A stratégiák összes kombinációján (X) adjunk meg egy eloszlást (z) Az eloszlás (z) szerint egy megfigyelő választ egy x X-et, ami alapján mindkét
|
|
- Vince Török
- 7 évvel ezelőtt
- Látták:
Átírás
1 Készítette: Jánki Zoltán Richárd
2 Robert Aumann (1930) Izraeli-amerikai matematikus 1974-ben általánosította a Nash-egyensúlyt 2005-ben közgazdasági Nobel-díjat kapott (kooperatív és nem-kooperatív játékok)
3 A stratégiák összes kombinációján (X) adjunk meg egy eloszlást (z) Az eloszlás (z) szerint egy megfigyelő választ egy x X-et, ami alapján mindkét játékos megkapja, hogy mely stratégiát kell játszaniuk (létezik publikus eset is) Csak a stratégiát ismerik, a választott x-et nem Az eloszlás korrelált egyensúly, ha egyik játékosnak sem éri meg eltérni a megfigyelő javaslatától (tfh.: más sem tér el)
4 Bimátrix játék vizsgálata (m x n) z eloszlás a mátrixon, és A B A z 11 z 12 B z 21 z 22 Várható kifizetések: 1. játékos (i. sor): 2. játékos (j. oszlop):
5 Nemek harca R = Opera Football Opera (2,5) (0,0) Football (0,0) (5,2) Az eloszlásunkat határozza meg egy érmefeldobás (fej/írás) Fej esetén Opera/Opera Írás esetén Football/Football ½ - ½ valószínűség
6 Az egyes stratégiakombinációkhoz rendelt valószínűségek felírhatók mátrixként A B A z 11 z 12 B z 21 z 22 O F O 1/2 0 F 0 1/2 ½ ½ = 1
7 A várható nyereséget az eloszlás és kifizetési mátrix lineáris kombinációja adja z 11 * R(O,O) + z 12 * R(O,F) + z 21 * R(F,O) + z 22 * R(F,F) ½ * * * 0 + ½ * 5 = 7/2 = 3,5 A bimátrix játék egyes mezőiben szereplő értékpárok a hozzájuk tartozó valószínűségekkel együtt korrelált stratégia párokat alkotnak
8 Ha az eloszlásban valamely stratégiapárt 1 valószínűséggel játsszák, akkor az tiszta stratégiapár. Amennyiben a valószínűségek mátrixa az alábbi formában kerül felírásra: A akkor kevert stratégiapárokról beszélünk. B A qr q[1-r] B [1-q]r [1-q][1-r]
9 Tulajdonképpen, ha az 1. játékosnak az A stratégiát javasoljuk, akkor azt ő z 11 + z 12 valószínűséggel játssza. Ennek ismeretében viszont, ha a 2. játékosnak az A stratégiát javasoljuk, akkor azt ő z 11 / (z 11 + z 12 ) valószínűséggel játssza. A B A z 11 z 12 B z 21 z 22
10 Mindkét játékos maximalizálni szeretné a várható nyereségét a kapott javaslat függvényében Ennélfogva, ha az 1. játékos elfogadja a javaslatot az A stratégiára, akkor a várható nyeresége: z 11 *R(A,A) / (z 11 + z 12 ) + z 12 *R(A,B) / (z 11 + z 12 ) Ha figyelmen kívül hagyja a javaslatot: z 11 *R(B,A) / (z 11 + z 12 ) + z 12 *R(B,B) / (z 11 + z 12 )
11 z 11 *R(A,A) / (z 11 + z 12 ) + z 12 *R(A,B) / (z 11 + z 12 ) z 11 *R(B,A) / (z 11 + z 12 ) + z 12 *R(B,B) / (z 11 + z 12 ) z 11 *R(A,A) + z 12 *R(A,B) z 11 *R(B,A) + z 12 *R(B,B)
12 Antoine Augustine Cournot ( ) Francia filozófus, matematikus Nagyban hozzájárult a közgazdaságtanhoz Cournot duopólium: Adott két vállalat, amely azonos minőségben ugyanazt a terméket állítja elő. Céljuk, a profit maximalizálása, és csak a kibocsátott termékek mennyiségéről dönthetnek.
13 A vállalatok rendelkeznek egy ún. reakciófüggvénnyel. A két vállalat reakciófüggvényének metszéspontjában található a Cournotegyensúly. Ebben a pontban a másik kibocsátására vonatkozó becslés = ténylegessel.
14 Maximalizálási feladatunk van, és a bevételt egy kétváltozós függvény adja meg. Ahol az első derivált 0, ott a függvénynek szélsőértéke van. Deriváljunk parciálisan, mégpedig a vállalat saját bevételi függvényét a saját kibocsátás szerint.
15 Ágazati kibocsátás: q = q 1 + q 2 Keresleti függvény: q Bevétel: f 1 = (100 - (q 1 + q 2 )) * q 1 f 2 = (100 - (q 1 + q 2 )) * q 2 (q 2 rögzített) (q 1 rögzített) f 1 = 100 2q 1 q 2 =0 q 2 = 100 2q 1 f 2 = 100 2q 2 q 1 =0 q 1 = 100 2q 2 Keresleti függvénybe visszahelyettesítve: 100-2(100-2q 1 )-q 1 = q 1 = 0 q 1 = 100/3 = q 2 q = 200/3 f 1 = 10000/9 f 2 = 10000/9
16 Ha kartellba tömörülnek az előző példában szereplő vállalatok: Keresleti függvény: 100-q Bevétel: f = (100-q)*q = -q q f = 100 2q = 0 q = 50, tehát q 1 = q 2 = 25 f = 50*50 = 2500 f 1 = f 2 = 1250 Összegezve: kevesebb kibocsátás, magasabb ár.
17 Megfelelője a licitálás, azonban különböző variánsai terjedtek el. Angol aukció: adott (kikiáltási) árról felfelé haladva licitálnak (a legtöbbet ajánló nyer) Holland aukció: magas (ideális) árról lefelé haladnak egészen addig, amíg legelőször valaki meg nem állítja (virágpiac, hal árusítás) Zárt licit: zárt borítékban hagyják a licitet, aki a legtöbbet ajánlja, az nyer, annyit fizet, amennyi ajánlott Vickrey-aukció: Olyan, mint a zárt licit, viszont csak a második legmagasabb árat kell kifizetni Multiunit aukció: Több ugyanolyan termékre licitálunk, de a termékek száma korlátozott.
18 Minden résztvevő kezdetben aktív. Az induló összeg és a növekedés mértéke fixált. Minden lépésben: A licitálók az utolsó összeg + növekedés mértékét mondják be. Minden körben 0 vagy több játékos inaktív lesz (nem licitál az adott tárgyra tovább). Legalább 2 aktív résztvevő szükséges a következő lépéshez. Az egyetlen aktív játékos (aki bennmarad), ő nyer.
19 Kezdetben minden résztvevő inaktív. Az induló összeg és a csökkenés mértéke rögzített. Az első jelentkező nyeri az árut. Ha nincs ilyen, akkor csökkentik az utolsó árat a rögzített mértékkel.
20 William Vickrey nevéhez fűződik 1996-ban Nobel-díjat kapott az aukciók elemzéséért Tétel: A Vickrey-aukcióknál az optimális stratégia az igazmondás.
21 Bizonyítás: legyen n (>1) a játékosok száma. Legyen v i : az áru értéke az i. játékos számára b i : az érte adott ajánlat az i. játékos esetén Az i. játékos nyeresége: Belátható, hogy a domináns stratégia a b i = v i, hiszen ha az i. játékos többet fizet, akkor negatív haszonnal zár, ha kevesebbet fizet, akkor meg elvesztheti.
22 Egy termékből több példány is eladásra kerül A megvásárolható termékek száma ismert A licitáló meghatározza, hogy mennyit hajlandó fizetni az adott számú termékért Az ár növekszik, a vásárolni kívánt mennyiség csökken
23 Tfh. két játékos szeretne venni karórákat, majd azokat értékesíteni (6 db eladó) 1. játékos: 3000$-ral rendelkezik 2. játékos 2500$-ral rendelkezik Az árak növekszenek 100$-onként Ár/db 1. játékos 2. játékos 500$ $ $ $ 3 3
24 Az előző esetben ész nélkül licitáltak a vevők. Az értékesítők így nyertek 4800$-t a 6 db óráért. Az 1. kör után tudják a résztvevők egymásról, hogy mekkora az az összeg, aminél többet nem hajlandóak költeni. Mindketten egyre többet veszítenek, ezt kell belátniuk.
25 Ár/db 1. játékos 2. játékos 500$ $ 3 3 Az 1. játékos tudja, hogy nem szerezhet 3-nál több karórát, ha a 2. játékosnak is szüksége van rá minden áron. A 2. játékosnak nincs jobb lehetősége, mint kompromisszumot kötni. Ha mindketten alkalmazkodnak, akkor soksok dollárt spórolhatnak meg.
26 Ebben az esetben, ha 1000$-ért tudják továbbértékesíteni a megvásárolt órákat, akkor 3*400$ = 1200$-t nyernek az üzleten. Az aukción értékesítők viszont a 4800$ helyett csak 3600$-hoz jutottak a játékosok kompromisszuma miatt.
27 Pluhár András: Játékelmélet (jegyzet) Wikipedia David Ramsey: Correlated Equilibria (presentation) V.S. Subrahmanian: Auctions I.
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 8 Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek
KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június
KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez
Piaci szerkezetek VK Gyakorló feladatok a 4. anyagrészhez Cournot-oligopólium Feladatgyűjtemény 259./1. teszt Egy oligopol piacon az egyensúlyban A. minden vállalat határköltsége ugyanakkora; B. a vállalatok
JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK
1.Feladat JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK Az alábbi kifizetőmátrixok három különböző kétszemélyes konstans összegű játék sorjátékosának eredményeit mutatják: 2 1 0 2 2 4 2 3 2 4 0 0 1 0 1 5 3 4 3
Mikro- és makroökonómia. Monopolisztikus verseny, Oligopóliumok Szalai László
Mikro- és makroökonómia Monopolisztikus verseny, Oligopóliumok Szalai László 2017.10.12. Piaci feltételek A termékek nem homogének, de hasonlóak A különbség kisebb termékjellemzőkben jelentkezik Pl.: Coca-Cola
11. Előadás. Megyesi László: Lineáris algebra, oldal. 11. előadás Kvadratikus alakok, Stratégiai viselkedés
11. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Leontyev-modell, Sajátérték 1. Gondolkodnivaló Határozzuk meg, hogy az x valós paraméter mely értékeire lesz az alábbi A mátrix
Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 12. hét STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET
MIKROÖKONÓMIA I. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. B STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET K hegyi Gergely, Horn Dániel, Major Klára Szakmai felel s: K hegyi Gergely 2010.
Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001)
Játékelmélet szociológusoknak J-1 Bevezetés a játékelméletbe szociológusok számára Ajánlott irodalom: Mészáros József: Játékelmélet (Gondolat, 2003) Filep László: Játékelmélet (Filum, 2001) Csontos László
Universität M Mis is k k olol ci c, F Eg a y kultä etem t, für Wi Gazda rts ságcha tudft o sw máis n s yen i scha Kar, ften,
6. Előadás Piaci stratégiai cselekvések leírása játékelméleti modellek segítségével 1994: Neumann János és Oskar Morgenstern Theory of Games and Economic Behavior. A játékelmélet segítségével egzakt matematikai
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
f B B 1 B 2 A A 2 0-1
az előadáson tárgyalt példák-1 Fogolydilemma A játék 2 2-es, nem-kooperatív, kétszemélyes és szimmetrikus. A játékos lehetőségei: A 1 : elismeri a bankrablást B játékos lehetőségei: B 1 : elismeri a bankrablást
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 3. Gyakorlat Egy újságárus 20 centért szerez be egy adott napilapot a kiadótól és 25-ért adja
MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek
MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 17. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ
Versenyben az euróval
SZKA_207_39 Versenyben az euróval Senki többet harmadszor? 452 SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK DIÁKMELLÉKLET DIÁKMELLÉKLET VERSENYBEN AZ EURÓVAL 7. ÉVFOLYAM 453 A KÍNAI LICIT SZABÁLYAI
PIACI SZERKEZETEK BMEGT30A hét, 1-2. óra: Játékelmélet, Cournot- és Bertrand-oligopólium
PIACI SZERKEZETEK BMEGT30A104 7. hét, 1-2. óra: Játékelmélet, Cournot- és Bertrand-oligopólium PRN: 9. és 10. fejezet 2018.03.19. 10:15 2018.03.21. 12:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Oligopóliumok
Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli.
Játékelmélet Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli Irodalom előadás jegyzet J. D. Williams: Játékelmélet Filep László: Játékelmélet 1. Előadás Történeti
Közgazdaságtan I. 11. alkalom
Közgazdaságtan I. 11. alkalom 2018-2019/II. 2019. Április 24. Tóth-Bozó Brigitta Tóth-Bozó Brigitta Általános információk Fogadóóra szerda 13-14, előzetes bejelentkezés szükséges e-mailben! QA218-as szoba
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 7. Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek
Kiszorító magatartás
8. elõadás Kiszorító magatartás Árrögzítés és ismételt játékok Kovács Norbert SZE GT Az elõadás menete Kiszorítás és információs aszimmetria Kiszorító árazás és finanszírozási korlátok A BOLTON-SCHARFSTEIN-modell
Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 10. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 3. rész
MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 3. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack
MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek
MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
1.2.1 A gazdasági rendszer A gazdaság erőforrásai (termelési tényezők)
Galbács Péter, Szemlér Tamás szerkesztésében Mikroökonómia TARTALOM Előszó 1. fejezet: Bevezetés 1.1 A közgazdaságtan tárgya, fogalma 1.1.1 A közgazdaságtan helye a tudományok rendszerében 1.1.2 A közgazdaságtan
PIACI SZERKEZETEK BMEGT30A hét, 1-2. óra: Játékelméleti bevezető, Cournot- és Bertrandoligopólium
PIACI SZERKEZETEK BMEGT30A104 7. hét, 1-2. óra: Játékelméleti bevezető, Cournot- és Bertrandoligopólium PRN: 9., 10. fejezet 2019.03.25. 10:15 2019.03.27. 12:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu)
Kezdjen árulni a Catawiki online árverésein!
Kezdjen árulni a Catawiki online árverésein! Hogyan kezdhet a Catawikin árulni www.catawiki.hu/signup Mi a Catawiki? A Catawiki a világ leggyorsabban növekvő online aukciósháza. Weboldalunk olyan embereket
PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium
PIACI SZERKEZETEK BMEGT30A104 8. hét, 1. óra: Differenciált termékes Bertrand-oligopólium PRN: 10. fejezet 2019.04.01. 10:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Emlékeztető Bertrand-modell: árverseny
Közgazdasági elméletek. Dr. Karajz Sándor Gazdaságelméleti Intézet
Közgazdasági elméletek Dr. Karajz Sándor Gazdaságelméleti 3. Előadás A karakterisztikai elmélet Bizonytalan körülmények közötti választás A karakterisztikai elmélet Hagyományos modell a fogyasztó különböző
KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június
KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Makroökonómia. 12. hét
Makroökonómia 12. hét A félév végi zárthelyi dolgozatról Nincs összevont vizsga! Javító és utóvizsga van csak, amelyen az a hallgató vehet részt, aki a szemináriumi dolgozat + 40 pontos dolgozat kombinációból
Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY
KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. KERESLET, KÍNÁLAT, EGYENSÚLY Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat 1
Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények
A mikroökonómia és makroökonómia eltérése: Bevezetés s a piacgazdaságba gba Alapfogalmak, piaci egyensúly Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények Makroökonómia:
Bevezetés s a piacgazdaságba
Bevezetés s a piacgazdaságba gba Alapfogalmak, piaci egyensúly Bacsi, BevPiacgaz 1 Elméleti: mikroökonómia makroökonómia nemzetközi gazdaságtan világgazdaságtan komparatív gazdaságtan közg. elmélettörténet
Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények
A közgazdask zgazdaságtan gtan részei: r Bevezetés s a piacgazdaságba gba Alapfogalmak, piaci egyensúly Elméleti: mikroökonómia makroökonómia nemzetközi gazdaságtan világgazdaságtan komparatív gazdaságtan
Nem-kooperatív játékok
Nem-kooperatív játékok Versengő ágensek konfliktusai játékelmélet Cselekvéseivel mások cselekvéseinek hatását befolyásolják. Ettől a cselekvések (mind) várható haszna meg fog változni. A változás az én
HASZNÁLATI ÚTMUTATÓ. Frissítve: 2012.12.03
Frissítve: 2012.12.03 1. Bevezető A visszavett.hu egy aukciós oldal, ahol olyan eszközökre (gépjármű, haszongépjármű, stb.) lehet licitálni, amelyekre korábbi tulajdonosuk hitelt vett fel, vagy lízingelte,
Mikro- és makroökonómia. A keynesiánus pénzpiac és a teljes modell Szalai László
Mikro- és makroökonómia A keynesiánus pénzpiac és a teljes modell Szalai László 2016. 11. 18. A keynesiánus pénzpiac A keynesi pénzpiacon az árszínvonal exogén változó! Rögzített nominálbérek mellett a
A Cournot-féle duopólium
A Cournot-féle duopólium. Kínálati duopólium: két termelő állít elő termékeket. Verseny a termékmennyiségekkel 3. A piaci kereslet inverz függvénye: p a. Valamely ár mellett kialakuló keresletet két vállalat
TEHETSÉGEK VÁSÁRA Útmutató
TEHETSÉGEK VÁSÁRA Útmutató A Tehetségek Vására egy online, közösségépítő, jótékonysági program, melyet iskolánk is szeretne megrendezni a Szülői Munkaközösség segítségével. A programban bárki részt vehet,
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
REGIONÁLIS GAZDASÁGTAN
REGIONÁLIS GAZDASÁGTAN ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan VON THÜNEN-MODELLEK Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s: Békés Gábor 2011. július Vázlat 1 Mai
Piaci szerkezet és erõ
. Elõadás Piaci szerkezet és erõ Kovács Norbert SZE KGYK, GT A vállalati árbevétel megoszlása Gazdasági költség + gazdasági profit Számviteli költségek + számviteli profit Explicit költségek + elszámolható
13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.
1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi
TestLine - Gazdasági és jogi ismeretek Minta feladatsor
soport: Felnőtt Név: Ignécziné Sárosi ea Tanár: Kulics György Kidolgozási idő: 68 perc lapfogalmak 1. z alábbi táblázatban fogalmakat és azok meghatározásait találja. definíciók melletti cellák legördülő
Monopolista árképzési stratégiák: árdiszkrimináció, lineáris és nem lineáris árképzés. Carlton -Perloff fejezet
Monopolista árképzési stratégiák: árdiszkrimináció, lineáris és nem lineáris árképzés Carlton -Perloff 9.10. fejezet Árdiszkrimináció Ugyanazon termék vagy szolgáltatás különböző árakon nem egységes árképzés
Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet
Közgazdaságtan alapjai Dr. Karajz Sándor Gazdaságelméleti 10. Előadás Makrogazdasági kínálat és egyensúly Az előadás célja A makrogazdasági kínálat levezetése a következő feladatunk. Ezt a munkapiaci összefüggések
Játékszabály. 30min
3-6 10+ 30min Játékszabály 1 Vedd meg a legjobb házakat olcsón, vedd rá az ellenfeleidet, hogy túl sokat költsenek, majd add el a házaidat minél nagyobb profitot termelve! Tartalma 30 zkártya 1-től 30-ig
PIACI JÁTSZMÁK. Bevezető Közgazdaságtan Tanszék
PIACI JÁTSZMÁK Bevezető 2018. 09. 03 Közgazdaságtan Tanszék banhidiz@kgt.bme.hu Általános információk Piaci játszmák (BMEGT30V200) Oktatók és témakörök: Bánhidi Zoltán (banhidiz@kgt.bme.hu) Bevezető témakörök
További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék
További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két
DE! Hol van az optimális tőkeszerkezet???
DE! Hol van az optimális tőkeszerkezet??? Adósság és/vagy saját tőke A tulajdonosi érték maximalizálása miatt elemezni kell: 1. A pénzügyi tőkeáttétel hatását a részvények hozamára és kockázatára; 2. A
(makro modell) Minden erőforrást felhasználnak. Árak és a bérek tökéletesen rugalmasan változnak.
(makro modell) Vannak kihasználatlat erőforrások. Árak és a bérek lassan alkalmazkodnak. Az, hogy mit csináltunk most, befolyásolja a következő periódusbeli eseményeket. Minden erőforrást felhasználnak.
Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét TERMÉKPIACI EGYENSÚLY VERSENYZŽI ÁGAZATBAN
MIKROÖKONÓMIA I. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. B TERMÉKPIACI EGYENSÚLY VERSENYZŽI ÁGAZATBAN K hegyi Gergely, Horn Dániel, Major Klára Szakmai felel s: K hegyi Gergely 2010.
Piaci szerkezetek (BMEGT30A104)
Piaci szerkezetek (BMEGT30A104) 10. hét, 2. óra a 12. hét, 1. óra helyett 2018. 04. 21. (2018. 04. 30. helyett) QAF14 Konzultáció az 1. és a 2. pótzh-ra Kupcsik Réka kupcsikr@kgt.bme.hu Gyakorlás az első
1. A vállalat. 1.1 Termelés
II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg
A Morra játék Módosított Morra Blöff és alullicitálás mint racionális stratégiák
A Morra játék Módosított Morra Blöff és alullicitálás mint racionális stratégiák Előadás felépítése Morra játék háttere, fajtái Módosított Morra Egyszerűsítési stratégiák Blöff és alullicitálás Mi az Morra?
Nyerni jó. 7.-8. évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Nyerni
4. Kartell két vállalat esetén
4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését
Mikro- és makroökonómia. Bevezető Szalai László
Mikro- és makroökonómia Bevezető 2017.09.14. Szalai László Általános információk Tantárgy: Mikro- és Makroökonómia (BMEGT30A001) Kurzuskód: C2 (adatlap: www.kgt.bme.hu) Oktató Szalai László Fogadóóra:
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
2015/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Egy példa Adott két TV csatorna (N1, N2), melyek 100 millió nézőért versenyeznek.
Horváth Jenőné dr. * A RACIONALITÁS PROBLÉMÁJA ÉS A JÁTÉKELMÉLET LEGÚJABB EREDMÉNYEI
Horváth Jenőné dr. * A RACIONALITÁS PROBLÉMÁJA ÉS A JÁTÉKELMÉLET LEGÚJABB EREDMÉNYEI BEVEZETÉS A racionalitás vizsgálata a döntéselmélet egyik központi kérdése. A racionalitás fogalmának változása szoros
KÖZGAZDASÁGTAN. Játékelmélet Szalai László
KÖZGAZDASÁGTAN Játékelmélet 2017. 10. 09. Szalai László Játékelméleti problémák Racionális, haszonmaximalizáló játékosok Döntéselmélet vs. játékelmélet Döntések közötti interakciók A játékosok által élérhető
Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
Játékelmélet és hálózati alkalmazásai 2. ea
Játékelmélet és hálózati alkalmazásai 2. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 1 / 37 1 Nevezetes normál formájú játékok Iteráció Szigorúan dominált
MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely február
MIKROÖKONÓMIA II. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
PIACI JÁTSZMÁK. Fiú. Színház. Színház (4 ; 2) (0 ; 0) A38 (0 ; 0) (2 ; 4) Lány
PIACI JÁTSZMÁK Bevezető Mindenki saját sorsának kovácsa tartja a közmondás. Ez azonban csak részben igaz; saját választásaink és cselekedeteink eredményét rendszerint más szereplők döntései is befolyásolják.
1. Lineáris differenciaegyenletek
Lineáris differenciaegyenletek Tekintsük az alábbi egyenletet: f(n) af(n ) + bf(n + ), (K < n < N) f(k) d, f(n) d Keressük a megoldást f(n) α n alakban Így kajuk a következőket: α n aα n + bα n+ α a +
PRÓBAÉRETTSÉGI VIZSGA február 14. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINT PRÓBAÉRETTSÉGI VIZSGA MEGOLDÓKULCS
PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINT PRÓBAÉRETTSÉGI VIZSGA MEGOLDÓKULCS 2015. február 14. STUDIUM GENERALE KÖZGAZDASÁGTAN SZEKCIÓ I. Választásos,
PRÓBAÉRETTSÉGI VIZSGA január 16. m KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) KÖZÉPSZINT PRÓBAÉRETTSÉGI VIZSGA MEGOLDÓKULCS
PRÓBAÉRETTSÉGI VIZSGA m KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) KÖZÉPSZINT PRÓBAÉRETTSÉGI VIZSGA MEGOLDÓKULCS STUDIUM GENERALE KÖZGAZDASÁGTAN SZEKCIÓ Feleletválasztás Közgazdasági alapismeretek
Operációkutatás példatár
1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat
Makroökonómia. 9. szeminárium
Makroökonómia 9. szeminárium Ezen a héten Árupiac Kiadási multiplikátor, adómultiplikátor IS görbe (Investment-saving) Árupiac Y = C + I + G Ikea-gazdaságot feltételezünk, extrém rövid táv A vállalati
A klasszikus közgazdaságtanon innen és túl, avagy az érem másik oldala
Mikroökon konómia A klasszikus közgazdaságtanon innen és túl, avagy az érem másik oldala 2011.09.12. - A gazdasági gi szereplőkkel, egyéni döntéshozókkal foglalkozik - Általánosítható viselkedési si jellemzőit
1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a
A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Kereslet törvénye: ha az árak nőnek, a keresett mennyiség csökken. Az árak csökkenésével a keresett mennyiség növekszik.
2 Ha az ár nő a költségvetési egyenes meredekebb lesz: B A U2 U1 U3 I2 I1 I0 1 d = egyéni keresleti függvény Kereslet: az a termékmennyiség, amennyit a vevő vásárolni kíván adott áruból. d iaci kereslet:
Emelkedő áras árverés
Emelkedő áras árverés Nyilvános konzultáció 2019. július 3. Kollár Péter Bevezető A jelen prezentációban bemutatott példák és magyarázatok igyekeznek a Dokumentációtervezet* árverési szabályainak jobb
Kooperáció és intelligencia kis HF-ok/ Kooperáció és intelligencia, Dobrowiecki T., BME-MIT 1
Kooperáció és intelligencia kis HF-ok/ 2015 Kooperáció és intelligencia, Dobrowiecki T., BME-MIT 1 Kis HF-1: Elosztott következtetés (modell-keresés) 3 db. logikailag következtető (KA1..3) ágens dolgozik
Közgazdaságtan. A vállalatok kínálata Szalai László
Közgazdaságtan A vállalatok kínálata Szalai László A vállalat kínálata Döntési faktorok Termelési mennyiség Értékesítési ár Korlátozó feltételek Technológiai korlátok Termelési függvény Gazdasági korlátok
GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK
GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK 1. Egy terméket rövid távon a függvény által leírt költséggel lehet előállítani. A termelés határköltségét az összefüggés adja meg. a) Írja fel a termelés
10. hét 10/A. A vállalati profitmaximalizálás. elvei. Piacok, piaci szerkezetek. Versenyző vállalatok piaci. magtartása.
10. hét Versenyző vállalatok piaci magatartása A vállalati profitmaximalizálás általános elvei. iacok, piaci szerkezetek. Versenyző vállalatok kínálati magtartása. A lecke célja hogy az előadás anyagának,
Termékdifferenciálás és monopolisztikus verseny. Carlton -Perloff 7. fejezet
Termékdifferenciálás és monopolisztikus verseny Carlton -Perloff 7. fejezet 2012.10.25. Monopolisztikus verseny és jellemzői Chamberlin (1933) valós piacokon: Monopolista elem negatív lejtésű keresleti
Mikroökonómia - 5. elıadás
Mikroökonómia - 5. elıadás A KÍNÁLAT ALAKULÁSA, A IAC JELLEGE Bacsi, 5.ea. 1 A IAC JELLEGE Fontossága a vállalat szempontjából: Milyenek a versenytársak? Mekkora a vállalat a piachoz képest? (piaci részesedés)
Előadó: Dr. Kertész Krisztián
Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők
REGIONÁLIS GAZDASÁGTAN B
REGIONÁLIS GAZDASÁGTAN B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA
Beruházási és finanszírozási döntések
Beruházási és finanszírozási döntések Dr. Farkas Szilveszter PhD, egyetemi docens BGF, PSZK, Pénzügy Intézeti Tanszék farkas.szilveszter@pszfb.bgf.hu, http://dr.farkasszilveszter.hu Tematika és tananyag
Sarokba a bástyát! = nim
Nim-összeadás, játékok összege Sarokba a bástyát! = nim Nim (két csomóval) Két kupac kaviccsal játszunk. Egy lépésben valamelyikből (de csak az egyikből!) elvehetünk bármennyit. Az nyer, aki az utolsó
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Közgazdaságtan I. avagy: mikroökonómia. Dr. Nagy Benedek
Közgazdaságtan I. avagy: mikroökonómia r. Nagy Benedek Email: Nagy.Benedek@eco.u-szeged.hu, Tel: (62) 544-676, fogadó óra: Hétfő 14-15:30, KO 311 (szorgalmi időszakban) zemélyes találkozás 4 alkalommal:
Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21
Játékelmélet és hálózati alkalmazásai 4. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 1 Nash bargaining 2 Kooperatív játékok TU CFF játékok tulajdonságai
IS LM GÖRBÉK. 1. feladat
IS LM GÖRBÉK 1. feladat Egy gazdaságban az autonóm fogyasztás 20, a fogyasztási határhajlandóság 0,8. A beruházási kereslet 200, mínusz a piaci kamatláb 10-szerese. A nominális pénzkínálat 450, a pénzkeresleti
Rövid távú modell III. Pénzkereslet, LM görbe
Rövid távú modell III. Pénzkereslet, Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Rövid távú modell III. Pénzkereslet, Félév végi dolgozat 40 pontos vizsga május 23. hétf 10 óra május
Agrárstratégiai irányok játékelméleti alapokon
fejlesztés,felzárkózás Agrárstratégiai irányok játékelméleti alapokon Dr. Zöldréti Attila Miskolc 2015.09.04. Mit értünk stratégia fogalma alatt? Ne tévedjünk el! Egy irányba kell haladni! Azért nem ilyen
Rövid távú modell Pénzkereslet, LM görbe
Rövid távú modell Pénzkereslet, Kuncz Izabella Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Kuncz Izabella Rövid távú modell Pénzkereslet, Mit tudunk eddig? Elkezdtük levezetni a rövid
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
1. Előadás Lineáris programozás
1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Orosz Alexandra. Árverési mechanizmusok
Eötvös Loránd Tudományegyetem Természettudományi Kar Orosz Alexandra Árverési mechanizmusok Szakdolgozat Matematika BSc szak Matematikai elemző szakirány Témavezető: Bérczi-Kovács Erika 2016 Köszönetnyilvánítás
GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Gazdasági ismeretek emelt szint 1111 ÉRETTSÉGI VIZSGA 2015. május 26. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A javítás
JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN
JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN Supporting Top-k item exchange recommendations in large online communities Barabás Gábor Nagy Dávid Nemes Tamás Probléma Cserekereskedelem