Mintaillesztő algoritmusok. Ölvedi Tibor OLTQAAI.ELTE
|
|
- Diána Orsós
- 5 évvel ezelőtt
- Látták:
Átírás
1 Mintaillesztő algoritmusok Ölvedi Tibor OLTQAAI.ELTE
2 Mintaillesztő algoritmusok Amiről szó lesz: Bruteforce algoritmus Knuth-Morris-Pratt algoritmus Rabin-Karp algoritmus Boyer-Moore algoritmus Boyer-Moore-Horspool algoritmus Zhu-Takaoka algoritmus Aho-Corasick algoritmus
3 Bruteforce eljárás Minden lehetséges helyen keres Minden karaktert lehetséges kezdőnek tekint Kivéve a legutolsókat Majd ezek után leellenőrzi karakterenként az egyezést
4 Bruteforce eljárás almanemalmalmdegalmafaisvan
5 Bruteforce eljárás almanemalmalmdegalmafaisvan a
6 Bruteforce eljárás almanemalmalmdegalmafaisvan
7 Bruteforce eljárás almanemalmalmdegalmafaisvan alm
8 Bruteforce eljárás almanemalmalmdegalmafaisvan
9 Bruteforce eljárás almanemalmalmdegalmafaisvan alm_
10 Bruteforce eljárás almanemalmalmdegalmafaisvan alm_ almafa
11 Knuth-Morris-Pratt algoritmus Javítsunk az algoritmuson, úgy, hogy csak egyszer megyünk végig az elemeken Ha egymásba illeszkedő helyek vannak, tároljuk el azt külön, és egyszerre vizsgáljuk több helyen az illesztést
12 Knuth-Morris-Pratt algoritmus almanemalmalmdegalmafaisvan a
13 Knuth-Morris-Pratt algoritmus almanemalmalmdegalmafaisvan
14 Knuth-Morris-Pratt algoritmus almanemalmalmdegalmafaisvan alm
15 Knuth-Morris-Pratt algoritmus almanemalmalmdegalmafaisvan alma a
16 Knuth-Morris-Pratt algoritmus almanemalmalmdegalmafaisvan al
17 Knuth-Morris-Pratt algoritmus almanemalmalmdegalmafaisvan alm_
18 Knuth-Morris-Pratt algoritmus almanemalmalmdegalmafaisvan alm_ almafa
19 Rabin-Karp algoritmus Még gyorsabb algoritmus főleg, ha több mintát is keresünk A lényeg: hashelés Kicsit módosítani kell nagy bemenetek esetén Majd a módosítás utáni hibákat kijavítani Feldolgozás két lépcsőben
20 Rabin-Karp algoritmus keresendő hosszával azonos hosszúságú részkaraktersorozatokat leképezünk egész számokra Majd az így kapott egészeket hasonlítjuk össze Egyezéseknél megvizsgáljuk magukat a karaktersorozatokat is. Így összességében kevesebb az összehasonlítás
21 Rabin-Karp algoritmus A hasítófüggvény: A karaktereket lekódoljuk ASCII szerint számokra Majd valami nagyobb prím alapú számrendszerben tekintjük az így kapott számok sorozatát egy szám jegyeinek Ezeket a számjegyekből álló számokat pedig átszámítjuk az alapértelmezett számrendszerbe Más hasítással is megoldható
22 Rabin-Karp algoritmus Eredmény: csak egész számokat hasonlítunk össze, nem karaktersorozatokat Ezáltal gyorsabb A karakterek összehasonlítása csak nagyon ritkán történik meg Egyszerre több számmal is összehasonlíthatjuk a hashelés során kapott értékeket, ha több mintát is keresünk
23 Boyer-Moore algoritmus Működése meglepő Visszafele keres Nagy ugrásokkal halad Kevés összehasonlítást végez Főleg akkor hasznos, ha a mintában sok az ismétlődő karakter
24 Boyer-Moore algoritmus X A N P A N M A N A N P A N M A N A N P A N M A N A N P A N M A N A N P A N M A N A N P A N M A N A N P A N M A N A N P A N M A N
