Nagyméretű adathalmazok kezelése (BMEVISZM144) Reinhardt Gábor április 5.
|
|
- Katalin Pintérné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Asszociációs szabályok Budapesti Műszaki- és Gazdaságtudományi Egyetem április 5.
2 Tartalom
3 ismétlés A feladat Gyakran együtt vásárolt termékek meghatározása Tanultunk rá hatékony algoritmusokat Nagy profit lehetőségét rejti magában
4 definíciók 1. Termék Egy bolt különböző termékei Pl. sör, pelenka Nem definiáljuk, hogy pontosan mi a felbontás (különböző márkájú sörök egy terméknek számítanak-e) Kosár Ezek jelentik a vásárlásokat Hogy egy termékből milyen mennyiséget veszünk, az nem számít A termékek sorrendje sem számít A kosarak sorrendje sem számít
5 definíciók 2. Elemhalmaz Elemhalmaznak nevezzük termékek egy csoportját Ezeket a későbbiekben I -vel fogom jelölni Gyakori elemhalmaz Azok az elemhalmazok, amelyek sok kosárban előfordulnak Sok: több, mint min supp
6 Asszociációs szabály Jelölés I 1 I 2 I 1, I 2 elemhalmazok Jelentés Ha egy kosár tartalmazza I 1 -et, akkor valószínűleg tartalmazza I 2 -t is Hogy mennyire valószínűleg, azt a szabály erőssége mondja meg
7 Mire jó egy asszociációs szabály? Extra profit Legyen I 1 I 2 egy asszoc. szabály Óriási hírverés közepette csökkentsük az I 1 termék árát (-15%) Csendben emeljük az I 2 -ét (+30%) Mivel az eladások együtt mozognak, a profit összességében nőni fog (Az is előfordul, hogy az üzletek elő is írják az együtt vásárlást) Terméktérkép kialakítása Jó, ha a vásárló elhalad az őt érdeklő termékek mellett Ha ismerjük az asszociációs szabályokat, akkor ezt tudjuk segíteni (Persze ezt is az extra profit érdekében tesszük)
8 Mire jó egy asszociációs szabály?
9 Mennyire jó egy asszociációs szabály? Bizonyosság I 1 I 2 egy asszoc. szabály A bizonyosság megmondja, hogy ha egy kosárban benne van az I 1 termékhalmaz, akkor mekkora valószínűséggel van benne az I 2 termékhalmaz is Minél nagyobb a bizonyosság, annál értékesebb a szabály (Annál nagyobb profitot remélhetünk tőle) Támogatottság Azoknak a kosaraknak a száma, amik tartalmazzák I 1 U I 2 -t Igazán csak a nagy támogatottságú szabályok érdekesek
10 Definíció 1. Definíció (asszociációs szabály) c,s Az R:I 1 I 2 kifejezést c bizonyosságú, s támogatottságú asszociációs szabálynak nevezzük, ha I 1, I 2 diszjunkt elemhalmazok, és c = supp(i1 I2) supp(i 1) s = supp(i 1 I 2 )
11 Definíció 2. Definíció (érvényes asszociációs szabály) T kosarak sorozatában, min supp támogatottsági és min conf bizonyossági küszöb mellett az I 1 I 2 asszociációs szabály érvényes, amennyiben I 1 I 2 gyakori elemhalmaz, és c min conf Megfigyelés: az asszociációs szabály definíciójában nem követeltünk meg támogatottsági és bizonyossági küszöböt.
12 Előálĺıtás gyakori elemhalmazokból 1. at ki tudjuk nyerni Egy korábbi előadás pont ezzel foglalkozott Szétvágás Minden gyakori elemhalmazt bontsunk fel két diszjunk nem üres részre (minden lehetséges módon), majd ellenőrizzük, hogy teljesül-e a min conf feltétel Ezen a ponton már sejtjük, hogy asszociációs szabályból rengeteg lehet
13 Előálĺıtás gyakori elemhalmazokból 2. Észrevétel Amennyiben I 1, I gyakori elemhalmazok a T bemeneti sorozatban, és I 1 I, illetve I 1 I I 1 nem érvényes asszociációs szabály, akkor I 1 I I 1 sem érvényes semmilyen I 1 I 1 -re. Következmény Ezt felhasználva nem kell túl sok felesleges szétvágást végezni (Még így is sokat kell számolni)
14 Példa T={A,B,C,D,E,F} Kosarak: {A,B,C,E,F} {A,E,F} {C,D,E,F} {A,C,E,F} {A,B,C} {A,F} Min supp=2 Min conf=0.5 Asszoc. sz. Támogatottság Bizonyosság Érvényes A B B A C EF CD EF 1. táblázat.
15 Példa T={A,B,C,D,E,F} Kosarak: {A,B,C,E,F} {A,E,F} {C,D,E,F} {A,C,E,F} {A,B,C} {A,F} Min supp=2 Min conf=0.5 Asszoc. sz. Támogatottság Bizonyosság Érvényes A B nem B A C EF CD EF 2. táblázat.
16 Példa T={A,B,C,D,E,F} Kosarak: {A,B,C,E,F} {A,E,F} {C,D,E,F} {A,C,E,F} {A,B,C} {A,F} Min supp=2 Min conf=0.5 Asszoc. sz. Támogatottság Bizonyosság Érvényes A B nem B A 2 1 igen C EF CD EF 3. táblázat.
17 Példa T={A,B,C,D,E,F} Kosarak: {A,B,C,E,F} {A,E,F} {C,D,E,F} {A,C,E,F} {A,B,C} {A,F} Min supp=2 Min conf=0.5 Asszoc. sz. Támogatottság Bizonyosság Érvényes A B nem B A 2 1 igen C EF igen CD EF 4. táblázat.
18 Példa T={A,B,C,D,E,F} Kosarak: {A,B,C,E,F} {A,E,F} {C,D,E,F} {A,C,E,F} {A,B,C} {A,F} Min supp=2 Min conf=0.5 Asszoc. sz. Támogatottság Bizonyosság Érvényes A B nem B A 2 1 igen C EF igen CD EF 1 1 nem 5. táblázat.
19 Maximális következményű asszoc. szabály Levezetési szabályok Tegyük fel, hogy I 1 I 2 érvényes I 1 I 2 is érvényes minden I 2 I 2 -re I 1 {i} I 2 {i} is érvényes minden i I 2 -re Következmény A maximális következményrésszel rendelkező szabályokból az összes szabály levezethető A levezetett szabályok paramétereire viszont nem tudunk következtetni Pedig ez nagyon fontos lenne (később látni fogjuk, miért)
20 Asszoc. szabályok és osztályozás 1. Mi a hasonlóság? Mindkettőben attribútumok közötti összefüggéseket keresünk Asszociációs szabályok Tetszőleges két attribútum között Bináris attribútumok Csak akkor álĺıtunk valamit, ha a feltételrész 1 Fő cél a gyors algoritmus
21 Asszoc. szabályok és osztályozás 2. Osztályozás Egy kijelölt attribútumot hogyan határoz meg a többi Nincs megkötés az attribútumok típusára Mindig mondunk valamit Fő cél a pontosság
22 Korreláció implikáció 1. Ha A B egy érvényes asszociációs szabály I. A B II. B A III. C A, C B //vagy bonyolultabb IV. véletlen V. egymást is okozhatják (kölcsönösen megerősítő módon)
23 Korreláció implikáció ábra.
24 Gondok az asszociációs szabályokkal 1. Rengeteg van Az összes gyakori elemhalmazt (már ez is nagyon sok) többféleképp kettévágtuk Magasra álĺıtott küszöbbel kevesebb van, de így tipikusan sok érdekeset is elveszítünk Félrevezetőek lehetnek Az emberek egyharmada hot-dogot vesz, egyharmada hamburgert, a többi mindkettőt Azok és csak azok vesznek majonézt, akik hamburgert esznek A hot-dog majonéz szabály érvényes lesz!
25 Gondok az asszociációs szabályokkal 2. A legtöbb szabály nem érdekes Valami érdekesnek a speciális esetei (apró módosítások ritkán vannak hatással az érdekességre) Többet ér egy általános szabály, mint sok speciális Jó lenne a szabályokat érdekességük alapján sorba rendezni
26 Függetlenségi mutatók Szabályok függetlensége Megfigyelés: egy szabály nem érdekes, ha a feltétel és következményrészek függetlenek egymástól Ennek vizsgálata sok problémát megold A büfés példát is lebuktatja Függetlenségi mutatók Lift érték Empirikus kovariancia, empirikus korreláció χ 2 statisztika Binomiális próba...
27 Néhány képlet
28 Szabályok rangsora Három fő attribútum alapján Támogatottság Bizonyosság Függetlenség De hogyan? Külön-külön egyik sem elég Valamilyen függvényüket kell nézni Itt kezdődik a művészet
29 Általánosság, specialitás Az érdekes asszociációs szabályok között is lehet a többség haszontalan Érdekes, mint érvényes és a rangsor alapján előkelő helyen levő Pl. sok a nagy támogatottságú, más termékektől független termék Ha c db ilyen van (és n valóban érdekes szabály), akkor n 2 c érdekeset fogunk találni Az általános szabályok jobbak Egy lehetséges megoldás A feltételrész minden elemére megnézzük, hogy független-e a többitől Ha igen, akkor kidobjuk Az egész szabályt kidobhatjuk, mert az általánosabb szabályt már biztosan megtaláltuk
30 Hierarchikus asszociációs szabályok 4. ábra. A termékeket hierarchiába rendezhetjük Így túrós palacsinta üdítő jellegű szabályokat kaphatunk Ez az általánosítás teljesen ésszerű és hasznos Sajnos a számításigényt tovább növeli
31 Mit érdemes megjegyezni? Az asszociációs szabályok hasznosak Rengetegen vannak Nehéz megtalálni köztük az érdekeset Ha találtunk egyet, akkor is fenntartásokkal kell kezelni Elég hasznosak ahhoz, hogy a nehézségek ellenére is érdemes legyen velük foglalkozni Köszönöm a figyelmet!
32 Felhasznált irodalom [1] Bodon Ferenc. Adatbányászati algoritmusok. BME, Feb [2]
Asszociációs szabályok
Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában
Gyakori elemhalmazok és asszociációs szabályok
Gyakori elemhalmazok és asszociációs szabályok Nagyméretű adathalmazok kezelése Ilsinszki Balázs! 2014. 03. 10. Anyag felosztása 1. Gyakori elemhalmazok 2. Asszociációs szabályok Anyag felosztása 1. Gyakori
Gyakori elemhalmazok kinyerése
Gyakori elemhalmazok kinyerése Balambér Dávid Budapesti M szaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudomány szakirány 2011 március 11. Balambér Dávid (BME) Gyakori
Gyakori elemhalmazok
Gyakori elemhalmazok Bankó Tibor June 9, 2010 Bankó Tibor (BME) Gyakori elemhalmazok June 9, 2010 1 / 26 Tartalom 1 Bevezetés 2 Az algoritmusok Egy speciális eset Apriori Eclat FP-Growth 3 Az algoritmusok
Állapot minimalizálás
Állapot minimalizálás Benesóczky Zoltán 2004 A jegyzetet a szerzői jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges.
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Relációs adatbázisok tervezése ---2
Relációs adatbázisok tervezése ---2 Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 3.2.8. Funkcionális függ-ek vetítése 3.3.3. Boyce-Codd normálforma 3.3.4.
Adatbányászat. Gyakori elemhalmazok Asszociációs és döntési szabályok. Szegedi Tudományegyetem. Vásárlói kosarak Gyakori elemhalmazok FP-growth
Asszociációs és döntési szabályok Szegedi Tudományegyetem Mire megyünk a gyakori elemhalmazokkal? A különféle adatbázisokban gyakran együttesen előforduló jellemzők ismerete hasznos lehet Mit kezd vele
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
Gyakorló feladatok adatbányászati technikák tantárgyhoz
Gyakorló feladatok adatbányászati technikák tantárgyhoz Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Klaszterezés kiértékelése Feladat:
Csima Judit október 24.
Adatbáziskezelés Funkcionális függőségek Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. október 24. Csima Judit Adatbáziskezelés Funkcionális függőségek 1 / 1 Relációs sémák
Leggyakrabban használt adatbányászási technikák. Vezetői információs rendszerek
Leggyakrabban használt adatbányászási technikák ADATBÁNYÁSZÁS II. 1. A társításelemzés társítási szabályok (asszociációs szabályok) feltárását jelenti. Azt vizsgájuk, hogy az adatbázis elemei között létezik-e
Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.
Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Adatbáziskezelés. Indexek, normalizálás NZS 1
Adatbáziskezelés Indexek, normalizálás NZS 1 Fáljszervezés módjai Soros elérés: a rekordok a fájlban tetszőleges sorrendben, például a felvitel sorrendjében helyezkednek el. A rekord azonosítója vagyis
A digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Csima Judit május 10.
Asszociációs-szabályok, 3. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. május 10. Csima Judit Asszociációs-szabályok, 3. rész 1 / 21 Eddig mi volt? Apriori-algoval gyakori
Adatbázisok elmélete 12. előadás
Adatbázisok elmélete 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Idegennyelv-tanulás támogatása statisztikai és nyelvi eszközökkel
statisztikai és nyelvi eszközökkel Témalabor 2. beszámoló Témavezet : Vámos Gábor 2009. január 9. Mir l lesz szó? A cél: tesztelni és tanítani 1 A cél: tesztelni és tanítani Eszközök és célok Szókincs
1/50. Teljes indukció 1. Back Close
1/50 Teljes indukció 1 A teljes indukció talán a legfontosabb bizonyítási módszer a számítástudományban. Teljes indukció elve. Legyen P (n) egy állítás. Tegyük fel, hogy (1) P (0) igaz, (2) minden n N
BME Nyílt Nap november 21.
Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
6. Gyakorlat. Relációs adatbázis normalizálása
6. Gyakorlat Relációs adatbázis normalizálása Redundancia: Az E-K diagramok felírásánál vagy az átalakításnál elképzelhető, hogy nem az optimális megoldást írjuk fel. Ekkor az adat redundáns lehet. Példa:
Hajnal Péter. Bolyai Intézet, TTIK, SZTE, Szeged április 8.
Fibonacci- számok és tányérok Hajnal Péter Bolyai Intézet, TTIK, SZTE, Szeged 2017. április 8. A Fibonacci-sorozat A Fibonacci-sorozat Rekurzív definíció F 0 = 0, F 1 = 1, F n = F n 1 + F n 2. A Fibonacci-sorozat
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.
Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Relációs adatbázisok tervezése 2.rész (dekompozíció)
Relációs adatbázisok tervezése 2.rész (dekompozíció) Ullman-Widom: Adatbázisrendszerek Alapvetés. Második, átdolgozott kiadás, Panem Kiadó, 2009 3.3. Relációs adatbázissémák tervezése - Anomáliák, relációk
NP-teljesség röviden
NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel
Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
Adatbázismodellek. 1. ábra Hierarchikus modell
Eddig az adatbázisokkal általános szempontból foglalkoztunk: mire valók, milyen elemekből épülnek fel. Ennek során tisztáztuk, hogy létezik az adatbázis fogalmi modellje (adatbázisterv), amely az egyedek,
I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE
I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE Komplex termékek gyártására jellemző, hogy egy-egy termékbe akár több ezer alkatrész is beépül. Ilyenkor az alkatrészek általában sok különböző beszállítótól érkeznek,
(Diszkrét idejű Markov-láncok állapotainak
(Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
PISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
Egy általános iskolai feladat egyetemi megvilágításban
Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
First Prev Next Last Go Back Full Screen Close Quit. Matematika I
Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html
A szemantikus elemzés elmélete. Szemantikus elemzés (attribútum fordítási grammatikák) A szemantikus elemzés elmélete. A szemantikus elemzés elmélete
A szemantikus elemzés elmélete Szemantikus elemzés (attribútum fordítási grammatikák) a nyelvtan szabályait kiegészítjük a szemantikus elemzés tevékenységeivel fordítási grammatikák Fordítóprogramok előadás
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam
01/01 1. Ha egy kétjegyű szám számjegyeit felcseréljük, akkor a kapott kétjegyű szám értéke az eredeti szám értékénél 108 %-kal nagyobb. Melyik ez a kétjegyű szám? Jelölje a kétjegyű számot xy. 08 A feltételnek
Szerencsejátékok. Elméleti háttér
Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél
Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,
ADATBÁZISOK. 4. gyakorlat: Redundanciák, funkcionális függőségek
ADATBÁZISOK 4. gyakorlat: Redundanciák, funkcionális függőségek Példa: szállodai adattábla vendég kód vendég név 200005 Pécsi Ádám 333230 Tóth Júlia 200005 Pécsi Ádám 123777 Szép László lakcím Budapest,
Formális nyelvek és automaták
Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián Utolsó óra MINTA ZH Eötvös Loránd Tudományegyetem Informatikai Kar 2012.05.18 1. feladat: KMP (Knuth-Morris-Prett)
3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa
A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 3. Gyakorlat Egy újságárus 20 centért szerez be egy adott napilapot a kiadótól és 25-ért adja
Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.
Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk?
Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk? Nem szükséges informatikusnak lennünk, vagy mélységében átlátnunk az
van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk
függvények ismétlése lista fogalma, használata Game of Life program (listák használatának gyakorlása) listák másolása (alap szintű, teljes körű) Reversi 2 Emlékeztető a függvények lényegében mini-programok,
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Lineáris algebra (10A103)
Lineáris algebra (10A103) Dr. Hartmann Miklós Tudnivalók Honlap: http://www.math.u-szeged.hu/~hartm Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli, feltétele a Lineáris algebra gyakorlat teljesítése.
Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk).
Gyakorlatok Din 1 Jelölje P (n) azt a számot, ahányféleképpen mehetünk le egy n lépcsőfokból álló lépcsőn a következő mozgáselemek egy sorozatával (zárójelben, hogy mennyit mozgunk az adott elemmel): lépés
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
Makroökonómia. 6. szeminárium
Makroökonómia 6. szeminárium Ismétlés: egy főre jutó makromutatók Népességnövekedés L Y t = ak t α L t 1 α Konstans, (1+n) ütemben növekszik Egy főre jutó értékek Egyensúlyi növekedési pálya Összes változó
Indexszámítási módszerek; Simpson-paradoxon
Indexszámítási módszerek; Simpson-paradoxon Vida Balázs 2018. március 7. Vida Balázs Indexszám; SP 2018. március 7. 1 / 22 Bevezetés Mir l lesz szó? 1 Index(szám) fogalma, példák 2 Érték-, ár- és volumenindexek
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
Fogalmi modellezés. Ontológiák Alkalmazott modellező módszertan (UML)
Fogalmi modellezés Ontológiák Alkalmazott modellező módszertan (UML) Fogalom képzés / kialakítás Cél: Példák: A fogalom képzés segít minket abban, hogy figyelmen kívül hagyjuk azt, ami lényegtelen idealizált
Csima Judit BME, VIK, november 9. és 16.
Adatbáziskezelés Függőségőrzés, 3NF-re bontás Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. november 9. és 16. Csima Judit Adatbáziskezelés Függőségőrzés, 3NF-re bontás 1
ADATBÁZISOK ELMÉLETE 5. ELŐADÁS 3/22. Az F formula: ahol A, B attribútumok, c érték (konstans), θ {<, >, =,,, } Példa:
Adatbázisok elmélete 5. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
HÁZI FELADAT PROGRAMOZÁS I. évf. Fizikus BSc. 2009/2010. I. félév
1. feladat (nehézsége:*****). Készíts C programot, mely a felhasználó által megadott függvényt integrálja (numerikusan). Gondosan tervezd meg az adatstruktúrát! Tervezz egy megfelelő bemeneti nyelvet.
Logisztikus regresszió
Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
ANOVA összefoglaló. Min múlik?
ANOVA összefoglaló Min múlik? Kereszt vagy beágyazott? Rögzített vagy véletlen? BIOMETRIA_ANOVA5 1 I. Kereszt vagy beágyazott Két faktor viszonyát mondja meg. Ha több, mint két faktor van, akkor bármely
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus