Döntési rendszerek I.
|
|
- Rezső Magyar
- 5 évvel ezelőtt
- Látták:
Átírás
1 Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 3. Gyakorlat
2 Egy újságárus 20 centért szerez be egy adott napilapot a kiadótól és 25-ért adja el. A nap végéig el nem adott újságok értéktelenné válnak. Az újságárus eddigi tapasztalata szerint napi 6-10 közötti újságot tud eladni, azonos eséllyel. Mennyit újságot vegyen a kiadótól nap elején? Két probléma merülhet fel, ha nem találja el jól a napi mennyiséget: 1 Tegyük fel, hogy 8-at rendel, csak csak 6-ot vesznek meg. Ekkor 8 20 = 160-at fizet ki a kiadónak, de csak 6 25 = 150 bevétele lesz, vagyis 10 centet bukik nap végére. 2 Ha 6-ot rendel, viszont 8-an vennének, akkor eladja a 6-ot és így 6 (25 20) = 30 profitra tesz szert, viszont hosszútávon elveszítheti azokat vásárlókat akiknek már nem tud újságot adni.
3 Megoldás. Legyen S = {6,7,8,9,10} a lehetséges napi keresletek. Legyen p 6 = p 7 = p 8 = p 9 = p 1 0 = 1/5 annak a valószínűsége, hogy a kereslet rendre 5,6,7,8,9 vagy 10. Az az árus i-t rendel, és j a kereslet, akkor egyrészt 20i-t fizet ki a kiadónak, másrészt 25 min(i, j) bevétele lesz az eladásokból. Ekkor a profit r ij = 25i 20i = 5i, ha i j r ij = 25j 20i, ha i j
4 Az alábbi táblázat mutatja az újságárus lehetséges kifizetéseit. Kereslet (vásárlók száma) Megrendelt újságok Miért nem rendelünk 1,...,5-öt, vagy 10-nél többet? (Ld. dominancia fogalma)
5 Rendeljünk annyit, amely esetén min j S r ij maximális. Megrendelt újságok Legrosszabb eset Kifizetés 6 6,7,8,9, Azaz ebben az esetben 6 újságot kellene rendelni.
6 Rendeljünk annyit, amely esetén max j S r ij maximális. Ez a lehetséges legjobb kifizetést számítja. Megrendelt újságok Legjobb eset Kifizetés 6 6,7,8,9, ,8,9, ,9, , Azaz ebben az esetben 10 újságot kellene rendelni. Ugyanakkor ha nem jön be az optimizmusunk, akkor 50-t is bukhatunk, ha egy nap csak 6 újságot vesznek meg.
7 Nézzük meg, hogy adott szcenáriók esetén mennyit bukhat az újságárus az optimális döntéshez képest. Például, ha tudná, hogy 7 újságot fognak venni, a legjobb amit tehet az, hogy 7-et rendel a kiadótól és ekkor r 77 = 35 hasza lesz. De ha csak 6-ot rendel, akkor r 67 = 30, vagyis az optimálistól vett különbözet 5. Kereslet (vásárlók száma) Készlet = = = = = = = = = = = = = = = = = = = = = = = = = 0 A legrosszabb eseteket vastagon kiemeltük. A döntési kritérium értelmében válassza a legjobbat ezek közül, vagyis 6-ot vagy 7-et fog rendelni.
8 Nézzük meg, hogy hány megrendelt újság esetén lesz a legnagyobb a kifizetés várható értékben Megrendelt újságok Várható kifizetés 5 ( ) = 30 5 ( ) = 30 ( ) = 25 5 ( ) = 25 ( ) = 0 Ebben az esetben is 6 vagy 7 újság rendelés az ajánlott.
9 Végül nézzük meg teljesen általános esetben a problémát. Legyen c a beszerzési ár, d pedig az eladási ár (d > c), a keresletet pedig (p 1,..., p k ) eloszlás adja: Pr(x i a kereslet) = p i. Legyen X véletlen változó melyre Pr(X = x i ) = p i (azaz X a kereslet). Ekkor a várható bevétel E[(d c)x]. Tegyük fel, hogy t darab újságot rendelünk. A cél az, hogy úgy határozzuk meg t értékét, hogy a várható bevétel maximális legyen. ha t x (x 1,..., x n ) akkor ha t < x (x 1,..., x n ) akkor dx ct = c(x t) + (d c)x dt ct = (d c)(x t) + (d c)x
10 Látható, hogy a várható bevétel maximalizálásához a c(t x i )p i + (d c)(x i t)p i x i :t>x i x i :t x i függvényt kell minimalizálni. Az első tag az eladhatatlan újság miatti veszteséget, míg a második az elszalasztott lehetőséget tükrözi. Előfordul, hogy a kereslet egy folytonos eloszlással adott, melynek sűrűségfüggvénye f. Ekkor t-t is érdemes folytonosnak tekinteni, a minimalizálandó függvényünk pedig g(x) = c x (t z)f(z)dz + (d c) x (z t)f(z)dz. Ennek minimuma, illetve további példák: ld. Pluhár András előadás jegyzete.
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 7. Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 8 Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 10. Előadás Vállalatelhelyezés Vállalatelhelyezés Amikor egy új telephelyet kell nyitni,
Hálózatok fejlődése A hatványtörvény A preferential attachment A uniform attachment Vertex copy. SZTE Informatikai Intézet
Hálózattudomány SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Előadó: London András 4. Előadás Hogyan nőnek a hálózatok? Statikus hálózatos modellek: a pontok száma (n) fix, az éleket valamilyen
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK
GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK 1. Egy terméket rövid távon a függvény által leírt költséggel lehet előállítani. A termelés határköltségét az összefüggés adja meg. a) Írja fel a termelés
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június
KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy
Mikroökonómia - 5. elıadás
Mikroökonómia - 5. elıadás A KÍNÁLAT ALAKULÁSA, A IAC JELLEGE Bacsi, 5.ea. 1 A IAC JELLEGE Fontossága a vállalat szempontjából: Milyenek a versenytársak? Mekkora a vállalat a piachoz képest? (piaci részesedés)
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények
A stratégiák összes kombinációján (X) adjunk meg egy eloszlást (z) Az eloszlás (z) szerint egy megfigyelő választ egy x X-et, ami alapján mindkét
Készítette: Jánki Zoltán Richárd Robert Aumann (1930) Izraeli-amerikai matematikus 1974-ben általánosította a Nash-egyensúlyt 2005-ben közgazdasági Nobel-díjat kapott (kooperatív és nem-kooperatív játékok)
Bevezetés az operációkutatásba A lineáris programozás alapjai
Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Közgazdaságtan - 6. elıadás
Közgazdaságtan - 6. elıadás A kínálat alakulása, a piac jellege 1 A PIAC JELLEGE Fontossága a vállalat szempontjából: Milyenek a versenytársak? Mekkora a vállalat a piachoz képest? (piaci részesedés) Két
Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY
KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. KERESLET, KÍNÁLAT, EGYENSÚLY Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat 1
Monopolista árképzési stratégiák: árdiszkrimináció, lineáris és nem lineáris árképzés. Carlton -Perloff fejezet
Monopolista árképzési stratégiák: árdiszkrimináció, lineáris és nem lineáris árképzés Carlton -Perloff 9.10. fejezet Árdiszkrimináció Ugyanazon termék vagy szolgáltatás különböző árakon nem egységes árképzés
2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű
10. Előadás: A sztochasztikus programozás alap modelljei
10. Előadás: A sztochasztikus programozás alap modelljei I. 1. A pétervári probléma (Daniel Bernoulli, 1738) D. Bernoulli a Pétervári Akadémia folyóiratában 1738-ban közölt egy dolgozatot a következő címmel:
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
A mérlegterv nem más, mint a tervidőszak utolsó napjára vonatkozóan összeállított mérleg, amely a vállalat vagyonát mutatja be kétféle vetületben,
A mérlegterv nem más, mint a tervidőszak utolsó napjára vonatkozóan összeállított mérleg, amely a vállalat vagyonát mutatja be kétféle vetületben, pénzértékben. Az üzleti terv-részek nem tartalmaznak olyan
Termelés- és szolgáltatásmenedzsment
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Operációkutatás példatár
1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen
2. hét. 8. hét Elrejelzett igény Korábbi rendelés Készlet Rendelés beérkezés Rendelés feladás. 3. hét
Utolsó módosítás dátuma: szombat, 200 november Készletek - Id-vezérelt rendelési pont - 1 Az id-vezérelt rendelési rendszert (IVR) tulajdonképpen az MRP-re alapul, hiszen a becsült igényeket onnan kapjuk.
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
Vállalati készlet-és pénzgazdálkodás
Vállalati készlet-és pénzgazdálkodás Beruházási és finanszírozási döntések 4. konzultáció 12. A vállalati készletgazdálkodás 1. A készletezési költségek 2. A gazdaságos rendelési mennyiség modellje (EOQ)
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június
MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.
1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 5. el adás Közösségszerkezet El adó: London András 2017. október 16. Közösségek hálózatban Homofília, asszortatívitás Newman modularitás Közösségek hálózatban
A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása
azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma
Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben
KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor június
KÖZGAZDASÁGTAN II. Készült a TÁMO-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János. 2011. január
MUNKAGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez
Piaci szerkezetek VK Gyakorló feladatok a 4. anyagrészhez Cournot-oligopólium Feladatgyűjtemény 259./1. teszt Egy oligopol piacon az egyensúlyban A. minden vállalat határköltsége ugyanakkora; B. a vállalatok
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Mikroökonómia. Vizsgafeladatok
Mikroökonómia Vizsgafeladatok Bacsi, Mikro feladatok 1 1, Marshall- kereszt, piaci egyensúly Mennyi a savanyúcukorka egyensúlyi mennyisége, ha a cukorka iránti kereslet és kínálat függvénye a következı:
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
Esettanulmányok és modellek 2
Esettanulmányok és modellek Kereskedelem Mezőgazdaság Készítette: Dr. Ábrahám István Kereskedelem. Kocsis Péter: Opt. döntések lin.pr. (. oldal) nyomán: Kiskereskedelmi cég négyféle üdítőt rendel, melyek
14.1.ábra: Rezervációs árak és a fogyasztói többlet (diszkrét jószág) 6. elıadás: Fogyasztói többlet; Piaci kereslet; Egyensúly
(C) htt://kgt.bme.hu/ / 6. elıadás: Fogyasztói többlet; Piaci kereslet; Egyensúly 4..ábra: Rezervációs ak és a fogyasztói többlet (diszkrét jószág) Ár r r 2 Ár r r 2 r 3 r 4 r 5 r 6 r 3 r 4 r 5 r 6 2 3
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Mikroökonómia. Gyakorló feladatok
Mikroökonómia Gyakorló feladatok Bacsi, Mikro feladatok 1 1, Marshall- kereszt, piaci egyensúly 1/A feladat: Mennyi a savanyúcukorka egyensúlyi mennyisége, ha a cukorka iránti kereslet és kínálat függvénye
PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium
PIACI SZERKEZETEK BMEGT30A104 8. hét, 1. óra: Differenciált termékes Bertrand-oligopólium PRN: 10. fejezet 2019.04.01. 10:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Emlékeztető Bertrand-modell: árverseny
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak
Gazdaság- és Társadalomtudományi Kar Menedzsment és Vállalatgazdaságtan Tanszék Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak Készítette: dr. Koltai Tamás egyetemi tanár Budapest, 2012.
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
KÉSZLETMODELLEZÉS EGYKOR ÉS MA
DR. HORVÁTH GÉZÁNÉ PH.D. * KÉSZLETMODELLEZÉS EGYKOR ÉS MA Az optimális tételnagyság (Economic Order Quantity) klasszikus modelljét 96-tól napjainkig a világon széles körben alkalmazták és módosított változatait
ELTE TáTK Közgazdaságtudományi Tanszék KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor június
KÖZGAZDASÁGTAN II. KÖZGAZDASÁGTAN II. Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék,
Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.
Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Termelői magatartás elemzése
Termelői magatartás elemzése Termelési függvény A termelési tényezők kombinációi és az általuk termelhető maximális termékmennyiség közötti összefüggés. Termelési tényezők fajtái: Munka () Tőke (K) Természeti
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Klasszikus alkalmazások
Klasszikus alkalmazások Termelésoptimalizálás Hozzárendelési probléma: folytonos eset Arbitrázsárazás p. Termelésoptimalizálás A gazdasági élet és a logisztika területén gyakran találkozunk lineáris optimalizálási
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Közgazdaságtan I. avagy: mikroökonómia. Dr. Nagy Benedek
Közgazdaságtan I. avagy: mikroökonómia r. Nagy Benedek Email: Nagy.Benedek@eco.u-szeged.hu, Tel: (62) 544-676, fogadó óra: Hétfő 14-15:30, KO 311 (szorgalmi időszakban) zemélyes találkozás 4 alkalommal:
FELADATOK MIKROÖKONÓMIÁBÓL
FELADATOK MIKROÖKONÓMIÁBÓL Az alábbiakban példamegoldaásra javasolt feladatok találhatók mikroökonómiából. Az összeállítás formailag nem úgy épül fel, mint a dolgozat, célja, hogy segítse a vizsgára való
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem
modellje az adós büntetésével Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem Nyitott gazdaságok makroökonómiája 1. Bevezetés modellje az adós büntetésével Teljes piacok, Arrow-Debreu-értékpapírok
TestLine - Gazdasági és jogi ismeretek Minta feladatsor
soport: Felnőtt Név: Ignécziné Sárosi ea Tanár: Kulics György Kidolgozási idő: 68 perc lapfogalmak 1. z alábbi táblázatban fogalmakat és azok meghatározásait találja. definíciók melletti cellák legördülő
Vannak releváns gazdasági kérdéseink és ezekre válaszolni szeretnénk.
Vannak releváns gazdasági kérdéseink és ezekre válaszolni szeretnénk. Modellt építünk Szereplők + Piacok Magatartási egyenletek + Piaci egyensúlyi feltételek Endogén változók + Exogén változók GDP nominális
Előadó: Dr. Kertész Krisztián
Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők
Alapfogalmak, alapszámítások
Alapfogalmak, alapszámítások Fazekas Tamás Vállalatgazdaságtan szeminárium 1. Vállalati gazdálkodás Gazdálkodás - Gazdaságosság. A gazdálkodás a vállalat számára szűkösen rendelkezésre álló és adott időszakon
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Készítette: Juhász Ildikó Gabriella
14. tétel Egy kft. logisztikai költséggazdálkodása a számviteli adatok szerint nem megfelelő, ezért a számviteli vezetővel együttműködve a logisztikai vezető számára meghatározták a szolgáltatási rendszer
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer
Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.
Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Közgazdasági elméletek. Dr. Karajz Sándor Gazdaságelméleti Intézet
Közgazdasági elméletek Dr. Karajz Sándor Gazdaságelméleti 3. Előadás A karakterisztikai elmélet Bizonytalan körülmények közötti választás A karakterisztikai elmélet Hagyományos modell a fogyasztó különböző
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
Konszolidált éves beszámoló összeállítása és elemzése
SZÁMVITEL INTÉZETI TANSZÉK Levelező tagozat SZÁMVITEL MESTERSZAK Konszolidált éves beszámoló összeállítása és elemzése Tantárgyi útmutató 2015/2016. tanév 2. félév Tantárgy megnevezése: Konszolidált beszámoló
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek
MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
1. A vállalat. 1.1 Termelés
II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg
Bevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
Termékdifferenciálás és monopolisztikus verseny. Carlton -Perloff 7. fejezet
Termékdifferenciálás és monopolisztikus verseny Carlton -Perloff 7. fejezet 2012.10.25. Monopolisztikus verseny és jellemzői Chamberlin (1933) valós piacokon: Monopolista elem negatív lejtésű keresleti
Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények
A mikroökonómia és makroökonómia eltérése: Bevezetés s a piacgazdaságba gba Alapfogalmak, piaci egyensúly Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények Makroökonómia:
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris