Véletlenszám generátorok. 5. előadás
|
|
- Renáta Dudás
- 9 évvel ezelőtt
- Látták:
Átírás
1 Véletlenszám generátorok 5. előadás
2 Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes lehetséges esemény esélyének összege A véletlen változókhoz eloszlások tartoznak normáls (Gauss) egyenletes hatványfüggvény Mnden (adat)sokaságnak van gyakorság-eloszlása. A véletlen változóról feltesszük, hogy egy bzonyos (jellegű) sokaságból vesz (véletlen) tákat. A valószínűség változó eloszlása.
3 Normáls eloszlás a természetben gen gyakor pl. fák évgyűrűnek szélessége, az emberek magassága stb. egy deg (jó régen) egyfajta csoda volt, valamféle felsőbb szabályszerűságet láttak benne. a valószínűségszámítás egyk fontos tétele, a központ határeloszlás tétele szernt: ha nagy számú (lényegében tetszőleges eloszlású) véletlen hatást elegendően nagy számban összegzünk, akkor normáls eloszlást kapunk
4 Fzka véletlenszám generátorok kezdet módszerek: kockadobás, pénzfeldobás, roulette kerék lassú szerencsejátékokban Zener dódák termáls zaja, fényelektromos hatés, alagúthatás hardveres véletlenszámgenerátorok nterneten elérhető generátorok: - smeretlen forrású vdeofájlon végrehajtott műveletek alapján: láva lámpák felvétele ( ég felé fordított kamera felvétele - Hotbts: radoaktív bomlás alapján - andom.org: atmoszférkus rádózaj alapján működő CNN számítógéppel
5 Valód és pszeudo véletlenszám generátorok véletlen folyamatok modellezése ma = f ( ) = ma f ( ) d = véletlenszám generátor és ma között értékek előre rögzített eloszlásfüggvénnyel rendelkeznek f() normált eloszlás az adott ntervallumon den egyes számot azonos valószínűséggel generálnak [, ma ] f ( ) = [0, ma ] f ( ) = ma tulajdonságok: gyors a generált számok egymástól tökéletesen függetlenek a sorozatnak vagy egy részének nem szabad perodkusan smétlődne az eloszlás nagyszámú próbálkozásra teljesen egyenletes kell legyen ma véletlenszám generátor véletlenszerű folyamat detersztkus számítógéppel hogyan lehet véletlenszámot generáln? SEHOGY!!! véletlenszámokat hamsítunk detersztkus előállítás, a kívánt tulajdonságokat jól megközelítk
6 Modulo generátorok egész számokat elhelyezn véletlenszerű sorrendben 0 és ma között n = + ( an c) MOD ( ma ) a paraméterek megválasztása pl. a = 3, c = 4, ma = 32, 7, 25, 7, 23, 9, 3,, 7, 25,... peródus 8 a,c re ún. mágkus, jól bevált kombnácókat szoktak használn ANSI C-ben: ma = AND_MAX a legnagyobb nteger érték a kezdőértéket (SEED) változtathatjuk [0, ): [, ma ): {,.., ma -}: = = ( double) rand() (( double) AND _ MAX +.0) ( double) rand() + * + (nt) (( double) AND _ MAX +.0) ( double) rand() (( double) AND _ MAX +.0) ( ) ma ( ma ) = *
7 GFS (Generalzed Feedback Shft egster) algortmus a kzárólagos vagy (XO) műveleten alapszk a sorozat n. eleme: n p p és q egész számok és p > q az első p számot más véletlenszámgenerátortól kapjuk pl. n = 6; p = 5; q = 3; 3 = ; = 6 n = n q algortmus:. ha k < q, legyen j = k + q, különben j = k p + q 2. legyen k = k j 3. növeljük k-t (k + ) mod p re megjegyzés: kezdetben a k ndeet 0-nak választhatjuk nagyon gyors, rövdebb peródus, pct korrelált számok p q p q T T F T F T F T T F F F 6 = 3 = 00 0 = 0 = 3 javítható a shufflng algortmussal (összekeverés): - tároljunk egy N elemű lstát random számokból (N < T N ) + generáljunk egy r etra számot. legyen k = (nt)(n * r etra ), és használjuk az r k számot t következő 2. legyen r k = r etra 3. generáljunk r k helyett egy új számot
8 Véletlenszám generátorok tesztelése meghatározzuk, hogy hány véletlenszámot generálunk smétlődés nélkül hsztogramm teszt: ábrázoljuk adott ks ntervallumokba eső véletlenszámok gyakorságát vzuáls teszt: koordnáta rendszerben ábrázoljuk az (n, n+) pontokat egyenletes befeketedés azt jelent, hogy jó a generátor k-ad rendű korrelácók mértéke: c + k k ( k) = = lm + k = + k n ha, +k egymástól független, akkor és így c(k) = 0 n n =
9 Tetszőleges eloszlású véletlenszámok generálása GEN generátorunk, am egyenletes eloszlást generál a [0, )-en GEN2 létrehozása, am g() eloszlású véletlenszámokat generál [, ma )-on ma g() normált g( ) d = Kell egy transzformácó, amre gazak a következők: GEN = 0 GEN2 = GEN = GEN2 = y GEN = GEN2 = ma annak valószínűsége, hogy annak valószínűsége, hogy 0, között generáljunk dz = g( z) dz, y között generáljunk = 0 y y G = G [ + G( )] ( ) = g( ) d GEN + [ GEN G( )] 2 = G
Véletlenszám generátorok. 6. előadás
Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes
METROLÓGIA ÉS HIBASZÁMíTÁS
METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.
Az elektromos kölcsönhatás
TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy
Konfidencia-intervallumok
Konfdenca-ntervallumok 1./ Egy 100 elemű mntából 9%-os bztonság nten kéített konfdenca ntervallum: 177,;179,18. Határozza meg a mnta átlagát és órását, feltételezve, hogy az egé sokaság normáls elolású
8. Programozási tételek felsoroló típusokra
8. Programozás tételek felsoroló típusokra Ha egy adatot elem értékek csoportja reprezentál, akkor az adat feldolgozása ezen értékek feldolgozásából áll. Az lyen adat típusának lényeges jellemzője, hogy
Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika
Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a
1.Tartalomjegyzék 1. 1.Tartalomjegyzék
1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet
Véletlenszám generátorok
Véletlenszám generátorok Bevezetés Nincs elfogadott megközelítése a témának Alapvetően 2 fajta generátor: Szoftveres Hardveres Egyik legjobb szoftveres generátor: Mersenne Twister 2^19937 1 periódusú,
2. Hatványozás, gyökvonás
2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője
Másolásra épülő algoritmusok
Másolásra épülő algortmusok Tartalomjegyzék Másolás...2 Másolás és módosítás...3 Másolás és módosítás plusz...4 Tömbelemek módosítása...5 Kválogatás...6 Szétválogat...7 Unó...8 Metszet...9 Összefuttatás...10
19. Hasításos technikák (hash-elés)
19. Hasításos technikák (hash-elés) Példák: 1. Ha egy telefon előfizetőket a telefonszámaikkal azonosítjuk, mint kulcsokkal, akkor egy ritkán kitöltött kulcstartományhoz jutunk. A telefonszám tehát nem
Egyszerű programozási tételek
Egyszerű programozási tételek Sorozatszámítás tétele Például az X tömbben kövek súlyát tároljuk. Ha ki kellene számolni az összsúlyt, akkor az S = f(s, X(i)) helyére S = S + X(i) kell írni. Az f0 tartalmazza
E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D
23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL
23. ISMEKEDÉS A MŰVELETI EŐSÍTŐKKEL Céltűzés: A műveleti erősítők legfontosabb tlajdonságainak megismerése. I. Elméleti áttentés A műveleti erősítők (továbbiakban: ME) nagy feszültségerősítésű tranzisztorokból
MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA. Napkollektorok üzemi jellemzőinek modellezése
MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA Napkollektorok üzem jellemzőnek modellezése Doktor (PhD) értekezés tézse Péter Szabó István Gödöllő 015 A doktor skola megnevezése: Műszak Tudomány Doktor Iskola tudományága:
A lineáris tér. Készítette: Dr. Ábrahám István
A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=
JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
d(f(x), f(y)) q d(x, y), ahol 0 q < 1.
Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés
VEZETÉKVÉDŐ KAPCSOLÓK HIBAÁRAM KIOLDÁSSAL
W VEZETÉKVÉDŐ KAPCSOLÓK HIBAÁRAM KIOLDÁSSAL 1+N BOLF 6kA SOROZAT- ÁLTALÁNOS INFORMÁCIÓK 56 BOLF 1+N KAPCSOLÓ W SCHRACK INFO Hálózati feszültségtől független kioldás Tetszőleges hálózati csatlakozási irány
Mátrix-vektor feladatok Összeállította dr. Salánki József egyetemi adjunktus Begépelte Dr. Dudás László és Bálint Gusztáv
Mátrx-vektor feldtok Összeállított dr. Slánk József egyetem djunktus Begépelte Dr. Dudás László és Bálnt Gusztáv 1. feldt Adottk z n elemű, b vektorok. Képezn kell c vektort, hol c = b / Σ( ), ( = 0,1,,
MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
Fogaskerék hajtások I. alapfogalmak
Fogaskeék hajtások I. alapfogalmak A fogaskeekek csopotosítása A fogaskeékhajtást az embeiség évszázadok óta használja. A fogazatok geometiája má a 8-9. században kialakult, de a geometiai és sziládsági
Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján
BME Hdak és Szerkezetek Tanszék Magasépítés acélszerkezetek tárgy Gyakorlat útmutató Nyeregetetős csarnokszerkezetek terhe az EN 1991 alapján Összeállította: Dr. Papp Ferenc tárgyelőadó Budapest, 2006.
VARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu
Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia
Egyszerű algoritmusok
Egyszerű algortmusok Tartalomjegyzék Összegzés...2 Maxmum kválasztás...3 Mnmum kválasztás...4 Megszámlálás...5 Eldöntés...6 Eldöntés - wle...8 Lneárs keresés...10 Készítette: Gál Tamás Creatve Commons
Spike Trade napló_1.1 használati útmutató
1 Spike Trade napló_1.1 használati útmutató 1 ÁLTALÁNOS ÁTTEKINTŐ A táblázat célja, kereskedéseink naplózása, rögzítése, melyek alapján statisztikát készíthetünk, szűrhetünk vagy a már meglévő rendszerünket
Statisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma
Témakörök Statsztka Sortszerező BSc kézés (leelező tagozat) 2-2-es tané félé Oktató: Dr Csáfor Hajnalka főskola docens Vállalkozás-gazdaságtan Tsz E-mal: hcsafor@ektfhu Statsztka fogalmak Statsztka elemzések
Gyakorló feladatok ZH-ra
Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re
Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.
Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport
Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát
Készítette: Mike Gábor 1
A VALÓSÁGOS FESZÜLTSÉGGENEÁTO A soros kapcsolás modellje és a vele kialakío valóságos eszülséggeneráor erhel üzemmódja lényegéen evezeője a émes vezeőjű ávielechnikai modellnek. A származaás a kövekező:
TERMELÉSMENEDZSMENT. Gyakorlati segédlet a műszaki menedzser szak hallgatói számára. Összeállította: Dr. Vermes Pál főiskolai tanár 2006.
Szolnoki Főiskola Műszaki és Mezőgazdasági Fakultás Mezőtúr TERMELÉSMENEDZSMENT Gyakorlati segédlet a műszaki menedzser szak hallgatói számára Összeállította: Dr. Vermes Pál főiskolai tanár Mezőtúr 6.
Komputer statisztika gyakorlatok
Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes
Tartalom Regisztráció menete Első teendők Profilom
Tartalom 1. Regisztráció menete... 2 2. Első teendők... 5 Profilom ellenőrzése és kiegészítése, jelszó módosítása:... 5 3. Beállítások:... 10 3.1 Oktató jármű adatai, járműfotó feltöltés... 10 3.2 Az oktatási
Kezelési és szerelési útmutató
Kezelési és szerelési útmutató A Villa rendszer C3S alap, C3K kódzáras, C3C proxy Alapvető funkció 1. A színes vagy fekete-fehér CCD kamera 2. infra éjjellátó funkció 3. Csengetés beltéri monitoron 4.
Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:
Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.
Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés
ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő ő Ő ö ű
ö ő ü ö ö ő ö ö ö ö ő ő ő ö ő ő ő ö ő ö ő ő ö ö ő ő ö ö ő ö ö ő ö ö ö ő ő ü ö ő ü ű ö ú ő ú ú ú ő ü ő ü ö ö ú ö ö ö ő ü ö ö ö ő ö ő ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő
Lineáris Algebra gyakorlatok
A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk
NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.
NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa
Matematikai alapismeretek. Huszti Andrea
Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá
Biostatisztika e-book Dr. Dinya Elek
TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok
A programozás alapfogalmai
A programozás alapfogalmai Ahhoz, hogy a programozásról beszélhessünk, definiálnunk kell, hogy mit értünk a programozás egyes fogalmain. Ha belegondolunk, nem is olyan könnyű megfogalmazni, mi is az a
XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában
XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket
Statisztikai módszerek gyakorlat - paraméteres próbák
Statisztikai módszerek gyakorlat - paraméteres próbák A tanult paraméteres próbák: PRÓBA NEVE Egymintás U próba Kétmintás U próba Egymintás T próba Welch próba (Kétmintás T próba) F próba Grubbs próba
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
3. Az útüzemeltetés feladatköre
3. Az útüzemeltetés feladatköre 3.1. A közútkezelés 3.2. Az útellenőrzés 3.3. Az általános üzemeltetés, tisztítás 3.4. A téli útüzemeltetés Az útfenntartás adatfelvétel és nyilvántartás útellenőrzés útüzemeltetés
Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár
Balogh Edna Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetem tanár Budapest Műszak és Gazdaságtudomány Egyetem Építőmérnök Kar 202 . Bevezetés,
K Ü L Ö N L E G E S T R A N S Z F O R M Á T O R O K
VILLANYSZERELŐ KÉPZÉS 0 5 K Ü L Ö N L E G E S T R A N S Z F O R M Á T O R O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Különleges transzformátorok fogalma...3 Biztonsági és elválasztó
1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3
Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény
ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor
MISKOLCI EGYETEM Gépgyártástechnológa Tanszék Mskolc - Egyetemváros ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET Összeállította: Dr. Szabó Sándor A orgácsoló megmunkálásokhoz
AZ ÚJ OTSZ ÉS TvMI-k HATÁSA VILLAMOS TERVEZÉSRE
AZ ÚJ OTSZ ÉS TvMI-k HATÁSA A VILLAMOS TERVEZÉSRE 4. ELŐADÁS: Napelem (87. ) és Biztonsági világítás, biztonsági jelzések és menekülési útirányt jelző rendszer (146. - 153. ) 1 A 87. -BAN TELJESEN ÚJ FOGALOMMAL
4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme
HU 4 205 044-2012/11 Változtatások joga fenntartva Kezelés útmutató UltraGas kondenzácós gázkazán Az energa megőrzése környezetünk védelme Tartalomjegyzék UltraGas 15-1000 4 205 044 1. Kezelés útmutató
A továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
lmij~i!iiiiiiiiii~ill llllllll~l~ll~ll illllllllllllllllll~llm *1 0000661497 19* ikt. szám: FPH058 /619-34 /2015
,_:..---.-1 lmij~i!iiiiiiiiii~ill llllllll~l~ll~ll illllllllllllllllll~llm *1 0000661497 19* ikt. szám: FPH058 /619-34 /2015 PÁLYÁZATI FELHÍVÁS Budapest Főváros Közgyűlésének Tulajdonosi, Gazdasági és
Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja
POLGÁRMESTERE. Készült a Képviselő-testület 2013. május 8-i ülésére. Készítette: Tóth Miklós főépítész
BUDAPEST FŐVÁROS XVI. KERÜLETI POLGÁRMESTERE ÖNKORMÁNYZAT Készült a Képviselő-testület 2013. május 8-i ülésére. Készítette: Tóth Miklós főépítész Tárgy: Előzetes tájékoztatás a fővárosi településszerkezeti
1. Ismertesse az átviteltechnikai mérőadók szolgáltatásait!
Ellenőrző kérdések A mérés elején öt kérdésre kell választ adni. Egy hibás válasz a mérésre adott osztályzatot egy jeggyel rontja. Kettő vagy annál több hibás válasz pótmérést eredményez! A kapcsolási
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
Átsorolást segítő listák
Átsorolást segítő listák Készítette: Racskó Tamás, 2009.07.16. Tartalomjegyzék Tartalomjegyzék... 1 Bevezetés... 1 Átsorolás: maximálisan átsorolható létszámok (15%)... 1 Átsorolás: Á->K átsorolandó hallgatók
Nemetz O.H. Tibor emlékére. 2011 május 9.
Adatbiztonság és valószínűségszámítás 1 / 22 Adatbiztonság és valószínűségszámítás Nemetz O.H. Tibor emlékére Csirmaz László Közép Európai Egyetem Rényi Intézet 2011 május 9. Adatbiztonság és valószínűségszámítás
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy
Mechatronika Modul 1: Alapismeretek
Mechatronika Modul 1: Alapismeretek Jegyzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem,
Fizika II. (Termosztatika, termodinamika)
Fzka II. (Termosztatka, termodnamka) előadás jegyzet Élelmszermérnök, Szőlész-borász mérnök és omérnök hallgatóknak Dr. Frtha Ferenc. árls 4. Tartalom evezetés.... Hőmérséklet, I. főtétel. Ideáls gázok...3
Érdekes informatika feladatok
K. L. Érdekes informatika feladatok XXVIII. rész A konvex burkoló (burok) Legyen S a Z sík egy ponthalmaza. S konvex, ha tetszőleges A, B S-beli pont esetén az AB szakasz is S-be esik. Legyen S a Z sík
Intelligens Rendszerek Elmélete
Intellgens Rendszerek Elmélete Dr. Kutor László A mesterséges neuráls hálózatok alapfogalma és meghatározó eleme http://mobl.nk.bmf.hu/tantargyak/re.html Logn név: re jelszó: IRE07 IRE 7/1 Neuráls hálózatok
Valószínűségszámítás és statisztika. István Fazekas
Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség
LEKÉRDEZÉSEK SQL-BEN. A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek
LEKÉRDEZÉSEK SQL-BEN A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek RELÁCIÓS ALGEBRA A relációs adatbázisokon végzett műveletek matematikai alapjai Halmazműveletek:
A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek
A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az
FELADATOK A KALKULUS C. TÁRGYHOZ
FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy
Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek
Bevezetés progrmozásb 3. Elődás Algortmusok, tételek ISMÉTLÉS Specfkácó Előfeltétel: mlyen körülmények között követelünk helyes működést Utófeltétel: mt várunk kmenettől, m z összefüggés kmenet és bemenet
Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete
8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén
Felszín- és térfogatszámítás (emelt szint)
Felszín- és térfogatszámítás (emelt szint) (ESZÉV 2004.minta III./7) Egy négyoldalú gúla alaplapja rombusz. A gúla csúcsa a rombusz középpontja felett van, attól 82 cm távolságra. A rombusz oldalának hossza
járta, aprít ó é s tuskófuró a NEFA G fejlesztésében
ható, max. 140 cm munkaszélességre és 15 25 cm-es munkamélységre készült. A gép üzem próbájára ez évben kerül sor. A műveletcentrkus egyed gépkalakítások mellett nem mondtunk le egy bázsgép rendszerű csemetekert
III. Áramkör számítási módszerek, egyenáramú körök
. Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb
Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet
Hálózat gazdaságtan jegyzet Kss Károly Mlós, adcs Judt, Nagy Dávd Krsztán Pannon Egyetem Közgazdaságtan Tanszé 0. EVEZETÉS... 3 I. HÁLÓZTOS JVK KERESLETOLDLI JELLEMZŐI HÁLÓZTI EXTERNÁLIÁK ÉS KÖVETKEZMÉNYEIK...
Matematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
Az entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
Az F# nyelv erőforrásanalízise
Az F# nyelv erőforrásanalízise Góbi Attila Eötvös Loránd Tudományegyetem Támogatta a KMOP-1.1.2-08/1-2008-0002 és az Európai Regionális Fejlesztési Alap. 2012. Június 19. Góbi Attila (ELTE) Az F# nyelv
a NAT-1-1414/2009 számú akkreditálási ügyirathoz
Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1414/2009 számú akkreditálási ügyirathoz Az INFOWARE Vállalkozási és Kereskedelmi Zrt. Zárlati Próbaállomás (2310 Szigetszentmiklós, Határ út 22.)
Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.
INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság
p j p l = m ( p j ) 1
Online algoritmusok Online problémáról beszélünk azokban az esetekben, ahol nem ismert az egész input, hanem az algoritmus az inputot részenként kapja meg, és a döntéseit a megkapott részletek alapján
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,
2. témakör: Számhalmazok
2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:
Szakmai továbbképzés
Szakmai továbbképzés Energetikai tagozat Létesítési szabvány Magyar Mérnöki Kamara 2014 Magyar Mérnöki Kamara Energetikai Tagozat Szakmai továbbképzési előadás Feladatalapú pályázat Energetikai létesítmények
Adatbázisok* tulajdonságai
Gazdasági folyamatok térbeli elemzése 4. előadás 2010. 10. 05. Adatbázisok* tulajdonságai Rendezett, logikailag összefüggő és meghatározott szempont szerint tárolt adatok és/vagy információk halmaza Az
D F E I P. H Marchel-gázszűrők beépítési, üzemeltetési és használati utasítása. S www.marchel.de. 1.0 Tartalomjegyzék. 1.
H Marchel-gázszűrők beépítési, üzemeltetési és használati utasítása D F E I P S www.marchel.de H 1.0 Tartalomjegyzék 1.0 Tartalomjegyzék 2.0 Bevezető 3.0 A gázszűrő gyártási sorozatainak meghatározása
Felvételi vizsga Mesterképzés, gazdaságinformatikus szak BME Villamosmérnöki és Informatikai Kar. 2010. június 2.
GI pont(45) : Felvételi vizsga Mesterképzés, gazdaságinformatikus szak BME Villamosmérnöki és Informatikai Kar 2010. június 2. A dolgozat minden lapjára, a kerettel jelölt részre írja fel nevét, valamint
HITELESÍTÉSI ELŐÍRÁS HIDEGVÍZMÉRŐK ÁLTALÁNOS ELŐÍRÁSOK
HITELESÍTÉSI ELŐÍRÁS HIDEGVÍZMÉRŐK ÁLTALÁNOS ELŐÍRÁSOK HE 6/1-2005 Az adatbázisban lévő elektronikus változat az érvényes! A nyomtatott forma kizárólag tájékoztató anyag! TARTALOMJEGYZÉK 1. AZ ELŐÍRÁS
C# feladatok gyűjteménye
C# feladatok gyűjteménye Készítette: Fehérvári Károly I6YF6E Informatika tanár ma levelező tagozat 1) Feladat: ALAPMŰVELETEK Készítsünk programot, amely bekér két egész számot. Majd kiszámolja a két szám
Befektetési alapok működése, jogszabályi háttere. Erős Gergely Péter, szenior menedzser 2014.december.
Befektetési alapok működése, jogszabályi háttere Erős Gergely Péter, szenior menedzser 2014.december. Tematika Jogszabályi háttér és annak változásai Alap definíciója, alapok típusai Alap működése, fontosabb
Termelésmenedzsment alapok. Menedzsment és vállalkozásgazdaságtan
Termelésmenedzsment alapok Menedzsment és vállalkozásgazdaságtan B e v e z e t é s Vállalkozások alapelemei: 1. Tőke biztosítása (vállalati pénzügyek) 2. A termék elkészítése (termelésmenedzsment) 3. A
Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László
adat Távközlés és Médanformatka Tanszék Budapest Műszak és Gazdaságtudomány Egyetem Eurecom Telecom Pars Elosztott rendszerek játékelmélet elemzése: tervezés és öszönzés Toka László Tézsfüzet Témavezetők:
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
Halmazelmélet alapfogalmai
1. Az A halmaz elemei a kétjegyű négyzetszámok. Adja meg az A halmaz elemeit felsorolással! 2. Adott három halmaz: A = {1; 3; 5; 7; 9}; B = {3; 5; 7}; C = {5;10;15} Ábrázolja Venn-diagrammal az adott halmazokat!