25 Boyer-Moore algoritmus Az algoritmus a tényleges keresés előtt legenerál számára hasznos táblákat Rossz karakter eltolási tábla Milyen messze van a minta jobb szélétől a legutolsó, karakter Jó végződés eltolási tábla Mennyit kell lépni ahhoz, hogy olyan hlyet találjunk, ahol már lehet mintára illeszkedés
26 Boyer-Moore algoritmus 1. tábla Karakter Távolság A 1 M 2 N 3 P 5 Minden más karakter 8
27 Boyer-Moore algoritmus 2. tábla i Minta Eltolás 0 (N) 1 1 (A)N 8 2 (M)AN 3 3 (N)MAN 6 4 (A)NMAN 6 5 (P)ANMAN 6 6 (N)PANMAN 6 7 (A)NPANMAN 6 Megjegyzés: (*) olyan karaktert jelöl, ami nem *
28 Boyer-Moore-Horspool algoritmus Az előzőnek egy egyszerűsített változata A második táblát nem használja Helyzettől függően kicsit lassabban állapítja meg, mennyit kell lépnie A sebessége nagyjából megegyezik a Boyer- Moore algoritmuséval Csak nagyon ritka esetben lassul be ahhoz képest
29 Zhu-Takaoka algoritmus Boyer-Moore algoritmus átdolgozása Két karaktert dolgoz fel egyszerre Gyorsabb a kiértékelés Ugrási táblák létrehozása viszont lassabb, ezek nagyon megnőhetnek Értelmes használni, ha: Kevés eleme van az ábécének Rövid a keresendő minta Lehetne folytatni 3 vagy több karakteres bontásban is
30 Aho-Corasick algoritmus A keresendő minták szótára alapján generál egy gráfot, milyen karakter esetén mit kell tennie Hasznos, ha több szövegben is kell ugyan azokat a mintákat megkeresni Elég egyszer legenerálni Erre épül az fgrep parancs Unix környezetben
31 Útvonal () - Aho-Corasick algoritmus Szótár {a, ab, bc, bca, c, caa} Szerepel-e a szótárban? (a) + () (ab) + (b) (b) - () Végződés (bc) + (c) (bca) + (ca) (a) (c) + () (ca) - (a) (a) (caa) + (a) (a) Közvetlen végződés
32 Aho-Corasick algoritmus Gráf csúcsa Maradék Kimenet: helyzet abccab elemzése Átmenet () abccab Indulás a gyökérből Kimenet (a) bccab a:1 () -> (a) Aktuális csúcs (ab) ccab ab:2 (a) -> (ab) Aktuális csúcs (bc) cab bc:3, c:3 (ab) -> (b) -> (bc) Aktuális csúcs, szótári végződés csúcs (c) ab c:4 (bc) -> (c) -> () -> (c) Aktuális csúcs (ca) b a:5 (c) -> (ca) Szótári végződés csúcs (ab) ab:6 (ca) -> (a) -> (ab) Aktuális csúcs
33 Mintaillesztő algoritmusok Köszönöm a figyelmet! Ölvedi Tibor OLTQAAI.ELTE
32. A Knuth-Morris-Pratt algoritmus
32. A Knuth-Morris-Pratt algoritmus A nyers erőt használó egyszerű mintaillesztés műveletigénye legrosszabb esetben m*n-es volt. A Knuth-Morris-Pratt algoritmus (KMP-vel rövidítjük) egyike azon mintaillesztő
Szövegfeldolgozás II.
Szövegfeldolgozás II. Szövegfeldolgozási alapfeladatok Tömörítés: egy szöveget vagy szövegfájlt alakítsunk át úgy, hogy kevesebb helyet foglaljon (valamint alakítsuk vissza)! Keresés: egy szövegben vagy
sallang avagy Fordítótervezés dióhéjban Sallai Gyula
sallang avagy Fordítótervezés dióhéjban Sallai Gyula Az előadás egy kis példaprogramon keresztül mutatja be fordítók belső lelki világát De mit is jelent, az hogy fordítóprogram? Mit csinál egy fordító?
Algoritmusok és adatszerkezetek II. kidolgozott vizsgakérdések
Algoritmusok és adatszerkezetek II. kidolgozott vizsgakérdések 2013/2014-es tanév 2. félév 1.) a. Adott a háromjegyű bináris számok következő sorozata: 010, 101, 011, 110, 000, 001, 100. Rendezzük a számokat
Knuth-Morris-Pratt algoritmus
Knuth-Morris-ratt algoritmus KM féle sztringkezelő algoritmus Szükséges matematikai fogalmak: Legyen Ω egy ábécé és x=x 1 x 2 x n, k N karakterekből álló sztring, melynek elemei (x i ) az Ω ábécé betűi.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa:
1. Tétel Az állomány két sort tartalmaz. Az első sorában egy nem nulla természetes szám van, n-el jelöljük (5
XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában
XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket
8. Laboratóriumi gyakorlat: Bevezetés a reguláris kifejezések használatába
8. Laboratóriumi gyakorlat: Bevezetés a reguláris kifejezések használatába A gyakorlat célja 1. A reguláris kifejezések használatának megismerése. Az egrep parancs használatának elsajátítása 2. További
Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium)
2005/db közép 2005/db emelt 2005/db összes 2005/jegy közép 2005/jegy emelt 2005/jegy összes 2005/% közép 2005/% emelt 2005/% összes 51 119 170 3,53 5,00 4,42 59,90 99,17 84,27 22 17 39 4,45 4,94 4,7 75,68
A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése.
Soros LCD vezérlő A vezérlő modul lehetővé teszi, hogy az LCD-t soros vonalon illeszthessük alkalmazásunkhoz. A modul több soros protokollt is támogat, úgy, mint az RS232, I 2 C, SPI. Továbbá az LCD alapfunkcióit
A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása
A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus
Informatika 1 2. el adás: Absztrakt számítógépek
Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres
SZOFTVER AJÁNLATOK. A) Építőmérnöki szoftverek. B) AutoCAD programok védelme. C) MÉRNÖK SZÓTÁR rendszer. Érvényes 2014.
SZOFTVER AJÁNLATOK A) Építőmérnöki szoftverek B) AutoCAD programok védelme C) MÉRNÖK SZÓTÁR rendszer Érvényes 2014.december 31-ig További információk: engsoft.atw.hu A szoftvereinket több mint 20 éve több
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
openbve járműkészítés Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez
Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez 1. oldal openbve járműkészítés Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez A leírás az openbve-hez készített
8. Laboratóriumi gyakorlat: Bevezetés a reguláris kifejezések használatába
8. Laboratóriumi gyakorlat: Bevezetés a reguláris kifejezések használatába A gyakorlat célja: 1. A gyakorlat célja a reguláris kifejezések használatának megismerése. A grep parancs használatának elsajátítása
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály
A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az
Nézetek és indexek. AB1_06C_Nézetek_Indexek - Adatbázisok-1 EA (Hajas Csilla, ELTE IK) - J.D. Ullman elıadásai alapján
Nézetek és indexek Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 8.1. Nézettáblák 8.2. Adatok módosítása nézettáblákon keresztül 8.3. Indexek az SQL-ben 8.4. Indexek
Komputeralgebrai Algoritmusok
Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék 2015-2016 Ősz Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma,
Programozás alapjai. (GKxB_INTM023) Dr. Hatwágner F. Miklós szeptember 27. Széchenyi István Egyetem, Gy r
Programozás alapjai (GKxB_INTM023) Széchenyi István Egyetem, Gy r 2018. szeptember 27. Háromszög szerkeszthet ségének ellen rzése ANSI C (C89) megvalósítás #i n c l u d e i n t main ( v
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
Formális nyelvek és automaták vizsgához statisztikailag igazolt várható vizsgakérdések
1. Feladat Az első feladatban szereplő - kérdések 1 Minden környezet független nyelv felismerhető veremautomatával. Minden környezet független nyelv felismerhető 1 veremmel. Minden 3. típusú nyelv felismerhető
V. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
API-MÁGIA MILLIÓ SORNYI ADAT ÚJRARENDEZÉSE. Előadó: Jaksa Zsombor, drungli.com
API-MÁGIA MILLIÓ SORNYI ADAT ÚJRARENDEZÉSE Előadó: Jaksa Zsombor, drungli.com MIRŐL FOG SZÓLNI AZ ELŐADÁS? Hogyan működik a drungli.com?# Adatok gyűjtése, stratégiák# Ha marad időm még mesélek HOGYAN MŰKÖDIK
Véges automaták, reguláris nyelvek
Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli. A versenyzők figyelmébe:
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli A versenyzők figyelmébe: 1. A tömböket 1-től kezdődően indexeljük. 2. A rácstesztekre
8. Laboratóriumi gyakorlat: Bevezetés a reguláris kifejezések használatába
8. Laboratóriumi gyakorlat: Bevezetés a reguláris kifejezések használatába A gyakorlat célja: 1. A gyakorlat célja a reguláris kifejezések használatának megismerése. A grep parancs használatának elsajátítása
Algoritmuselmélet. Hashelés. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Algoritmuselmélet Hashelés Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 9. előadás
C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi
C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Formális nyelvek és automaták
Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián Utolsó óra MINTA ZH Eötvös Loránd Tudományegyetem Informatikai Kar 2012.05.18 1. feladat: KMP (Knuth-Morris-Prett)
Algoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
Statisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs
Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán
Magyar és angol szóasszociációs hálózatok vizsgálata. Orosz Katalin Kovács László Pollner Péter
Magyar és angol szóasszociációs hálózatok vizsgálata Orosz Katalin Kovács László Pollner Péter 0. Bevezetés Jelenlegi elképzeléseink szerint a beszédértés és beszédprodukció során előhívott szavakat (és
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
MINTAILLESZTÉS Brute-Force algoritmus (BF) Knuth-Morris-Pratt algoritmus (KMP) Quick-Search algoritmus (QS)
INTAILLESZTÉS... 2 1. Brute-Force algoritmus (BF)... 4 2. Knuth-orris-Pratt algoritmus (KP)... 7 3. Quick-Search algoritmus (QS)... 13 4. Rabin-Karp algoritmus (RK)... 17 Felhasznált irodalom... 19 1 intaillesztés
Algoritmusok és adatszerkezetek II. régebbi vizsgakérdések.
Algoritmusok és adatszerkezetek II. régebbi vizsgakérdések. Ásványi Tibor asvanyi@inf.elte.hu 2017. július 4. Az eljárásokat és függvényeket megfelel en elnevezett és paraméterezett struktogramok segítségével
Biztonságos mobilalkalmazás-fejlesztés a gyakorlatban. A CryptTalk fejlesztése során alkalmazott módszerek. Dr. Barabás Péter Arenim Technologies
Biztonságos mobilalkalmazás-fejlesztés a gyakorlatban A CryptTalk fejlesztése során alkalmazott módszerek Dr. Barabás Péter Arenim Technologies Agenda CryptTalk Hálózati kommunikáció Authentikált kérések
Algoritmuselmélet. Hashelés. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Algoritmuselmélet Hashelés Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
DAT adatcserefájl AutoCAD MAP DWG mapobject konvertáló program dokumentáció
H - 1161 Budapest Rákóczi út 76. Tel./Fax.: +36-1-4010159 http://www.pageos.hu toni@pageos.hu DAT adatcserefájl AutoCAD MAP DWG mapobject konvertáló program dokumentáció A program használható a TOPOBASE
Bevezetés a programozásba
Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit
Rekurzió. Dr. Iványi Péter
Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(
Tájékoztató. Használható segédeszköz: -
A 12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, onosítószáma és megnevezése 54 481 06 Informatikai rendszerüzemeltető Tájékoztató A vizsgázó első lapra írja fel
3. ZH-ban a minimum pontszám 15
1. HF 2. HF 3. HF 4. HF 5. HF 1. ZH 2. ZH 3. ZH Osszesen Jegy EHA kod 4 4 4 4 4 4 4 4 18 10 10 30 100 1 ARAPAFP.PTE 3.5 2.5 4 4 2 4 4 2 15 5 6 18 70 3 x 2 BAMPACP.PTE 4 4 4 4 4 4 4 4 18 10 8 26 94 5 x
A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.
Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
Algoritmusok és adatszerkezetek II.
Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék - Németh Tamás Algoritmusok és adatszerkezetek
Algoritmusok és adatszerkezetek 2.
Algoritmusok és adatszerkezetek 2. Fekete István előadása alapján Készítette: Nagy Krisztián 1. előadás V. HASÍTÁSOS TECHNIKÁK ALKALMAZÁSA (hash coding) 19. Rendezés lineáris időben (Edényrendezések (Bucket))
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
35. MINTAILLESZTÉS AUTOMATÁVAL
35. MINTAILLESZTÉS AUTOMATÁVAL Ha ma tudni szeretnénk, hogy mi Zimbabwe fővárosa, mikor írta Petőfi az Anyám tyúkját, mi a szinusz függvény definíciója, akkor ma már nem állunk neki a lexikonok böngészésének,
A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással
A Cisco kapcsolás Networking alapjai Academy Program és haladó szintű forgalomirányítás A kapcsolás alapjai, és haladó szintű forgalomirányítás 1. Ismerkedés az osztály nélküli forgalomirányítással Mártha
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.
Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,
Országos Középiskolai Tanulmányi Verseny 2006/2007-os tanév INFORMATIKA, II. (programozás) kategória második fordulójának feladatai
Országos Középiskolai Tanulmányi Verseny 2006/2007-os tanév INFORMATIKA, II. (programozás) kategória második fordulójának feladatai Iskola neve:... Iskola székhelye:... Versenyző neve:... Évfolyama/osztálya:...
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
JAVASLAT a HB nyomtatványok és csekkszelvények gyártására
JAVASLAT a HB nyomtatványok és csekkszelvények gyártására I. HB nyomtatvány és megszemélyesített csekkszelvény A) HB szelvény sorszámozás 13 karakter hosszúságú. 1. karakter: 6, 2. karakter: 0, 3-4. karakter:
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Bevezetés a programozásba I.
Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy
Dicsőségtabló Beadós programozási feladatok
Dicsőségtabló Beadós programozási feladatok Hallgatói munkák 2017 2018 Szavak kiírása ábécé felett Készítő: Maurer Márton (GI, nappali, 2017) Elméleti háttér Adott véges Ʃ ábécé felett megszámlálhatóan
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
7. 17 éves 2 pont Összesen: 2 pont
1. { 3;4;5} { 3; 4;5;6;7;8;9;10} A B = B C = A \ B = {1; }. 14 Nem bontható. I. 3. A) igaz B) hamis C) igaz jó válasz esetén, 1 jó válasz esetén 0 pont jár. 4. [ ; ] Más helyes jelölés is elfogadható.
Új műveletek egy háromértékű logikában
A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák
Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások
Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások Bevezetés Ebben a cikkben megmutatjuk, hogyan használhatóak a Mathematica egylépéses numerikus eljárásai,
Hamilton-körök és DNS molekulák
GoBack Hamilton-körök és DNS Tengely Szabolcs 2005. november 4 tengely@math.klte.hu KöMaL Ifjúsági Ankét 2005 slide 1 Gráfok Gráfok Példa Nehéz dió DNS Hossz - S 1 n G n alkalmazása G = (V,E) egyszerű
Tájékoztató. Használható segédeszköz: -
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 213 05 Szoftverfejlesztő Tájékoztató A vizsgázó az első lapra írja fel a nevét!
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Elméleti anyag: Amikor a hazárd jó: élekből impulzus előállítás Sorrendi hálózatok alapjai,
Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.
Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges
Hamilton-körök és DNS molekulák
GoBack Hamilton-körök és DNS Tengely Szabolcs 2005. november 4 tengely@math.klte.hu KöMaL Ifjúsági Ankét 2005 slide 1 Gráfok G = (V,E) egyszerű gráf, ha V egy véges halmaz és E ( V 2), V elemei a G gráf
Operációs rendszerek. 10. gyakorlat. AWK - bevezetés UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED AWK - bevezetés Operációs rendszerek 10. gyakorlat Szegedi Tudományegyetem Természettudományi és Informatikai Kar Csuvik Viktor 1 / 15 Reguláris
HÁZI FELADAT ELSŐ GYAKORLAT MIELŐTT ELKEZDENÉNK ELINDULÁS. ÜZLETI INFORMATIKAI ESZKÖZÖK Kiadványszerkesztés
1 ELSŐ GYAKORLAT HÁZI FELADAT A feladat megoldása során a Word 2010 használata a javasolt. Ebben a feladatban a következőket fogjuk gyakorolni: A súgó használata. Microsoft Office Word testreszabása. Dokumentumok
5. osztály. 1. Az informatikai eszközök használata:
1. Az informatikai eszközök használata: 5. osztály Tudjon számítógépet önállóan üzembe helyezni. Ismerje a főbb egységeket és funkcióikat. Ismerje a háttértárolók szerepét, azok néhány fajtáját. Tudjon
Gyakorló feladatok Gyakorló feladatok
Gyakorló feladatok előző foglalkozás összefoglalása, gyakorlató feladatok a feltételes elágazásra, a while ciklusra, és sokminden másra amit eddig tanultunk Változók elnevezése a változók nevét a programozó
A Gray-kód Bináris-kóddá alakításának leírása
A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz Szekér Szabolcs 1, Dr. Fogarassyné dr. Vathy Ágnes 2 1 Pannon Egyetem Rendszer- és Számítástudományi Tanszék, szekersz@gmail.com
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása
Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
Cohen-Sutherland vágóalgoritmus
Vágási algoritmusok Alapprobléma Van egy alakzatunk (szakaszokból felépítve) és van egy "ablakunk" (lehet a monitor, vagy egy téglalap alakú tartomány, vagy ennél szabálytalanabb poligon által határolt
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Jó munkát! 8. OSZTÁLY 2 = C = A B =
BEM JÓZSEF Jelszó:... MEGYEI MATEMATIKAVERSENY Terem: I. FORDULÓ 2019. január 1. Hely:.... Tiszta versenyidő: 4 perc. Minden feladatot indoklással együtt oldj meg! A részműveletek is pontot érnek. Számológép
Grafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
ContractTray program Leírás
ContractTray program Leírás Budapest 2015 Bevezetés Egy-egy szerződéshez tartozó határidő elmulasztásának komoly gazdasági következménye lehet. Éppen ezért a Szerződés kezelő program főmenü ablakában a
Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás
Programozás alapjai 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Háziellenőrzés Egészítsd ki úgy a simplemaths.c programot, hogy megfelelően működjön. A program feladata az inputon soronként megadott
Egyszerű programozási tételek
Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és
Makrók használata az Excelben - Makróhibák kezelése, biztonságos jelszavak generálása
Makrók használata az Excelben - Makróhibák kezelése, biztonságos jelszavak generálása Makróhibák kezelése A Visual Basic szerkesztőablakában szerkesztés közben elindított futtatással ellenőrizhetjük a
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Adatbázis alapú rendszerek
Adatbázis alapú rendszerek BookIt projekt dokumentáció Kotosz Tibor, Krajcsovszki Gergely, Seres Regina 2011 Tartalomjegyzék Jelenlegi rendszer... 2 Jelenlegi rendszer fizikai AFD-je... 2 Jelenlegi rendszer
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint