Partíció probléma rekurzíómemorizálással
|
|
- Csongor Budai
- 10 évvel ezelőtt
- Látták:
Átírás
1 Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott részfeladatokat az algoritmus nagyon sokszor újra kiszámol. Megoldás: jegyezzük fel a kiszámolt értéket, és ha már megvan nincs szükség rekurzív hívásra. PARTÍCIÓRM(n) Return P2(n,n) P2RM(n,k) if T[n,k]>0 then return T[n,k] if (k=1) Or (n=1) then {T[n,k]:=1 return 1} else if k>=n then {T[n,k]:=P2RM(n,n-1)+1 return T[n,k]} else {T[n,k]:=P2RM(n,k-1)+P2RM(n-k,k) return T[n,k]} A futási idő és tárigény O(n 2 ). Partíció négyzetes táblázatkitöltéssel A rekurziót teljesen kiküszöbölhetjük táblázat-kitöltéssel. A T2[n,k] táblázatelem tartalmazza a P2(n,k) részprobléma megoldását. A táblázat első sora azonnal kitölthető, mert P2(n, 1) = 1. Olyan kitöltési sorrendet keresünk, hogy minden (n, k), k > 1 részprobléma kiszámítása esetén azok a részproblémák, amelyek szükségesek P2(n, k) kiszámításához, már korábban kiszámítottak legyenek. Általánosan, rekurzív összefüggéssel definiált problémamegoldás esetén egy r (rész)probléma összetevői azok a részproblémák, amelyek megoldásától r megoldása függ. Tehát a táblázatkitöltés alkalmazásához meg kell állapítani a részproblémáknak egy olyan sorrendjét, hogy minden r részprobléma minden összetevője előrébb álljon a sorrendben, mint r. A rekurzív összefüggések megadják az összetevőket: P2(1,k) = 1, P2(n,1) = 1, P2(n,n) = 1+P2(n,n-1), P2(n,k) = P2(n,n) ha n < k, P2(n,k) = P2(n,k-1)+P2(n-k,k) ha k < n. Összetevők: P2(1,k)-nak és P2(n,1)-nek nincs összetevője, P2(n,n) összetevője P2(n,n-1), P2(n,k) összetevője P2(n,n), ha (n < k), P2(n,k) összetevői: P2(n,k-1) és P2(n-k,k), ha (k < n). Tehát a táblázat kitöltése (k-szerint) soronként balról jobbra haladó lehet. Az algoritmus futási ideje és tárigénye is O(n 2 ). 1
2 ParticioDin for i:=1 to n T[i,1]:=1 for j:=2 to n {T[j,j]=T[j,j-1]+1 for r:=j+1 to n {p:=min(r-j,j) T[r,j]:=T[r,j-1]+T[r-j,p]}} return T[n,n] 1. táblázat. A partíció algoritmus táblázata táblázat. A partíció algoritmus teljes táblázata Partíció lineáris táblázatkitöltéssel Látható, hogy elegendő lenne a táblázatnak csak két sorát tárolni, mert minden (n,k) részprobléma összetevői vagy a k-adik, vagy a k-1-edik sorban vannak. Sőt, elég egy sort tárolni balról jobbra (növekvő n-szerint) haladó kitöltésnél, mert amelyik részproblémát felülírjuk (n-k,k), annak később éppen az új értéke kell összetevőként. ParticioDin2 for i:=1 to n do T[i]:=1 for j:=2 to n {T[j]=T[j]+1 for r:=j+1 to n T[r]:=T[r]+T[r-j]} return T[n] Mátrixszorzás probléma Ha egy i j méretű mátrixot és egy j k méretű mátrixot szorzunk össze a skalár műveletek száma i jk. A mátrixok szorzása asszociatív, az elvégzendő skalár műveletek száma függ a zárójelezéstől. Példa: Legyenek A 1,A 2,A 3 méretei 2 3, 3 4, 4 5. Ekkor: - (A 1 A 2 )A =64 műveletet hajt végre - A 1 (A 2 A 3 ) pedig 60+30=90 műveletet. A mátrixszorzás probléma feladata egy adott szorzás optimális zárójelezésének megtalálása. Az input: A 1,A 2,...A n, ahol A i mérete p i 1 p i. 2
3 Részprobléma: A i...a j optimális zárójelezése minden i, j párra, a megoldás értéke legyen m[i, j]. Nyilvánvaló, hogy m[i,i] = 0. Rekurzív összefüggés: Ha a szorzásnál az első zárójelpár hátsó zárójele az A k után kerül, akkor a költség: m[i,k]+ m[k + 1, j] + p i 1 p k p j. Ezen lehetőségek közül választjuk a legjobbat, így ha i < j, akkor m[i, j] = min i k< j {m[i,k] + m[k + 1, j] + p i 1 p k p j }. Táblázatkitöltés: m[i,j]-hez használjuk az m[i,k] és m[k+1,j] értékeket, ezeknek kell meglenni az m[i,j] érték számításánál. Így a helyes kitöltési sorrend átlónként megy (elsőként a j=i, értékek, aztán j=i+1, majd j=i+2 és így tovább). A megoldás meghatározását feljegyzéses módszerrel oldjuk meg, S[i,j]-ben feljegyezzük, hogy mi volt az optimális döntés m[i,j] számításakor. MATRIXSZORZAS for i:=1 to n m[i,i]=0 for l:=2 to n {for i:=1 to n-l+1 {j:=i+l-1 m[i,j]:=inf for k:=i to j-1 {q:= m[i,k]+m[k+1,j]+p(i-1)p(k)p(j) If q<m[i,j] then {m[i,j]:=q S[i,j]:=k}}}} A fenti a szakasz kitölti az m és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető. KIIR(i,j) If j>i Then Print "(" KIIR(i,S[i,j]) KIIR(S[i,j]+1,j) Print ")" Else Print "A(i)" Példa: A 1 (6 7), A 2 (7 3), A 3 (3 1), A 4 (1 2), A 5 (2 4) 3. táblázat. Az m[i,j] értékek táblázata m[1,3] = min{[m[1,1] + m[2,3] ,m[1,2] + m[3,3] } = 63 m[2,4] = min{[m[2,2] + m[3,4] ,m[2,3] + m[4,4] } = 35 m[3,5] = min{[m[3,3] + m[4,5] ,m[3,4] + m[5,5] } = 20 m[1,4] = min{[m[1,1] + m[2,4] ,m[1,2] + m[3,4] ,m[1,3] + m[4,4] } = 75 3
4 4. táblázat. Az S[i,j] értékek táblázata Megoldás: ((A 1 )(A 2 A 3 ))(A 4 A 5 ) A dinamikus programozás stratégiája. A dinamikus programozás, mint probléma-megoldási stratégia az alábbi öt lépés végrehajtását jelenti. 1. Az [optimális] megoldás szerkezetének elemzése. 2. Részproblémákra és összetevőkre bontás úgy, hogy az összetevőktől való függés körmentes legyen. Minden részprobléma [optimális] megoldása kifejezhető legyen (rekurzívan) az összetevők [optimális] megoldásaival. 3. Részproblémák [optimális] megoldásának kifejezése (rekurzívan) az összetevők [optimális] megoldásaiból. Az 1-3 pontok lényegében egy rekurzív algoritmus megtervezését jelentik. 4. Részproblémák [optimális] megoldásának kiszámítása alulról-felfelé haladva. (A részproblémák kiszámítási sorrendjének meghatározása. Olyan sorba kell rakni a részproblémákat, hogy minden p részprobléma minden összetevője előrébb szerepeljen a felsorolásban, mint p. A részproblémák kiszámítása a sorrendnek megfelelően haladva, azaz táblázat-kitöltéssel. 5. Egy [optimális] megoldás előállítása a 4. lépésben kiszámított (és tárolt) információkból. Visszafejtéses vagy feljegyzéses módszer. Mikor érdemes dinamikus programozást használni? Optimális résztruktúrájú feladat: a probléma egy részfeladatának optimális megoldása önmagán belül a további részfeladatok optimális megoldásait is tartalmazza. Átfedő részfeladatok: egy rekurzív algoritmus, ismételten visszatér ugyanazokra a részfeladatokra. (Oszd meg és uralkodj típusú rekurzív algoritmusoknál általában nincs ilyen probléma.) Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös részsorozatának meghatározása. A továbbiakban X i az X sorozat i hosszú prefixét jelöli X i = (x 1,...,x i ) és hasonlóan jelöljük a prefixeket az Y és Z sorozatokra is. Lemma: Legyen X = (x 1,...,x m ) és Y = (y 1,...,y n ) két sorozat és Z = (z 1,...,z k ) ezek LKR-je. Ekkor: - Ha x m = y n, akkor z k = x m = y n és Z k 1 az X m 1 és Y n 1 sorozatok egy LKR-je. - Ha x m y n, akkor Z az X m 1 és Y vagy az X és Y n 1 sorozatok egy LKR-je. Megoldás dinamikus programozással: Részprobléma: X i és Y j LKR-je. Az LKR hossza legyen c[i,j]. Nyilvánvalóan c[0,j]=c[i, 0]= 0. Rekurzív összefüggés: A lemma alapján 0, ha i = 0 vagy j = 0, c[i, j] = c[i 1, j 1] + 1, ha x i = y j, max{c[i 1, j], c[i, j 1] egyébként, 4
5 Táblázatkitöltés: c[i,j]-hez használjuk az c[i,j-1] és c[i-1,j] értékeket, ezeknek kell meglenni a c[i,j] érték számításánál. Így a helyes kitöltési sorrend soronként minden sorban a nagyobb j érték felé. A megoldás meghatározását feljegyzéses módszerrel oldjuk meg, S[i,j]-ben feljegyezzük, hogy mi volt az optimális döntés c[i,j] számításakor. LKR for i:=0 to m c[i, 0]:=0 for j:=1 to n c[0,j]:= 0 for i=:1 to m {for j:=1 to n {if x[i]=y[j] then {c[i,j]:=c[i-1,j-1]+1 S[i,j]:=2} else if c[i-1,j]>= c[i,j-1] then {c[i,j]:=c[i-1,j] S[i,j]:=1} else {c[i,j]:=c[i,j-1] S[i,j]:= 0}}} Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető. KIIR(i,j) if i=0 or j=0 then return if S[i,j]=2 then {KIIR(i-1,j-1) Print "x[i]"} else if S[i,j]=1 then KIIR(i-1,j) else KIIR(i,j-1) Példa Határozzuk meg az (a,b,b,a,b,a,b,a) és (b,a,b,a,a,b,a,a,b) sorozatok leghosszabb közös részsorozatát! 5. táblázat. Az c[i,j] értékek táblázata Tehát az LKR hossza 6. Az LKR-t megkapjuk, ha felírjuk az S táblázatot, vagy visszafejtéssel, ahol az átlós érték növekszik, ott van közös betű. Az i-edik sor j-edik elemének, az X i-edik és az Y j-edik betűje felel meg. Következésképp egy LKR (b, b, a, a, b, a). Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk. Az s[i] és S értékek egészek. Szeretnénk 5
6 úgy választani tárgyakat, hogy az összfontosság maximális legyen. Tehát feladatunk, hogy kiválasszuk a tárgyaknak olyan halmazai közül, amelyekre az összsúly nem haladja meg S-t azt, amelyre maximális az összfontosság. Definiáljuk az F(i,W) függvényt, minden i = 1,...,n, W = 0,...,S értékre. Ez a függvény azon hátizsák probléma optimális függvényértékét adja meg, amelyben a tárgyak listája az első i tárgyat tartalmazza, és a hátizsák mérete W. Ekkor a kezdeti értékekre F(1,W) = f [1], ha s 1 W és 0 különben. Másrészt a következő rekurzió teljesül: F(i + 1,W) = max{f(i,w), f [i + 1] + F(i,W s[i + 1])}, ha s[i + 1] W. Továbbá F(i + 1,W) = F(i,W), ha s[i + 1] > W, A rekurzió valóban fennáll. A részprobléma optimális megoldásában vagy szerepel az i + 1-edik tárgy vagy nem, és ezen két eset maximuma adja az optimális célfüggvényértéket. Hatizsak for x:=0 to s[1]-1 F[x,1]:=0 for x:=s[1] to S F[x,1]:=f[1] for i:=2 to n {for x:=0 to S {F[x][i]:= F[x][i-1] if (s[i]<=x and F[x][i]<F[x-s[i]][i-1]+f[i]) then F[x][i]:=F[x-s[i]][i-1]+f[i]}} KIIR while(f[x][i]>0) {while (i>=1 and F[x][i]==F[x][i-1]) {i=i-1} print "i" x:=x-s[i] i:=i-1} Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása táblázat. A partíció algoritmus teljes táblázata Megoldás: 4,3,1. Kérdések Partíció rekurziómemorizálással Partíció négyzetes táblázatkitöltéssel Mátrixszorzás (KIIR is) Leghosszabb Közös Részsorozat (KIIR is) 6
7 Hátizsák feladat (KIIR is) Szorgalmi feladat Adott egy k n-es tábla. Minden mezőre meg van adva egy c i j pozitív szám, ami a mezőről begyűjthető érték. Egy játékos a bal alsó sarokból szeretne eljutni a jobb felső sarokba úgy, hogy csak jobbra vagy felfelé léphet szomszédos mezőre. Az útja során, összegyűjtheti a mezőkről az értékeket. Továbbá egyetlen alkalommal megduplázhatja azt az értéket, amit a mezőről begyűjtött. Adjunk egy dinamikus programozási algoritmus, ami meghatározza mi az az útvonal, amivel a maximális összértéket tudja összegyűjteni. Beküldés: cimreh@inf.u-szeged.hu, Pszeudókod vagy forrás+magyarázat első két megoldó pont harmadik, negyedik megoldó pont ötödik hatodik megoldó 5-5 pont A szerzett plusszpontok a vizsga minimumkövetelményébe nem számítanak bele. 7
Fibonacci számok. Dinamikus programozással
Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik
Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.
Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös
Dinamikus programozás II.
Dinamikus programozás II. Dinamikus programozás stratégiája A dinamikus programozás stratégiája 1. Az [optimális] megoldás szerkezetének tanulmányozása. 2. Részproblémákra és összetevőkre bontás úgy, hogy:
Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása
PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Dinamikus programozás vagy Oszd meg, és uralkodj!
Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c
Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat
PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07
Mohó algoritmusok. Példa:
Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat
PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Optimalizációs stratégiák 1.
Optimalizációs stratégiák 1. Nyers erő, Oszd meg és uralkodj, Feljegyzéses, Dinamikus, Mohó előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János
Korlátozás és szétválasztás elve. ADAGOLO adattípus
Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}
Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.
Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Dinamikus programozás - Szerelőszalag ütemezése
Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal
2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1
2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.
Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk).
Gyakorlatok Din 1 Jelölje P (n) azt a számot, ahányféleképpen mehetünk le egy n lépcsőfokból álló lépcsőn a következő mozgáselemek egy sorozatával (zárójelben, hogy mennyit mozgunk az adott elemmel): lépés
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj Divide & Conquer (,,Oszd meg és uralkodj ) paradigma Divide: Osszuk fel az adott problémát kisebb problémákra. Conquer: Oldjuk meg a kisebb
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer
PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek
Dinamikus programozás párhuzamosítási lehetőségekkel
8. tavasz Dinamikus programozás párhuzamosítási lehetőségekkel A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, könyv, valamint Michael Goodrich (Univ. California)
Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Lineáris algebra (10A103)
Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Az B sorozatban a pontok helyes preorder sorrendben vannak. A preorder bejárásban p k -t közvetlenül q m követi.
Nemrekurzív preorder bejárás veremmel Ismét feltesszük, hogy a fa a g gyökérpontja által van megadva elsőfiú testvér reprezentációval, és az M műveletet akarjuk minden ponton végrehajtani. PreorderV(g,M)
Dinamukus programozás
Dinamukus programozás Horváth Gyula horvath@inf.elte.hu 2. Dinamikus programozással megoldható feladatok A dinamikus programozás elnevezés egy probléma-megoldási módszert jelöl. A módszer lényege, hogy
Algoritmusok és adatszerkezetek I. 10. előadás
Algortmusok és adatszerkezetek I. 10. előadás Dnamkus programozás Feladat: Adott P 1,P 2, P n pénzjegyekkel kfzethető-e F fornt? Megoldás: Tegyük fel, hogy F P P... P... m! 1 2 m 1 Ekkor F P P P P......,
Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.
Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation
Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation
BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.
1. Feladat Adott egy parkoló, ahol egy professzor a kocsiját tartja. A parkolóhelyeket egy n és n közötti szám azonosítja, az azonosító szerint helyezkednek el balról jobbra. A professzor kijön az egyetemr
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)
A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor
Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
Dr. Schuster György február / 32
Algoritmusok és magvalósítások Dr. Schuster György OE-KVK-MAI schuster.gyorgy@kvk.uni-obuda.hu 2015. február 10. 2015. február 10. 1 / 32 Algoritmus Alapfogalmak Algoritmus Definíció Algoritmuson olyan
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli. A versenyzők figyelmébe:
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli A versenyzők figyelmébe: 1. A tömböket 1-től kezdődően indexeljük. 2. A rácstesztekre
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
Bonyolultságelmélet. Thursday 1 st December, 2016, 22:21
Bonyolultságelmélet Thursday 1 st December, 2016, 22:21 Tárbonyolultság A futásidő mellett a felhasznált tárterület a másik fontos erőforrás. Ismét igaz, hogy egy Ram-program esetében ha csak a használt
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE
Algoritmusokfelülnézetből 1. ELŐADÁS Sapientia-EMTE 2015-16 Algoritmus Az algoritmus kifejezés a bagdadi arab tudós, al-hvárizmi(780-845) nevének eltorzított, rosszul latinra fordított változatából ered.
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a
2015, Diszkrét matematika
Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:
Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Gráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
Algoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Adatszerkezetek II. 10. előadás
Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik
10. gyakorlat Struktúrák, uniók, típusdefiníciók
10. gyakorlat Struktúrák, uniók, típusdefiníciók Házi - (f0218) Olvass be 5 darab maximum 99 karakter hosszú szót úgy, hogy mindegyiknek pontosan annyi helyet foglalsz, amennyi kell! A sztringeket írasd
A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.
Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus
Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák
Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
Számjegyes vagy radix rendezés
Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
Számláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
1. ábra. Számláló rendezés
1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással
Mesterséges intelligencia 1 előadások
VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5
Algoritmuselmélet 1. előadás
Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források
Matematikai problémák vizsgálata a Maple programcsomag segítségével
Matematikai problémák vizsgálata a Maple programcsomag segítségével Tengely Szabolcs tengely@science.unideb.hu http://www.math.unideb.hu/~tengely Tengely Szabolcs 2014.04.26 Matematikai problémák és a
Numerikus integrálás
Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
Kupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
/* Az iter függvény meghívása és a visszatérő érték átadása a gyok változóba */ gyok = iter( n, a, e ) ;
1. Írjunk programot, amely függvény alkalmazásával meghatározza n a értékét, (a az n-edik gyök alatt), az általunk megadott pontossággal, iterációval. Az iteráció képlete a következő: ahol : n-1 x uj =
Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12
Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs
Kombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
Kombinatorikai algoritmusok
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió és iteráció Balrekurzió Ha az eljárás első utasításaként szerepel a rekurzív hívás, akkor a rekurzió lényegében az első nem
Sorozatok és Sorozatok és / 18
Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Algoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat
9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban: