló geometriai
5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
Objektum Orientált Szoftverfejlesztés (jegyzet)
Objektum Orientált Szoftverfejlesztés (jegyzet) 1. Kialakulás Kísérletek a szoftverkrízisből való kilábalásra: 1.1 Strukturált programozás Ötlet (E. W. Dijkstra): 1. Elkészítendő programot elgondolhatjuk
1. mérés - LabView 1
1. mérés - LabView 1 Mérést végezte: Bartha András Mérőtárs: Dobránszky Márk Mérés dátuma: 2015. február 18. Mérés helye: PPKE Információs Technológiai és Bionikai Kar A mérés célja: Ismerkedés a Labview
Feladatok és megoldások a 4. hétre
Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint
6. AZ EREDMÉNYEK ÉRTELMEZÉSE
6. AZ EREDMÉNYEK ÉRTELMEZÉSE A kurzus anyagát felhasználva összeállíthatunk egy kitűnő feladatlapot, de még nem dőlhetünk nyugodtan hátra. Diákjaink teljesítményét még osztályzatokra kell átváltanunk,
Programozás 3. Dr. Iványi Péter
Programozás 3. Dr. Iványi Péter 1 Egy operandus művelet operandus operandus művelet Operátorok Két operandus operandus1 művelet operandus2 2 Aritmetikai műveletek + : összeadás -: kivonás * : szorzás /
MUNKAANYAG. Szám János. Síkmarás, gépalkatrész befoglaló méreteinek és alakjának kialakítása marógépen. A követelménymodul megnevezése:
Szám János Síkmarás, gépalkatrész befoglaló méreteinek és alakjának kialakítása marógépen A követelménymodul megnevezése: Általános gépészeti technológiai feladatok II. (forgácsoló) A követelménymodul
Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu
Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia
2. témakör: Számhalmazok
2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:
Matematikai alapok. Dr. Iványi Péter
Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: és Byte: 8 bit 28 64 32 6 8 4 2 bináris decimális
Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység
Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését
Máté: Számítógépes grafika alapjai
Téglalap kitöltése Kör, ellipszis kitöltése Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) Megjeleníthetők a) Csak a határvonalat reprezentáló pontok kirajzolásával
COBRA MUNKAÜGY ÉS BÉR PROGRAMCSOMAG 2013. ÉVI
COBRA MUNKAÜGY ÉS BÉR PROGRAMCSOMAG 2013. ÉVI VERZIÓINAK VÁLTOZÁSAI. Tartalomjegyzék: Tartalom MUN v13.0101... 2 MUN v13.0107... 10 MUN v13.0128... 18 MUN v13.0204... 21 MUN v13.0208... 27 MUN v13.0304...
TERMELÉSMENEDZSMENT. Gyakorlati segédlet a műszaki menedzser szak hallgatói számára. Összeállította: Dr. Vermes Pál főiskolai tanár 2006.
Szolnoki Főiskola Műszaki és Mezőgazdasági Fakultás Mezőtúr TERMELÉSMENEDZSMENT Gyakorlati segédlet a műszaki menedzser szak hallgatói számára Összeállította: Dr. Vermes Pál főiskolai tanár Mezőtúr 6.
4. MODUL TÁBLÁZATKEZELÉS. A vizsgázónak önállóan kell elindítania a táblázatkezelő alkalmazást, majd a munka végeztével be kell zárnia azt.
4. MODUL TÁBLÁZATKEZELÉS A NEGYEDIK MODUL TARTALMA A negyedik modul 80 feladatot tartalmaz. A vizsgaközpont ezek közül egyet jelöl ki a vizsgázónak. A feladatok túlnyomó része előkészített fájlt, illetve