MATEMATIKA ÉRETTSÉGI május 9. EMELT SZINT
|
|
- Lídia Budainé
- 9 évvel ezelőtt
- Látták:
Átírás
1 ) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat megfelelő mezőibe. Válaszát indokolja, támassza alá számításokkal! a) A állítás: A PQRS négyszögnek nincs derékszöge. (4 pont) b) B állítás: A PQRS négyszög húrnégyszög. (4 pont) c) C állítás: A PQRS négyszögnek nincs szimmetriacentruma. (5 pont) A B C Igaz Hamis. Igaz Hamis A * B * C * a) Az A állítás hamis mert van derékszöge. Például SRQ szög RQ 7; és mert RS ; 7 és így, így a négyszög R-nél lévő szöge derékszög b) A B állítás igaz mert a PQRS négyszögben az R csúccsal szemközti P csúcsnál lévő szög is derékszög. ugyanis RQ RS 0 PQ ;4 és PS 8; 4, ezért PQ PS Így a PQRS négyszög szemközti szögeinek összege 80 (a húrnégyszög tételének megfordítása miatt), tehát a négyszög húrnégyszög 0
2 c) A C állítás igaz mert ha lenne a négyszögnek szimmetriacentruma, akkor a PQRS négyszög paralelogramma lenne. Ehhez például az kellene, hogy az és a PS 8; 4 vektorok ellentett vektorok legyenek. Ez csak úgy teljesülne, ha az egyik oldalvektor koordinátái másik vektor koordinátáinak. Ez viszont nem teljesül. 3 RQ 7; ( pont) -szeresei a ( pont) Összesen: 3 pont ) Legyen adott az függvény. a) Határozza meg az f függvény zérushelyeit! (4 pont) b) Vizsgálja meg az f függvényt monotonitás szempontjából! (6 pont) c) Adja meg az f függvény legnagyobb és legkisebb értékét! (4 pont) a) Mivel x 3 3x x 3 x x 3 x 0 f :,5;,5, f x x 3x, ezért f zérushelyei lehetnek x 3, x3 3 és. (3 pont) Az egyenlet mindhárom gyöke eleme az f értelmezési tartományának. ezért mindegyik zérushely jó megoldást ad. b) Az f a teljes értelmezési tartományának belső pontjaiban differenciálható függvény, ezért a monotonitás megállapítása és a szélsőértékek megkeresése az első derivált előjelvizsgálatával történhet f x 3x 3 Az első derivált értéke 0, ha Ezek az x értékek az értelmezési tartomány elemei. Készítsünk táblázatot az x és f előjelviszonyai alapján az f menetének meghatározása: x -,5 x - x x - x x x,5 f pozitív 0 negatív 0 pozitív f növekvő f csökkenő f Monotonitás megállapítása a táblázat helyes kitöltése alapján. c) Az f helyi maximumot vesz fel az f növekvő (3 pont) x helyen, a helyi maximum értéke Az f helyi minimumot vesz fel az x helyen, a helyi minimum értéke f Mivel f,5 8,5, a legkisebb függvényérték -8,5 Mivel f,5 8,5, ezért a legnagyobb függvényérték 8,5 Összesen: 4 pont
3 3) Oldja meg az alábbi egyenletrendszert, ahol x és y valós számok! y 0 x 3 lg x 4x 3 y ( pont) Az első megoldás alapján y tetszőleges és A második alapján y tetszőleges és x 3 vagy x Az egyenletrendszer gyökeit tehát az y és x 3 feltétel mellett keressük y lg x 3 Az első egyenletből x 3 Amit beírva a második egyenlet jobb oldalára y helyére kapjuk az lg x 4x 3 lg x 3 lg0 egyenletet. azaz x x x lg 4 3 lg0 3 A logaritmusfüggvény monotonitása miatt x x x A bal oldal szorzattá alakítva Mivel Innen és x 3, ezért x 3, 9 y lg 0,653 9 x Az egyenletrendszer megoldása tehát x 3 x lg x 3 x és y lg 9 Összesen: pont
4 4) a n a) Legyen egy mértani sorozat, melynek első tagja 5, hányadosa 3. Mennyi a valószínűsége, hogy ha ennek a mértani sorozatnak az első 0 tagjából egyet véletlenszerűen kiválasztunk, akkor a kiválasztott tag -gyel osztva maradékot ad? (6 pont) b) Legyen egy számtani sorozat, amelynek az első tagja 5, és b n differenciája 3. Mekkora a valószínűsége, hogy ha ennek a számtani sorozatnak az első 0 tagjából egyen kiválasztunk, akkor a kiválasztott tag -gyel osztva maradékot ad? (7 pont) a) Az első sorozatban az első tagtól kezdve felírjuk a tagok -gyel való osztás maradékát: 5; 4; ; 3; 9; 5; A maradékok ciklikusan ismétlődnek (mindig 3-mal szorzunk) Minden ötödik tag -es maradékot ad ( pont) tehát a valószínűség 5 ( pont) b) A számtani sorozatban az első tagtól kezdve felírjuk a tagok -gyel való osztás maradékát: 5; 8; 0; 3; 6; 9; ; 4; 7; 0; ; Ettől kezdve ismétlődik: 5; 8; 0; tehát a ciklushossz Egy ciklusban egy kedvező eset van Mivel 0 ciklus van a 0. tagig, és mindegyikben egy darab -es van így a keresett valószínűség 0 0 ( pont) Összesen: 3 pont
5 II. 5) Panni és Kati elvállalta, hogy a szövegszerkesztővel legépelik Dani szakdolgozatát. A két lány együttes munkával munkaóra alatt végezne a gépeléssel. Kedden reggel 8 órakor kezdett Panni a munkához, Kati 0 órakor fogott hozzá. Megállás nélkül ki-ki egyenletes sebességgel dolgozott kedden 4 óráig, ekkor a kézirat 40%-ával végeztek, és abbahagyták a munkát. a) Hány óra alatt gépelné le Panni, illetve Kati a teljes szakdolgozatot (állandó munkatempót, és megszakítás nélküli munkát feltételezve)? (9 pont) Szerdán reggel egyszerre kezdtek 9 órakor a gépeléshez, és együtt egyszerre fejezték be. Szerdán Panni fél óra ebédszünetet tartott, Kati pedig a délelőtti munkáját egy órányi időtartamra megszakította. b) Hány órakor végeztek a lányok a munkával szerdán? (7 pont) a) Jelölje x azt az időt órában, amennyi idő alatt Panni egyedül begépelte volna a kéziratot, y pedig azt, amennyi alatt Kati végezte volna el ugyanezt a munkát egyedül. Panni szerdán t órát fordított gépelésre. Foglaljuk táblázatba a szövegből kiolvasható adatokat: Panni Kati A teljes munka elvégzése (h) x y együtt A táblázat helyes kitöltése Mindezekből tudhatjuk A munka elvállalásakor a keddi nap végén 6 4 x y 5 x 30 x y óra alatti teljesítmény x y Gépelésre fordított idő (h) kedden 6 4 (3 pont) ( pont) A két egyenletből: óra és y 0 óra ( pont) A feladat feltételeinek megfelelően Panni 30 óra, Kati 0 óra alatt végzett volna egyedül a munkával.
6 b) Szerdán Panni t, Kati t órát gépelt t t 3 Szerda délután, a munka befejezésekor ( pont) Ebből Panni fél órát ebédelt, így a gépelésre fordított 7,5 óra 8 óra munkaidőre változik. Kati szerdán 7,5 0,5 7 órát gépelt, és egy órával több (vagyis 8) volt a munkaideje. ( pont) Szerdán 9 órakor kezdtek, és mindketten 8 óra munkaidő után fejezték be a gépelést, vagyis 7 órára lettek készen a kézirattal. Összesen: 6 pont t 7,5 óra 6) Egy közvélemény-kutató intézet felméréséből kiderült, hogy a felnőttek 4%-a színtévesztő. Véletlenszerűen kiválasztunk 8 felnőttet abból a népességből, amelyre ez a felmérés vonatkozott. Mekkora a valószínűsége, hogy közöttük: a) pontosan két személy színtévesztő? (3 pont) b) legalább két személy színtévesztő? (8 pont) A kért valószínűség értékét ezred pontossággal adja meg! Ebben az intézetben 8 férfi és 9 nő dolgozik főállásban. Egy megbeszélés előtt, amikor csak ez a 7 főállású kutató jelent meg, a különböző nemű kutatók között 45 kézfogás történt. Tudjuk, hogy minden nő pontosan 5 férfival fogott kezet, és nincs két nő, aki pontosan ugyanazzal az öttel. c) Lehetséges-e, hogy volt két olyan férfi, aki senkivel sem fogott kezet? (5 pont) a) Annak a valószínűsége, hogy a 8 vizsgált személy közül pontosan kettő színtévesztő a binomiális modell alapján: P 8 0,04 0,96 6 ( pont) P 0,035 b) Az az eset, hogy a 8 vizsgált személy közül legalább színtévesztő van, azt jelenti, hogy vagy több a színtévesztők száma Egyszerűbb a kérdezett esemény komplementerének valószínűségét kiszámolni, tehát azt,hogy mennyi a valószínűsége annak, hogy legfeljebb színtévesztő van a 8 ember között. 8 A pontosan 0 színtévesztő valószínűsége: P0 0,96 0,74 A pontosan színtévesztő valószínűsége: 8 0,04 0,96 7 0,405 P P0 P 0,96 Tehát P (színtévesztők száma legfeljebb ): ( pont) Ekkor a komplementer esemény valószínűsége: 0,038 Tehát 0,038 a valószínűsége annak, hogy legfeljebb két személy színtévesztő a kiválasztott nyolc személyből.
7 c) Ha lehetséges lenne, akkor összesen 6 férfival fogtak volna kezet a nők Ezeket a férfi ötösöket féleképpen lehet kiválasztani Mivel 9 nő van, ezért a feltétel szerint kellene legalább 9 különböző férfi ötös Nem lehetséges, hogy volt két olyan férfi is, aki senkivel sem fogott kezet, mert ellentmondásra jutottunk. Összesen: 6 pont 7) A világhírű GAMMA együttes magyarországi koncertkörútja során öt vidéki városban lépett fel. Az alábbi táblázat tartalmazza a körút néhány üzleti adatát. város fizető nézők bevétel a jegyeladásból egy jegy ára (Ft) száma (ezer Ft) Debrecen Győr Kecskemét Miskolc Pécs a) A koncertturné során melyik városban adták el a legtöbb jegyet? (3 pont) b) Mennyi volt az összes eladott jegy átlagos ára? (4 pont) Bea elment Budapesten a GAMMA együttes koncertjére, és becslése szerint ember hallgatta a zenét. Peti Prágában volt az együttes koncertjén, ahol a nézők számát főre becsülte. A GAMMA együttes menedzsere, aki ismerte a tényleges nézőszámokat, elárulta, hogy: - Budapesten a tényleges nézőszám nem tér el 0%-nál többel a Bea által adott becsléstől - Peti becslése nem tér el 0%-nál többel a tényleges prágai nézőszámtól c) Mekkora a budapesti nézőszám és a prágai nézőszám közötti eltérés lehetséges legnagyobb értéke, a kerekítés szabályainak megfelelően ezer főre kerekítve? (6 pont) d) A fenti adatok ismeretében előfordulhatott-e, hogy Budapesten és Prágában ugyanannyi ember volt a GAMMA együttes koncertjén? (3 pont) a) A kitöltött táblázat: város fizető nézők száma egy jegy ára (Ft) bevétel a jegyeladásból (ezer Ft) Debrecen Győr Kecskemét Miskolc Pécs Kecskeméten 390, Pécsett 850 fizető néző volt ( pont) A legtöbb fizető néző Kecskeméten volt
8 b) Az öt városban összesen fizető néző volt Miskolcon a jegyeladásból 4955 ezer Ft bevétel származott Az öt városban az összes bevétel 7976 ezer Ft volt Az átlagos jegyár Ft volt c) Bea becslése fő, ennek 0%-a 5000 fő. Ha a tényleges nézőszám Budapesten b, akkor Peti becslése fő, ennek 0%-a 6000 fő. Ha a tényleges nézőszám Prágában p, ennek a 0%-a 0,p, akkor 0, , ( pont) Innen p A legnagyobb eltérés akkor van a két nézőszám között, ha fő A nézőszámok közötti lehetséges legnagyobb eltérés ezresekre kerekített értéke ezer fő d) A b-re kapott és p-re kapott reláció miatt az azonos b és p értékeket a és az intervallumok közös egész elemei adják Tehát, ha mindkét nézőszám ugyanazon eleme az 8) b p p Ekkor az eltérés ;55000 b p 54546;66666 p b és 54546;55000 intervallumnak Mindezekből következik, hogy lehetséges, hogy a két fővárosban azonos számú néző hallgatta a GAMMA együttest. Összesen: 6 pont a) Ábrázolja függvény-transzformációk segítségével a intervallumon az x x x 3 3;4 hozzárendelési szabállyal megadott függvényt! (6 pont) b) Legyen az f, a g és a h függvények értelmezési tartománya a valós számok halmaza, hozzárendelési szabályuk: ; x 3 g x f x x x 3,. Képezzünk egyszeresen összetett függvényeket a szokásos módon. h x Például: x g f x g f x x x x x Készítse el a fenti példának megfelelően- az f, g és h függvényekből pontosan két különböző felhasználásával képezhető egyszeresen összetett függvényeket! Sorolja fel valamennyit! (6 pont) c) Keressen példát olyan p és t, a valós számok halmazán értelmezett függvényre, amelyre p t x t p x! Adja meg a p és t függvény hozzárendelési szabályát! (4 pont)
9 a) x x x x 3, ha 0 x x x 3, ha 0 x x x x x 4, ha 0 4, ha 0 A grafikon két összetevőjének ábrázolása transzformációval ( pont) A függvény képe a megadott intervallumon ( pont) b) Összetett függvényhez a 3 függvény közül -t kell kiválasztani a sorrendre való tekintettel, ezt 6-féleképpen tehetjük meg. g f x g f x x x 3 3 x - x- 6 (megadva) A függvények: f g x f g x x 3 x 3 3 x - 8 x+ h f x h f x x - x - 3 f h x f h x x x 3 x - x - 3 g h x g h x x -3 h gx h g x c) Egy egyszerű példa: p x x c és konstans) x -3 p t x x c c x t px x c c x Tehát p t x t p x t x x c (ahol c nullától különböző Összesen: 6 pont 9) Az ABCDA B C D téglatestben úgy jelöljük a csúcsokat, hogy az ABCD alaplappal egybevágó lapon az A csúcsot az A-val, a B csúcsot a B-vel, a C csúcsot a C-vel, a D csúcsot a D-vel kösse össze él. Tudjuk, hogy DAD szög 45 -os, a BAB szög 60 -os. a) Mekkora a B AD szög koszinusza? (6 pont) b) Mekkora az AB A D tetraéder térfogata, ha a téglatest legrövidebb éle 0? (4 pont) c) Mekkora az AA D és az AB D síkok hajlásszöge? (6 pont)
10 a) Jó ábra az adatok feltüntetésével ( pont) Jelöljük a téglatest AD élének hosszát a-val. Mivel a D DA háromszög egyenlőszárú derékszögű háromszög: és A téglatest 8 db éle a hosszúságú, Az ABB derékszögű háromszög oldalai rendre: a a BB ' a; AB ; AB ' 3 3 DA DD ' a AD ' a A téglatest A B élére illeszkedő két lapja egybevágó, ezért AB ' B ' D ' tehát az AB D háromszög egyenlőszárú A keresett az alapon fekvő egyik szög, ennek koszinuszát például koszinusz függvénnyel a B FA derékszögű háromszögből (F pont az AD alap felezőpontja) vagy az AB D háromszögből koszinusz-tétellel számíthatjuk ki BA ' D ' 6 cos 0,64 4 b) Mivel a AB A D tetraédert úgy kaptuk, hogy a téglatest A csúcsába befutó három egymásra merőleges élének végpontjait összekötöttük ezzel az A csúccsal, a tetraéder térfogatát megkaphatjuk, ha AA D lapot tekintjük a tetraéder alaplapjának és erre a lapra merőleges A B élt a tetraéder magasságának AA ' A ' D ' a TAA ' D ' ; a m A ' B ', innen 3 3 TAA ' D ' A ' B ' a a a 3 V A téglatest legrövidebb éle AB a A ' B ' 0 3 a, innen a 0 3 Ezt az értéket a térfogat képletébe a helyére behelyettesítve kapjuk, hogy V ,
11 c) Az AA D és az AB D síkok hajlásszögét az AD metszésvonaluk egy pontjába állított merőlegesek szöge adja meg. Az AB A D tetraéder AD élére illeszkedő két lapja egyenlőszárú háromszög a közös AD lapon, ezért a metszésvonalakon F pont legyen az AD él felezőpontja. Ekkor A B A F háromszög A -ben derékszögű, mert az A B él a tetraéder magassága, ezért merőleges az AA D alaplap minden egyenesére, így A F-re is. AB ' ' a 3 ; A' FB ' Az AA D egyenlőszárú derékszögű háromszögben az A F magasság az AD átfogó felével egyenlő, vagyis AF ' a ' ' 3 tg AB 0,865 AF ' a 3 Innen AD ' a a 39,3 ( pont) Összesen: 6 pont
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot
Próba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai
MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT
Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz
TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69
TARTALOMJEGYZÉK ELŐSZÓ............................................................ 7 1. GONDOLKOZZ ÉS SZÁMOLJ!............................. 9 Mit tanultunk a számokról?............................................
Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
FELADATOK ÉS MEGOLDÁSOK
3. osztály Egy asztal körül 24-en ülnek, mindannyian mindig igazat mondanak. Minden lány azt mondja, hogy a közvetlen szomszédjaim közül pontosan az egyik fiú, és minden fiú azt mondja, hogy mindkét közvetlen
MATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,
4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Statisztika feladatok (emelt szint)
Statisztika feladatok (emelt szint) (ESZÉV Minta (1) 2004.05/8) Tekintse az alábbi magyarországi házassági adatokat tartalmazó statisztikai táblázatot! a) Készítsen diagramot, amely szemlélteti a házasságkötések
MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára
Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek
Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
Felszín- és térfogatszámítás (emelt szint)
Felszín- és térfogatszámítás (emelt szint) (ESZÉV 2004.minta III./7) Egy négyoldalú gúla alaplapja rombusz. A gúla csúcsa a rombusz középpontja felett van, attól 82 cm távolságra. A rombusz oldalának hossza
148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?
148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei
4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Fazekas nyílt verseny matematikából 8. osztály, speciális kategória
Fazekas nyílt verseny matematikából 8. osztály, speciális kategória 2005. január 12. feladatok kidolgozására két óra áll rendelkezésre. Számológép nem használható. példák tetszőleges sorrendben megoldhatók.
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Elsőfokú egyenletek...
1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
A továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
MATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes
9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik
1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára
Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa
2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy
1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba
I. rész. x 100. Melyik a legkisebb egész szám,
Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos
2. Interpolációs görbetervezés
2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,
EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK
X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre
Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege
9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. május 5. KÖZÉPSZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x 1x 4 0 Az egyenlet gyökei 1, 5 és 8. ) Számítsa ki a 1 és 75 számok mértani közepét! A mértani
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot
1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik
2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n
Országos Középiskolai Tanulmányi Verseny, 2012 13-as tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a javító
Matematika tanmenet/4. osztály
Comenius Angol-Magyar Két Tanítási Nyelvű Iskola 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Fürné Kiss Zsuzsanna és Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti
Matematika POKLICNA MATURA
Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét
MATEMATIKA tankönyvcsaládunkat
Bemutatjuk a NAT 01 és a hozzá kapcsolódó új kerettantervek alapján készült MATEMATIKA tankönyvcsaládunkat 9 10 1 MATEMATIKA A KÖTETEKBEN FELLELHETŐ DIDAKTIKAI ESZKÖZTÁR A SOROZAT KÖTETEI A KÖVETKEZŐ KERETTANTERVEK
Érettségi feladatok: Halmazok, logika 1/5
Érettségi feladatok: Halmazok, logika 1/5 I. Halmazműveletek 2006. február/12. Az A és a B halmazokról a következőket tudjuk: A B = {1; 2}, A U B = {1; 2; 3; 4; 5; 6; 7}, A \ B = {5; 7}. Adja meg az A
MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Lineáris algebra I. Vektorok és szorzataik
Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere
LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK
Írta: LEITOLD ADRIEN LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Egyetemi tananyag COPYRIGHT: Dr. Leitold Adrien Pannon Egyetem Műszaki Informatika Kar Matematika Tanszék LEKTORÁLTA: Dr. Buzáné
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest)
NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre bontása csak ott lehetséges,
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika RÉ megoldókulcs 0. január. MTEMTIK RÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. a Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.
1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2015. október 13. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
MATEMATIKA FELADATGYŰJTEMÉNY
Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................
ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul
Matematika A 4. évfolyam ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN 9. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 9. modul ÍRÁSBELI
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Valószínűség-számítás II.
Valószínűség-számítás II. Geometriai valószínűség: Ha egy valószínűségi kísérletben az események valamilyen geometriai alakzat részhalmazainak felelnek meg úgy, hogy az egyes események valószínűsége az
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 00/0-es tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató.
Lineáris Algebra gyakorlatok
A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk
Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag
Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag Életkor: Fogalmak, eljárások: 15 18 év összeszámolási módszerek (permutáció, variáció, kombináció) sorozatok rekurzív megadása
Széchenyi István Egyetem, 2005
Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását
NULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
Szeminárium-Rekurziók
1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az
Számtani- és mértani sorozatos feladatok (középszint)
Számtani- és mértani sorozatos feladatok (középszint) (KSZÉV Minta (2) 2004.05/II/16) a) Egy számtani sorozat első tagja 9, különbsége pedig 4. Adja meg e számtani sorozat első 5 tagjának az összegét!
Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A =
Mátrixok 25. február 23.. Feladat: Legyen A ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A deníciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4
A legrövidebb úton úgy tudunk menni az A-ból B-be, hogy csak rézsútosan jobbra és lefele megyünk. (3 pont)
NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 015 HÓDMEZŐVÁSÁRHELY 9-. OSZTÁLY 015. MÁRCIUS 30. FELADATOK CSAK SZAKKÖZÉPISKOLÁSOKNAK Sz 1. Futár Berci csomagokat szállít Erdőfalván. Most az A pontból kell eljutnia
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény
Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
Szent István Tanulmányi Verseny Matematika 3.osztály
SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet