10. Előadás: A sztochasztikus programozás alap modelljei

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "10. Előadás: A sztochasztikus programozás alap modelljei"

Átírás

1 10. Előadás: A sztochasztikus programozás alap modelljei I. 1. A pétervári probléma (Daniel Bernoulli, 1738) D. Bernoulli a Pétervári Akadémia folyóiratában 1738-ban közölt egy dolgozatot a következő címmel: A kockázat mérésére egy új elmélet kifejtése. Ebben a dolgozatban az emberek paradox viselkedésére keresi a magyarázatot, mikor azoknak kockázat vállalásáról kell dönteniük. A dolgozatban leírt probléma a következő: Péter egy szabályos pénzérmét dobál és ezt addig folytatja, amíg először fej nem lesz a dobás eredménye. Megegyezik Pállal, hogy ad neki egy dukátot, ha a legelső dobásra fej lesz az eredmény, két dukátot, ha a második dobásra, négyet, ha a harmadikra, nyolcat, ha a negyedikre és így tovább, azaz minden egyes további dobás megkétszerezi azt az összeget, amit fizetnie kell. Tegyük fel, hogy meg kívánjuk határozni Pál várható nyereségét. A probléma megoldása ilyen formában igen egyszerű, a nyereség várható értéke végtelen, hiszen, ha ξ jelöli véletlenszerűen kifizetésre kerülő nyereségösszeget, mint valószínűségi változót, akkor ez nyilván az 1,2,4,8,...,2 i 1,... értékeket rendre 1 2, 1 4, 1 8, 1 2 i,... valószínűségekkel veszi fel, ahol i vel a nyereményösszeg kifizetéséig bekövetkező pénzérme feldobások számát jelöltük. Így a várható értékre M(ξ) = 1 i=1 2 i 1 = 1 2 i i=1 =. 2 A játék tehát végtelen várható nyereménnyel kecsegtet Pál számára. A játékkal kapcsolatban azonban Pál mérlegelése másjellegű. Nyilván Péter csak egy bizonyos Pál által előre megfizetendő pénzösszeg ellenében hajlandó a számra végtelen várható veszteséget jelentő játékot elkezdeni. A kérdés tehát az, hogy mekkora pénzösszeget legyen hajlandó Pál kifizetni Péternek, hogy lejátsszák ezt a játékot? Ugyanezt Nicholas Bernoulli, Daniel unokatestvére 1713-ban úgy fogalmazta meg, hogy arra kért magyarázatot, hogy bár Pál várható nyeresége végtelen nagy, mégis miért van az, hogy egyetlen gondolkodó ember sem vásárolná meg az ő nyerési esélyét 20 dukátért? A probléma megoldására Daniel Bernoulli bevezette a hasznosság (utility) fogalmát. Azt javasolta, hogy egy valaminek az értékét ne az árával, hanem sokkal inkább a hasz- 1

2 t 1000 Ft kezd ke mellett a nyeremény hasznossága nyeremény (a) 1. ábra. Rögzített α = 1000 kezdőtőke mellett a hasznosság az a nyeremény függvényében nosságával mérjük. Egy bizonyos pénzösszeget tekintve azonban, annak a hasznossága más kell hogy legyen egy szegény és más egy gazdag ember számára. Ha például valakinek kezdetben α mennyiségű pénze van, és nyer a mennyiségű pénzt hozzá, akkor ennek a nyereségnek az értékét helyesebb nem a val magával, hanem a u = bln α+a α függvénnyel, az úgynevezett hasznossági függvénnyel mérni, ahol b egy pozitív állandó. Az u hasznosság tehát tekinthető úgyis, mint rögzített α kezdőtőke mellett az a nyeremény függvénye, illetve úgyis, mint rögzített a nyeremény mellett az α kezdőtőke függvénye. Ezt a két szemléletet az alábbi ábrák mutatják, ahol mindkét esetben a b = 200 értéket használtuk: Ekkor Pál számára α kezdőpénz várható hasznossága (Karl Menger 1934-ben Bernoulli dolgozatára írt lábjegyzete szerint): b α+1 ln 2 α + b α+2 ln 4 α + + b 2 α [ ] = bln (α+1) (α+2) 4 (α+2 n 1 ) 1 2 n n ln α+2n 1 + = blnα. Pálnak ezért tehát azt kell megvizsgálnia, hogy mekkora D nyereségű játék hozná azonos α kezdőpénzre ugyanezt a hasznosságot, azaz [ ] bln (α+1) (α+2) 4 (α+2 n 1 ) 1 2 n blnα = bln α+d α 2

3 1000 Ft nyeremény hasznossága kezd pénz forintban (alfa) 2. ábra. Rögzített a = 1000 nyeremény mellett a hasznosság az α kezdőtőke függvényében (α+2 n 1 ) 1 2 n = α+d n=1 D = (α+2 n 1 ) 1 n=1 2 n α A fenti összefüggés α növekvő értékeihez az alábbi D értékeket rendeli: α D Ebből látható, hogy valóban hatalmas vagyon kellene ahhoz, hogy valakinek Pál, egyébként végtelen várható nyereséggel kecsegtető, nyerési esélyét érdemes legyen 20 dukátért megvenni. 3

4 Megjegyezzük, hogy a kockázat fogalmát is be szokás vezetni, mint a hasznosság mínusz egyszeresét. Bernoulli volt tehát, aki azt javasolta, hogy valaminek az értékét a hasznosságával mérjük. A Bernoulli elv azonban ma már ennél jóval többet jelent a különböző, sztochasztikus rendszerekkel foglalkozó tudományokban. Nem csak megszerkesztenek egy, a várható hasznosságot mérő függvényt, hanem azt, mint bizonyos döntési változók függvényét tekintik és megpróbálják ezen döntési változók értékét úgy beállítani, hogy az maximalizálja annak az értékét (illetve minimalizálja a kockázat értékét). Erre szolgáltat jó példát a következő, klasszikus döntési modell. 2. Holland gátmagasítási probléma (van Dantzig, 1956) Tekintsünk egy gát által védett területet, melynél a védőgát aktuális magasságát jelölje H 0. Meg kell határozni egy olyan új, H-val jelölt gát magasságot, amellyel a továbbiakban védeni szeretnénk a területet. Jelölje x azt a mennyiséget, amennyivel a gátat magasítani kell: x = H H 0. Ha η jelöli a tenger ingadozó, tehát véletlentől függő szintjét, akkor mindaddig nem lesz veszteségünk, ameddig ez H-nál kisebb. Ha azonban η > H, akkor veszteségünk lesz, amely teljes nagyságát jelölje V. Tegyük fel, hogy statisztikai megfigyelésekből ismerjük a tengerszint (diszkrét) valószínűség eloszlását és ebből tudjuk, hogy egy adott h magasság meghaladásának a valószínűsége: P(η > h) = p 0 e α(h H0), ahol p 0 = e αh 0, a H 0 szint meghaladásának a valószínűsége, α pedig pozitív állandó. Legyen I = I(x) az x nagyságú gátmagasítás teljes költsége, amely a következőképpen írható fel: 0, ha x = 0 I = I 0 +kx, ha x > 0, ahol I 0,k pozitív állandók. I 0 -t a gátmagasítás fix költségének, kx-et pedig a magasítás mértékével arányos változó költségnek is nevezik. Így tehát a gátmagasítás összes 4

5 költségének várható jelenkori értéke: I(x)+P(η > H)V j=1 (1+0,01δ) j I(x)+P(η > H)V 100 δ. Itt δ a változatlannak feltételezett kamat százalék, valamint a bevezetett jelöléseinkkel P(η > H) = p 0 e αx. Ezt a függvényt kell tehát minimalizálnunk. Használjuk erre a függvény közelítő kifejezését és tegyük annak az x szerinti deriváltját nullával egyenlővé, ekkor k αp 0 e αx100v δ δk 100p 0 Vα = e αx, 100p 0 Vα δk = e αx, = 0, x = 1 α ln 100p 0Vα. δk Vegyük észre, hogy ebben az optimalizálási feladatban az x döntési változónkra nem volt más korlátunk, mint hogy nemnegatív az értéke. Egy másik, hasonlóan egyszerű döntési probléma a következő. 3. Az újságárus probléma Tekintsünk egy újságárust, aki 150 Ft-ért vásárolja a lapkiadótól az újságot és 180 Ft-ért adja azt el. Tegyük fel, hogy az el nem adott újságokat nem veszik tőle vissza. Az eladható újságok száma nyilvánvalóan véletlenszerű, azaz valószínűségi változó, melyet jelöljön ξ. Jelölje továbbá x az újságárus által a lapkiadótól megvásárolt újságok számát, ezt tekinthetjük a feladat döntési változójának, amelynek az értékét kell úgy meghatározni, hogy az újságárus várható kára minimális, vagy másképpen, várható haszna maximális legyen. Az újságárust mind a ξ > x, mind a ξ < x esetben kár éri, hiszen az előbbi esetben nem tudja realizálni az eladott újságok példányonkénti 30 Ft-os hasznát, míg az utóbbi esetben a nyakán marad sok eladatlan újság, melyekért példányonként 150 Ft-ot kifizetett. Ez a kár is a ξ-n keresztül függ a véletlentől, azaz valószínűségi változó, melyet 5

6 jelöljön µ: µ = (ξ x)30, ha x ξ (x ξ)150, ha x ξ. Tegyük fel, hogy az újságárus korábbi tapasztalataiból ismeri az újság iránti ξ véletlen kereslet valószínűség eloszlását: P(ξ < z) = F(z). Tegyük fel továbbá, hogy létezik az eloszlás f(z) = F + (z) sűrűségfüggvénye, valamint M(ξ) = zf(z)dz várható értéke, mely utóbbi véges. Definiáljuk a ψ(z) függvényt úgy, hogy 30(z x), ha x z ψ(z) = 150(x z), ha x z. Ekkor nyilván µ = ψ(ξ) és ezzel az újságárus várható kára a következőképpen fejezhető ki: M(µ) = M(ψ(ξ)) = + ψ(z)f(z)dz. Az újságárusnak a fenti képlettel adott várható kárát célszerű minimalizálnia. Ez a mennyiség a ψ függvényen keresztül függ az x döntési változótól, hogy ez jobban látható legyen, és majd tudjuk az x szerinti deriváltat nullával egyenlővé tenni, végezzük el ezért az alábbi átalakításokat: M(µ) = + = ψ(z)f(z)dz = x x 150(x z)f(z)dz + 150(x z)f(z)dz + + x + 30(z x)f(z)dz x 30(z x)f(z)dz = x 30(z x)f(z)dz = x = 150 (x z)f(z)dz +30 (x z)f(z)dz +30[M(ξ) x] = [ ] x = (150+30) xf(x) zf(z)dz +30[M(ξ) x]. Ebből azt kapjuk, hogy dm(µ) dx = 180[F(x)+xf(x) xf(x)] 30 = 0 F(x) = = 1 6 6

7 1,2 1,0 0,8 0,6 0,4 0,2 0, ábra. A (40, 100) intervallumon egyenletes eloszlású ξ valószínűségi változó eloszlásfüggvénye ( ) 1 x = F 1. 6 Ha például ξ egyenletes eloszlású a (40, 100) intervallumon, akkor F(x) grafikonját a 3. ábra mutatja. Ebből könnyen leolvasható az x = F 1( 1 6) = 50 érték. Ez jelenti tehát azt a lapkiadótól felveendő újság példányszámot, amely mellett az újságárust várhatóan a lehető legkisebb kár fogja érni. Ha például az újság eladási ára 200 Ft lenne, akkor (ξ x)50, ha x ξ µ = (x ξ)150, ha x ξ F(x) = = 1 ( ) 4 1 x = F 1 = lenne az az újság példányszám, amely mellett az újságárust várhatóan a lehető legkisebb kár éri. Ugyanez a probléma vizsgálható nem a költségek, hanem a bevételek szemszögéből is. Legyen most ν az x-től és ξ-től függő véletlen bevétel, amelyre 30x, ha x ξ ν = 180min(x,ξ) 150x = 180ξ 150x, ha x ξ 30(x ξ)+30ξ, ha x ξ = 150(ξ x)+30ξ, ha x ξ 7

8 Ebből ν = 30(ξ x) 30ξ, ha x ξ 150(x ξ) 30ξ, ha x ξ azaz leolvasható a ν és a µ valószínűségi változók között fennálló ν = µ 30ξ, összefüggés. Ugyanez a várható értékeikre: M( ν) = M(µ) 30M(ξ), ahol 30M(ξ) az x döntési változótól független, konstans érték és emiatt max M(ν) = min M( ν) ugyanarra az x döntési változó értékre következik be, mint amelyikre minm(µ). 4. A büntetéses sztochasztikus programozási modellek alaptípusa Az újságárus probléma speciális esete az úgynevezett büntetéses sztochasztikus programozási feladat típusnak. Tekintsük az alábbi általános determinisztikus alapfeladatot: g i (x) β i,i = 1,...,m h j (x) 0,j = 1,...,M minf(x) Tegyük fel, hogy ez egy konvex programozási feladat, azaz a g i,i = 1,...,m és a h j,j = 1,...,M függvények konkávok, míg az f függvény konvex, valamint minden szereplő függvény kétszer folytonosan differenciálható. Ha megállapítjuk, hogy a β i,i = 1,...,m paraméterek a véletlen től függnek, azaz valószínűségi változók, akkor képezzük a következő valószínűségi változókat: β i g i (x), ha β i g i (x) > 0, µ i = 0, ha β i g i (x) 0, i = 1,...,m, valamint legyen µ = m q i µ i, i=1 8

9 ahol q 1,...,q m rögzített nem negatív számok, melyeket büntető konstansoknak nevezünk. Ekkor, ha a µ valószínűségi változó várható értékét hozzáadjuk a minimalizálandó f célfüggvényhez, akkor mintegy megbüntetjük a g i (x) β i,i = 1,...,m feltételek véletlen nem teljesüléseinek a várható értékét, azért ezeket a különben is értelmetlenné váló feltételeket elhagyhatjuk a feladatból: h j (x) 0,j = 1,...,M min{f(x)+e(µ)} Könnyen látható, hogy az E(µ) várható érték a β i valószínűségi változó f i (z) sűrűségfüggvényének az ismeretében a következőképpen írható fel: E(µ) = m q i i=1 g i (x) (z g i (x))f i (z)dz. Ezért a büntetéses sztochasztikus programozási modellek matematikai kezelhetőségének a fő problémája a k i (u) = integrálok tulajdonságán múlik. u (z u)f i (z)dz, i = 1,...,m Minthogy ezekről elemi eszközökkel be lehet látni, hogy az u változóban nemnövekvők, konvexek és folytonosan differenciálhatók, azért egyszerűen következik, hogy E(µ) az x függvényében az egész n dimenziós térben folytonosan differenciálható, és konvex, azaz ennek a függvénynek a minimalizálandó célfüggvényhez történő hozzáadása nem változtatja meg a nemlineáris programozási feladat konvexségét. 5. A valószínűséggel korlátozott sztochasztikus programozási modellek típusai Tekintsük megint a g i (x) β i,i = 1,...,m h j (x) 0,j = 1,...,M minf(x) determinisztikus alapfeladatot. Miután megállapítjuk, hogy a β 1,...,β m paraméterek valószínűségi változók, nem hagyjuk el az értelmetlenné vált g i (x) β i,i = 1,...,m feltételeket, hanem külön külön mindegyik teljesülését előírt valószínűséggel követeljük 9

10 meg: P(g i (x) β i ) p i, i = 1,...,m h j (x) 0,j = 1,...,M minf(x) Az így keletkező optimalizálási feladatot egyedi valószínűségekkel korlátozott sztochasztikus programozási feladatnak nevezzük. Ennek előnye a könnyű kezelhetőség, hiszen minden valószínűségi korlát felírható a β i valószínűségi változók eloszlásfüggvényével, illetve ha létezik azoknak az inverze, akkor gyakorlatilag a determinisztikus alapfeladattal azonos nehézségű nemlineáris programozási feladatot kell csak tudnunk megoldani. Az ilyen modellezés nagy hátránya azonban az, hogy a p i, i = 1,...,m egyedi valószínűségi korlát szinteket túlzottan nagynak kell választani ahhoz, hogy mind az m feltétel egyszerre kellően nagy valószínűséggel teljesüljön. Ha például m = 20 és a β i valószínűségi változók sztochasztikusan függetlenek, akkor 0, 9 es egyedi valószínűségi korlát szintek előírása mellett mind a 20 feltétel együttesen csupán 0, 1216 valószínűséggel fog teljesülni és ez az érték még 0,99 es szintek mellett is csak 0,8179 lesz. Ezen a problémán a következő egyszerű kis változtatással lehet segíteni: h 0 (x) = P(g i (x) β i,i = 1,...,m) p, h j (x) 0,j = 1,...,M minf(x) vagyis egyszerre követeljük meg az összes véletlen feltétel teljesülését az általunk megkívánt p valószínűségi korlát szinttel. Az így keletkező optimalizálási feladatot együttes valószínűséggel korlátozott sztochasztikus programozási feladatnak nevezzük. A változtatás minimálisnak tűnhet, mégis a keletkező nemlineáris programozási feladat matematikai tulajdonságainak a meghatározása külön elméletet igényel. Ezt Prékopa András 1970-ben dolgozta ki és úgy hívjuk, hogy a logkonkáv valószínűségi mértékek elmélete. Ennek segítségével a β i,i = 1,...,m valószínűségi változók együttes valószínűségeloszlásának elég bő családjára igazolni lehet, hogy a fenti nemlineáris programozási feladat továbbra is konvex programozási feladat marad. További problémát jelent azonban a h 0 (x) valószínűségi függvény értékének és gradiensének a numerikus számítása. Erre szimulációs és numerikus integrálási eljárások születtek, melyek a számítógépek fejlődésével 10

11 egyre nagyobb méretű, együttes valószínűséggel korlátozott sztochasztikus programozási feladatok megoldását teszik lehetővé. Megjegyezzük, hogy elvileg az is elképzelhető, hogy a β i valószínűségi változókat egyszerűen a várható értékükkel helyettesítjük. Ezzel a megoldandó nemlineáris programozási feladat nehézsége nem változik, azonban az így nyerhető optimális megoldásra a β i valószínűségi változókra kimondott feltételek csak nagyon kis valószínűséggel fognak mind teljesülni. A problémát jobban átgondolva arra is van lehetőségünk, hogy a determinisztikus alapfeladatban a β i valószínűségi változókat a várható értékük plusz három szórásukkal helyettesítsük, ami viszont azt fogja eredményezni, hogy ugyan minden egyedi valószínűségi feltétel közel 0, 997 valószínűséggel teljesülni fog, azonban az optimalizálási feladat minimuma nem lesz olyan kicsi, mint amekkora együttes valószínűségi korlát előírása mellett lehetne. Ennek az a könnyen belátható oka, hogy, a fentebb leírt két modell ugyanúgy, mint az egyedi valószínűségekkel korlátozott sztochasztikus programozási feladat, nem képesek a β i valószínűségi változók között fennálló sztochasztikus kapcsolatok figyelembevételére. Erre csupán az együttes valószínűséggel korlátozott sztochasztikus programozási feladat képes és ennek ára a viszonylagosan nagy matematikai és numerikus kiértékelési bonyolultság. 11

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 3. Gyakorlat Egy újságárus 20 centért szerez be egy adott napilapot a kiadótól és 25-ért adja

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta

Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta Közlemény Biostatisztika és informatika alajai. előadás: Az orvostudományban előforduló nevezetes eloszlások 6. szetember 9. Veres Dániel Statisztika és Informatika tankönyv (Herényi Levente) már kaható

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Feladatok és megoldások a 13. hétre

Feladatok és megoldások a 13. hétre Feladatok és megoldások a. hétre Építőkari Matematika A. Az alábbi függvények melyike lehet eloszlásfüggvény? + e x, ha x >, (a F(x =, ha x, (b F(x = x + e x, ha x, (c F(x =, ha x, x (d F(x = (4 x, ha

Részletesebben

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben 1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy

Részletesebben

Leképezések. Leképezések tulajdonságai. Számosságok.

Leképezések. Leképezések tulajdonságai. Számosságok. Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul

Részletesebben

Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor

Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor Integrálszámítás Integrálási szabályok Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása Motivációs feladat Valószínűség-számításnál találkozhatunk

Részletesebben

Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet

Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 10. Előadás Vállalatelhelyezés Vállalatelhelyezés Amikor egy új telephelyet kell nyitni,

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József

Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Matematika III. 5. : Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

1. Lineáris differenciaegyenletek

1. Lineáris differenciaegyenletek Lineáris differenciaegyenletek Tekintsük az alábbi egyenletet: f(n) af(n ) + bf(n + ), (K < n < N) f(k) d, f(n) d Keressük a megoldást f(n) α n alakban Így kajuk a következőket: α n aα n + bα n+ α a +

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008

Részletesebben

KÉSZLETMODELLEZÉS EGYKOR ÉS MA

KÉSZLETMODELLEZÉS EGYKOR ÉS MA DR. HORVÁTH GÉZÁNÉ PH.D. * KÉSZLETMODELLEZÉS EGYKOR ÉS MA Az optimális tételnagyság (Economic Order Quantity) klasszikus modelljét 96-tól napjainkig a világon széles körben alkalmazták és módosított változatait

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

NEVEZETES FOLYTONOS ELOSZLÁSOK

NEVEZETES FOLYTONOS ELOSZLÁSOK Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

f x 1 1, x 2 1. Mivel > 0 lehetséges minimum. > 0, így f-nek az x 2 helyen minimuma van.

f x 1 1, x 2 1. Mivel > 0 lehetséges minimum. > 0, így f-nek az x 2 helyen minimuma van. 159 5. SZÉLSŐÉRTÉKSZÁMÍTÁS = + 1, R + 1 f = 1 R +,, f = R +, 1 Az 1 = 0 egyenlet gyökei : 1 1, 1. Mivel ezért az 1 helyen van az f-nek minimuma. 5.1. f f 1 0, 5.. Legyen az egyik szám, a másik pedig A.

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Nemparaméteres próbák

Nemparaméteres próbák Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

GPK M1 (BME) Interpoláció / 16

GPK M1 (BME) Interpoláció / 16 Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem modellje az adós büntetésével Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem Nyitott gazdaságok makroökonómiája 1. Bevezetés modellje az adós büntetésével Teljes piacok, Arrow-Debreu-értékpapírok

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.

Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30. Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

Centrális határeloszlás-tétel

Centrális határeloszlás-tétel 13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a

Részletesebben

Numerikus integrálás

Numerikus integrálás Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben