A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
|
|
- Elvira Csonkané
- 8 évvel ezelőtt
- Látták:
Átírás
1 Oktatási Hivatal A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat az egységes értékelés érdekében szigorúan az alábbi útmutató szerint pontozzák, a megadott részpontszámokat ne bontsák tovább! Vagyis ha egy részmegoldásra pl. 3 pontot javasolunk, akkor arra vagy 0, vagy 3 pont adható. (Az útmutatótól eltérő megoldások is lehetnek jók.) 1. feladat: Időjárás (20 pont) Az ország N településére kaptuk meg az M napos időjárás-előrejelzést, a H(N,M) mátrixban, ahol H(i,j) az i-edik településen a j-edik napra várható maximális hőmérséklet. Az alábbi algoritmus megadná a legszélsőségesebb településeket, azaz azokat, ahol a legkisebb és a legnagyobb várt hőmérséklet eltérése maximális. A. Jelöld be, mik a hibák benne! B. Mi az eredmény és melyik változókban van? C. Mi a szerepe az A és a B változónak? Szélsőséges(N,M,H): C:=0 Ciklus i=1-től N-ig A:=H(i,1); B:=H(i,M) Ciklus j=2-től M-ig Ha H(i,j)>A akkor A:=H(i,j) Ha H(i,j)<B akkor A:=H(j,i) Ha A-B>C akkor D:=D+1; Y(D):=i; C:=A-B különben ha A-B=D akkor D:=D+1; Y(B):=i A. A helyes megoldásban aláhúzás jelöli az elrontott helyeket. Szélsőséges(N,M,H): C:=-1 Ciklus i=1-től N-ig A:=H(i,1); B:=H(i,1) Ciklus j=2-től M-ig Ha H(i,j)>A akkor A:=H(i,j) Ha H(i,j)<B akkor B:=H(i,j) Ha A-B>C akkor D:=1; Y(D):=i; C:=A-B különben ha A-B=C akkor D:=D+1; Y(D):=i Értékelési útmutató 1/5 OKTV 1. forduló
2 B. D a feltételnek megfelelő települések száma az Y tömb 1..D eleme a megfelelő települések sorszáma C. A az i-edik település maximális, B pedig a minimális hőméséklete feladat: Gyorsabbra (20 pont) Az alábbi algoritmus megadja azt a H hosszú szakaszt az N elemű T tömbben, ahol a legtöbb prímszám van. A T tömb 1 és M közötti egész számokat tartalmaz. Feltehető, hogy N sokkal nagyobb, mint M. A K változó a szakasz kezdete lesz, a Van pedig igaz lesz, ha van olyam szakasz, ahol legalább 1 prímszám van. Írd át hatékonyabbra (gyorsabbra) és magyarázd is a megoldásod! Szakasz(N,T,H,K,Van): D:=0; Van:=hamis Ciklus i=1-től N-H+1-ig Db:=0 Ciklus p=i-től i+h-1-ig Ha prím(t(p)) akkor Db:=Db+1 Ha Db>D akkor K:=i; D:=Db; Van:=igaz Prím(x): j:=2 Ciklus amíg j<x és j nem osztója x j:=j+1 prím:=j=x Függvény vége. A részpontszámok 50%-a jár a magyarázatért, 50%-a pedig a megoldásért. j<x helyett j gyök(x) lehet részpont: j x/2 esetén adható 4 pont T(p) között lehetnek egyformák, ha felhasználja, hogy az adott számról korábban már kiderült, hogy prím-e, akkor 6 pont Részpont: ha előállítja a 2 és M közötti prímszámokat és a prímszámvizsgálatban azokkal oszt, akkor 4 pont adható. van:=igaz helyettesíthető az eljárás vége előtt Ha D>0 akkor Van:=igaz utasítással A p-s ciklus felesleges (pontosabban a külső ciklus előtt egy H hosszú szakaszra ki kell számolni Db-t), a H hosszú szakaszok egymáshoz képest 2 elemben térnek el, a kilépő miatt Db eggyel csökken, ha az prím volt; a belépő miatt eggyel nő, ha prím volt 4+4 pont Értékelési útmutató 2/5 OKTV 1. forduló
3 Egy gyors megoldás (memorizálás, kumulatív összegzés, gyors prímvizsgálat): Szakasz(N,T,H,K,Van): D:=0; Van:=hamis; PR(1..M):=(hamis,...,hamis); Db:=0 Ciklus i=1-től H-ig Ha PR(T(i)) akkor Db:=Db+1 különben ha prím(t(i)) akkor PR(T(i)):=igaz; Db:=Db+1 Ciklus i=2-től N-H+1-ig Ha PR(T(i-1)) akkor Db:=Db-1 különben ha PR(T(i+H-1)) akkor Db:=Db+1 különben ha prím(t(i+h-1)) akkor PR(T(i+H-1)):=igaz Db:=Db+1 Ha Db>D akkor K:=i; D:=Db Ha D>0 akkor Van:=igaz Prím(x): j:=2 Ciklus amíg j gyök(x) és j nem osztója x j:=j+1 prím:=j>gyök(x) Függvény vége. 3. feladat: Taxi (20 pont) Egy taxis vállalkozó N megálló között szállít utasokat minibusszal. Egy menetben mindig az 1. megállótól indul és az i-edik megállótól (i<n) az i+1-edik megállóba kell mennie. Ismeri az utasok igényeit, tehát minden utasról tudja, hogy melyik megállótól melyik megállóig akar utazni. A taxin egyszerre legfeljebb K utas utazhat. Számold ki az alábbi esetekre, hogy legjobb esetben összesen hány utast tud egy menetben az utas igényének megfelelő helyre elszállítani és add meg, hogy melyikeket! A. K=3, az igények: (1,7), (2,3), (2,3), (2,3), (3,5), (3,5), (4,7), (6,8). B. K=2, az igények: (1,6), (2,4), (3,6), (4,5), (5,8), (6,7) C. K=3, az igények: (2,3),(2,5),(2,5),(3,5),(3,6),(3,9),(4,6),(5,10),(6,10),(7,9),(8,9),(9,10) D. K=4, az igények: (2,3),(2,5),(2,5),(3,5),(3,6),(3,9),(4,6),(5,10),(6,10),(7,9),(8,9),(9,10) A. utasok száma: 7, utasok: 2,3,4,5,6,7,8 2+3 pont B. utasok száma: 5, utasok: 2,3,4,5,6 2+3 pont C. utasok száma: 8, utasok: 1,4,5,7,9,10,11, pont D. utasok száma: 10, utasok: 1,3,4,5,7,8,9,10,11, pont Értékelési útmutató 3/5 OKTV 1. forduló
4 4. feladat: Kitaláló (20 pont) Egy N elemű T tömbben egész számok vannak. Kezdetben a tömb minden elemére igaz, hogy T(i) T(2*i) és T(i) T(2*i+1), feltéve hogy 2*i N, illetve 2*i+1 N). Két eljárás-párt írtunk: Egyik(x), A(i) és Másik(x), B(i) Egyik(x): N:=N+1; T(N):=X; A(N) A(i): Ha i>1 és T(i)<T(i div 2) akkor Csere(T(i div 2),T(i)); A(i div 2) Másik(x): x:=t(1); T(1):=T(N); N:=N-1; B(1) B(i) Ha 2*i N akkor j:=2*i Ha j<n és T(j+1)<T(j) akkor j:=j+1 Ha T(i)<T(j) akkor Csere(T(i),T(j)); i:=j különben i:=n+1 Elágazás vége A. Add meg az A eljárás minden hívásában, hogy az elágazás feltételének vizsgálatakor mi a globális T tömb elemeinek értéke, ha kezdetben T=(1,3,6,5,4,7,8) és x=2! B. Add meg a B eljárás minden hívásában, hogy a külső elágazás feltételének vizsgálatakor mi a globális T tömb elemeinek értéke, ha kezdetben T=(1,2,6,3,4,7,8,5) és mennyi lesz x értéke! C. Milyen feltétel teljesül a Csere művelet után az A eljárásban T(i),T(2*i) és T(2*i+1) értékére? D. Milyen feltétel teljesül a Csere művelet után a B eljárásban T(i),T(2*i) és T(2*i+1) értékére? E. A B eljárásban a j index értéke a Csere művelet kezdetekor hogyan függ a globális T tömb elemeitől? A. T=(1,3,6,5,4,7,8,2) T=(1,3,6,2,4,7,8,5) T=(1,2,6,3,4,7,8,5) B. T=(5,2,6,3,4,7,8) x=1 C. T(i) T(2*i) és T(i) T(2*i+1) 3 pont D. Ha T(N) min(t(2),t(3)) biztos igaz volt, tehát T(N) T(1) helyére kerül és emiatt nem T(1) lesz a legkisebb, minden más elemre igaz marad a T(i) T(2*i) és T(i) T(2*i+1) 2+ E. j értéke a T(2*i) és a T(2*i+1) közül a kisebb indexe; 3 pont j értéke 2*i, ha 2*i=n Értékelési útmutató 4/5 OKTV 1. forduló
5 5. feladat: Képátló (20 pont) Adott egy N x N pixelből álló fekete-fehér kép. Szeretnénk a képen a bal felső saroktól a jobb alsó sarokig egy jobbra-lefele haladó határvonalat húzni úgy, hogy a vonaltól jobbra-felfele eső fekete (0 értékű), valamint a vonaltól balra-lefele eső fehér (1 értékű) pixelek számának K összege a lehető legkevesebb legyen. A határvonalra eső pixelek nem számítanak bele. Add meg, a megoldást az alábbi bemenetekre! A B C D. Add meg azt a T[i,j] függvényt, ami az (i,j) ponttól jobbra lefelé adja a megoldást! Segédfüggvényeket használhatsz hozzá. A. K=3 3 pont B. K=1 3 pont C. K=3 3 pont D. T i, j min T i 1, j S i, j 1, T i, j 1 O i 1, j, ha i<n és j<n 4 pont T[i,j]=0, ha i=n vagy j=n ahol S[i,j]= az i-edik sorban a j től jobbra levő 0-k száma O[i,j]= a j-edik oszlopban az i től lefelé levő 1-esek száma 3 pont 3 pont Összpontszám: 100 pont Beküldési határ: 40 pont Értékelési útmutató 5/5 OKTV 1. forduló
A 2008/2009 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2008/2009 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
A 2009/2010 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2009/2010 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
A 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
A 2007/2008 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. II. (programozás) kategória
Oktatási Hivatal A 2007/2008 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat az egységes
A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Rendezések TÁMOP-4.2.3.-12/1/KONV-2012-0018 Az alapfeladat egy N elemű sorozat nagyság szerinti sorba rendezése. A sorozat elemei
PROGRAMOZÁSI TÉTELEK
PROGRAMOZÁSI TÉTELEK Összegzés tétele Adott egy N elemű számsorozat: A(N). Számoljuk ki az elemek összegét! S:=0 Ciklus I=1-től N-ig S:=S+A(I) Megszámlálás tétele Adott egy N elemű sorozat és egy - a sorozat
A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. II. (programozás) kategória
Oktatási Hivatal A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai II. (programozás) kategória 1. feladat: Karesz a robot (40 pont) Karesz egy utcagyerek, aki egy
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai 1. feladat: Repülők (20 pont) INFORMATIKA II. (programozás) kategória Ismerünk városok közötti repülőjáratokat.
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra
Értékelési útmutató 1. oldal
Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat az egységes értékelés érdekében szigorúan az alábbi útmutató szerint pontozzák, a megadott részpontszámokat ne bontsák tovább! Vagyis ha egy részmegoldásra
Programozási tételek. Dr. Iványi Péter
Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,
Egyszerű programozási tételek
Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.
A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának megoldása. II. (programozás) kategória
Oktatási Hivatal A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának megoldása II. (programozás) kategória 1. feladat: Párok (15 pont) Egy rendezvényre sok vendéget hívtak meg.
Közismereti informatika I. 4. előadás
Közismereti informatika I. 4. előadás Rendezések Bemenet: N: Egész, X: Tömb(1..N: Egész) Kimenet: X: Tömb(1..N: Egész) Előfeltétel: Utófeltétel: Rendezett(X) és X=permutáció(X ) Az eredmény a bemenet egy
Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.
Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom
Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. II. (programozás) kategória
Oktatási Hivatal A 201/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai II. (programozás) kategória 1. feladat: Sorminta (3 pont) Fordítsuk meg: a mintából kell kitalálni
A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes
Dinamikus programozás II.
Dinamikus programozás II. Dinamikus programozás stratégiája A dinamikus programozás stratégiája 1. Az [optimális] megoldás szerkezetének tanulmányozása. 2. Részproblémákra és összetevőkre bontás úgy, hogy:
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
14. Mediánok és rendezett minták
14. Mediánok és rendezett minták Kiválasztási probléma Bemenet: Azonos típusú (különböző) elemek H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció és egy i (1 i n) index.
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
ELEMI PROGRAMOZÁSI TÉTELEK
ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk
Visszalépéses maximumkiválasztás
Belépő a tudás közösségébe Informatika szakköri segédanyag Visszalépéses maximumkiválasztás Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:
Algoritmusok és adatszerkezetek I. 7. előadás
Algoritmusok és adatszerkezetek I. 7. előadás Feladat 1. változat Visszalépéses keresés Egy vállalkozás N különböző állásra keres munkásokat. Pontosan N jelentkező érkezett, ahol minden jelentkező megmondta,
Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport
Időjárási csúcsok Ismerjük N napra a déli hőmérséklet értékét. Lokálisan melegnek nevezünk egy napot (az első és az utolsó kivételével), ha az aznap mért érték nagyobb volt a két szomszédjánál, lokálisan
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória 1. feladat: Csapatösszeállítás (30 pont)
Adatszerkezetek II. 6. előadás
Adatszerkezetek II. 6. előadás Feladat: Egy kábelhálózat különböző csatornáin N filmet játszanak. Ismerjük mindegyik film kezdési és végidejét. Egyszerre csak 1 filmet tudunk nézni. Add meg, hogy maximum
RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK
RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK 1. EGY SOROZATHOZ EGY SOROZATOT RENDELŐ TÉTELEK 1.1 Rendezések 1.1.1 Kitűzés Adott egy sorozat, és a sorozat elemein értelmezett egy < reláció. Rendezzük a sorozat
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes
Adatbázis és szoftverfejlesztés elmélet. Programozási tételek
Adatbázis és szoftverfejlesztés elmélet Témakör 8. 1. Egy sorozathoz egy érték hozzárendelése Az összegzés tétele Összefoglalás Programozási tételek Adott egy számsorozat. Számoljuk és írassuk ki az elemek
Adatszerkezetek II. 7. előadás
Adatszerkezetek II. 7. előadás Mohó stratégia A mohó stratégia elemei 1. Fogalmazzuk meg az optimalizációs feladatot úgy, hogy választások sorozatával építjük fel a megoldást! 2. Mohó választási tulajdonság:
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Web-programozó Web-programozó
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Gyakorló feladatok az 1. nagy zárthelyire
Gyakorló feladatok az 1. nagy zárthelyire 2012. október 7. 1. Egyszerű, bevezető feladatok 1. Kérjen be a felhasználótól egy sugarat. Írja ki az adott sugarú kör kerületét illetve területét! (Elegendő
Programozási alapismeretek 3. előadás
Programozási alapismeretek 3. előadás Tartalom Ciklusok specifikáció+ algoritmika +kódolás Egy bevezető példa a tömbhöz A tömb Elágazás helyett tömb Konstans tömbök 2/42 Ciklusok Feladat: Határozzuk meg
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
Algoritmizálás, adatmodellezés tanítása 2. előadás
Algoritmizálás, adatmodellezés tanítása 2. előadás Programozási tételek Mi az, hogy programozási tétel? Típusfeladat általános megoldása. Sorozat érték Sorozat sorozat Sorozat sorozatok Sorozatok sorozat
Algoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási
O k t a t á si Hivatal
O k t a t á si Hivatal A 2012/201 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja INFORMATIKÁBÓL II. (programozás) kategóriában Munkaidő: 300 perc Elérhető pontszám: 150
Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója
Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében
A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2016/2017 tanévi Országos özépiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIA II. (programozás) kategória 1. feladat: Legalább 2 bolygón volt élet
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Összetett programozási tételek 2 TÁMOP-4.2.3.-12/1/KONV Feladataink egy jelentős csoportjában több bemenő sorozat alapján egy sorozatot
Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu
Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia
BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít
A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása. II. (programozás) kategória
Oktatási Hivatal A 20/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében
Országos Középiskolai Tanulmányi Verseny 2006/2007-os tanév INFORMATIKA, II. (programozás) kategória második fordulójának feladatai
Országos Középiskolai Tanulmányi Verseny 2006/2007-os tanév INFORMATIKA, II. (programozás) kategória második fordulójának feladatai Iskola neve:... Iskola székhelye:... Versenyző neve:... Évfolyama/osztálya:...
hatására hátra lép x egységgel a toll
Ciklusszervező utasítások minden programozási nyelvben léteznek, így például a LOGO-ban is. LOGO nyelven, (vagy legalábbis LOGO-szerű nyelven) írt programok gyakran szerepelnek az iskola számítástechnikai
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Gyakorló feladatok ZH-ra
Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 1/18 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai INFORMATIKA II. (programozás) kategória 1. feladat: K-homogén sorozat ( pont) Azt mondjuk, hogy az
PROGRAMOZÁSI NYELVEK (GYAKORLAT)
PROGRAMOZÁSI NYELVEK (GYAKORLAT) A következő részben olyan szabványos algoritmusokkal fogunk foglalkozni, amelyek segítségével a későbbiekben sok hétköznapi problémát meg tudunk majd oldani. MUNKAHELYZET-
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 217/218 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai 1. feladat: Csatornák (24 pont) INFORMATIKA II. (programozás) kategória Egy város csomópontjait csatornahálózat
Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu
Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember
Visszalépéses kiválogatás
elépő a tudás közösségébe Informatika szakköri segédanyag Heizlerné akonyi iktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő: Abonyi-Tóth Andor, Zsakó László
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
INFORMATIKA tétel 2019
INFORMATIKA tétel 2019 ELIGAZÍTÁS: 1 pont hivatalból; Az 1-4 feladatokban (a pszeudokód programrészletekben): (1) a kiír \n utasítás újsorba ugratja a képernyőn a kurzort; (2) a / operátor osztási hányadost
A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 201/2014 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória 1. feladat: Metró (20 pont) Egy metróállomásra
Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Összetett programozási tételek
Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember
Partíció probléma rekurzíómemorizálással
Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott
Közismereti informatika 2.zh T-M szakirány
1. feladat: Az alábbi algoritmus egy szövegnek meghatározza a leghosszabb szavát és annak hosszát. Írja át időben hatékonyabbra! Írja meg az időben hatékonyabb Pascal programot! Eljárás Maxkiv(S:Szöveg;
Programozási tételek. Jegyzet. Összeállította: Faludi Anita 2012.
Programozási tételek Jegyzet Összeállította: Faludi Anita 2012. Tartalomjegyzék Bevezetés... 3 Programozási tételek... 4 I. Elemi programozási tételek... 4 1. Sorozatszámítás (összegzés)... 4 2. Eldöntés...
A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2016/2017 tanévi Országos özépiskolai Tanulmányi Verseny második fordulójának feladatai INFORMATIA II. (programozás) kategória 1. feladat: Legalább 2 bolygón volt élet (33 pont) Egy
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Mohó stratégia 2. TÁMOP-4.2.3.-12/1/KONV Többféle feladat megoldási stratégia létezik. Közülük az egyik legegyszerűbb a mohó stratégia,
Dinamikus programozás vagy Oszd meg, és uralkodj!
Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c
Multihalmaz, intervallumhalmaz
Multihalmaz, intervallumhalmaz Halmaz féleségek 1. Halmaz Gyümölcsök: {alma,körte,szilva,barack} 2. Multihalmaz Állatok: {(macska,4),(rigó,2),(galamb,3)} 3. Intervallumhalmaz diszjunkt Óráim: {[8-10],[13-14],[16-20)}
Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs
Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk
Mohó stratégia 2. előadás
Mohó stratégia 2. előadás Mohó stratégia A mohó stratégia elemei 1. Fogalmazzuk meg az optimalizációs feladatot úgy, hogy választások sorozatával építjük fel a megoldást! 2. Mohó választási tulajdonság:
Programozás alapjai 5. gyakorlat Vezérlési szerkezetek egymásba ágyazása
Programozás alapjai 5. gyakorlat Vezérlési szerkezetek egymásba ágyazása 1. feladat: Eldönteni egy számról, hogy pozitív, negatív vagy 0. Próbálja megoldani a feladatot switch szerkezettel is. Mikor használható
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses kiválogatás TÁMOP-4.2.3.-12/1/KON isszalépéses kiválogatás 1. Az összes lehetséges sorrend Sokszor előfordul feladatként,
INFORMATIKAI ALAPISMERETEK
Informatikai alapismeretek középszint 0621 ÉRETTSÉGI VIZSGA 2007. május 25. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Adatbázis rendszerek Gy: Algoritmusok C-ben
Adatbázis rendszerek 1. 1. Gy: Algoritmusok C-ben 53/1 B ITv: MAN 2015.09.08 Alapalgoritmusok Összegzés Megszámlálás Kiválasztás Kiválasztásos rendezés Összefésülés Szétválogatás Gyorsrendezés 53/2 Összegzés
Haladó rendezések. PPT 2007/2008 tavasz.
Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Algoritmizálás és adatmodellezés tanítása 9. előadás
Algoritmizálás és adatmodellezés tanítása 9. előadás Szöveges típusok (ismétlés) karakter típus szöveg típus szövegfájl típus (input, illetve output szövegfájl) 2018. 01. 2/30 Karakterábrázolás fix kódhossz
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Elemi programozási tételek 1 TÁMOP-4.2.3.-12/1/KONV-2012-0018 Feladataink egy jelentős csoportjában egyetlen bemenő sorozat alapján
A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kedves Versenyző! A megoldások értékelésénél
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Multihalmaz típus TÁMOP-4.2.3.-12/1/KONV Értékhalmaz: az alaphalmaz (amely az Elemtípus és egy darabszám által van meghatározva)
Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. II. (programozás) kategória
Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai II. (programozás) kategória Kedves Versenyző! A megoldások értékelése automatikusan, online módon
Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs
Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán
Algoritmizálás és adatmodellezés tanítása 2. előadás
Algoritmizálás és adatmodellezés tanítása 2. előadás Tartalom Összegzés vektorra, mátrixra Megszámolás vektorra, mátrixra Maximum-kiválasztás vektorra, mátrixra Eldöntés vektorra, mátrixra Kiválasztás
Algoritmizálás és adatmodellezés tanítása 6. előadás
Algoritmizálás és adatmodellezés tanítása 6. előadás Összetett típusok 1. Rekord 2. Halmaz (+multihalmaz, intervallumhalmaz) 3. Tömb (vektor, mátrix) 4. Szekvenciális file (input, output) Pap Gáborné,
Mohó stratégia. Feladat: Megoldás:
I. Feladat: Egy kábelhálózat különböző csatornáin N filmet játszanak. Ismerjük mindegyik film kezdési és végidejét. Egyszerre csak 1 filmet tudunk nézni. Add meg, hogy maximum hány filmet nézhetünk végig!
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Elemi programozási tételek 2 TÁMOP-4.2.3.-12/1/KONV-2012-0018 Feladataink egy jelentős csoportjában egyetlen bemenő sorozat alapján
2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény:
1. Számkeresztrejtvény: MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév 2. forduló Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy a négyzet alakú mezőkbe
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket
Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok
Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 3. gyakorlat PLanG: 2011.09.27. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok
INFORMATIKAI ALAPISMERETEK
Informatikai alapismeretek középszint 0631 ÉRETTSÉGI VIZSGA 2006. október 24. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Bevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Halmaz típus Értékhalmaz:
Halmaz, multihalmaz Halmaz féleségek 1. Halmaz Gyümölcsök: {alma,körte,szilva,barack} 2. Multihalmaz Állatok: {(macska,4),(rigó,2),(galamb,3)} 3. Intervallumhalmaz diszjunkt Óráim: {[8-10],[13-14],[16-20)}
Algoritmizálás, adatmodellezés tanítása 2. előadás
Algoritmizálás, adatmodellezés tanítása 2. előadás Másolás függvényszámítás Bemenet: N N, X H N, g:h G, F: G N G, f: G * xg G Kimenet: Y G N Előfeltétel: Utófeltétel: i(1 i N) Y=F(g(X 1 ),, g(x N )) f
OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal
Feladatlap Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció pontos betartása. Ha például a feladat szövege adatok valamilyen