Játékelmélet és hálózati alkalmazásai 2. ea

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Játékelmélet és hálózati alkalmazásai 2. ea"

Átírás

1 Játékelmélet és hálózati alkalmazásai 2. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 1 / 37

2 1 Nevezetes normál formájú játékok Iteráció Szigorúan dominált stratégiák iteratív kiküszöbölése Dominancia Játékok tulajdonságai Egzisztencia és unicitás Kevert stratégiák Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 2 / 37

3 Definíciók I Játékosok: N = {1,..,n} Stratégiahalmazok: S 1,...,S n (teljes) stratégiatér: ezek szorzata - S = S 1... S n kifizetőfüggvények: f i : S R, i = 1,..,n G = {S 1,...,S n ; f 1,...,f n } Olyan játékok ahol S i -k végesek: véges játékok 2 játékos esetén mindkét játékos kifizetőfüggvénye megadható egy n-dim mátrixal. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 3 / 37

4 Fogolydilemma 1. fogoly 2. fogoly N V N (-2,-2) (-10,-1) V (-1,-10) (-5,-5) táblázat: Fogolydilemma kifizetési bimátrixa. V: vall, N: Nem vall Az 1. fogoly nem tudja mit fog csinálni a másik, de a V stratégia választásával mindkét esetben jobban jár. (A 2. ue.) "szigorúan dominált stratégiák kiküszöbölése" Itt egyértelmű Nash-egyensúly (NE) -ra vezet. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4 / 37

5 Nemek harca fiú lány Wellhello Blind Myself Wellhello (1,2) (0,0) Blind Myself (0,0) (2,1) táblázat: Nemek harca játék kifizetési bimátrixa Itt két NE is van, ha mindketten a Wellhellot vagy mindketten a Blind Myself-et választják. Tegyük most fel, hogy valójában a Wellhellot szeretik mindketten jobban, ez 2-2, a Blind Myself pedig 1-1 egység örömöt szerez. Ekkor is mindkét azonos választás Nash-egyensúlyban van, annak ellenére, hogy a Blind Myself a teljes haszon tekintetében egyértelműen rosszabb (Pareto-szuboptimális - akkor lenne Pareto optimális ha nem létezne olyan alternatíva ami az egyik játékos kifizetését javítja és a másikét nem rontja). Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 5 / 37

6 Héja-galamb játék (hawk and dove game) A fogolydilemmához hasonló héja-galamb játék konfliktushelyzetek modellezését célozza (kocsmai verekedések, háborúk, biológiában különböző fajok vetélkedése stb.). Mindkét félnek két stratégiája van, a provokáló (héja) és a kompromisszumkereső (galamb). héja galamb héja (0,0) (4,1) galamb (1,4) (3,3) táblázat: Héja-galamb játék kifizetési bimátrixa A játék másik elnevezése a gyáva nyúl : amikor egy keskeny egyenes úton egymással szembe indul két autós. Amelyik előbb félrerántja a kormányt, az gyáva nyúl, gúny és megvetés tárgya. Ha viszont egyik sem rántja félre, akkor két bátor halottal lesz gazdagabb a helyi legendárium. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 6 / 37

7 Iterált fogolydilemma 1979-ben és 1982-ben is versenyt írtak ki az iterált Fogolydilemma kapcsán. Iterált stratégiát megvalósító programokat kellett beküldeni, és ezeket eresztették össze fix számú körben. A világ minden tájáról érkeztek különböző, akár igen nagy bonyolultságú megoldások, ámde mindegyiken felülkerekedett Anatol Rapoport szociológus Tit-for-Tat (TFT) stratégiája - Szemet-Szemért: az első körben kooperálunk, később pedig azt tesszük, amit ellenfelünk tett az előző körben. Később a versenyeket kiíró Robert Axelrod még további két analízissel igazolta a TFT stratégia hatékonyságát/ésszerűségét az iterált Fogolydilemma esetében: (1) végzett egy úgynevezett ökológiai analízist, ahol egy végtelen méretű populáció az eredeti versenyekben résztvevő programokból alkotott adott arányú részpopulációinak alakulását vizsgálta, feltéve, hogy ezek mérete (pontosabban a teljes populációhoz viszonyított arányuk) függ az átlagos hasznuktól, amit egy-egy körben nyernek. Itt is a TFT részpopuláció jött ki győztesként. A másik kísérlet, (2) evolúciós analízis címen vált ismertté. Itt Axelrod egy genetikus algoritmushoz hasonló környezetet konstruált, és azon belül evolvált bináris kromoszómák (génszekvenciák) által kódolt iterált stratégiákat. Ezeket vetette körről körre, generációról generációra össze, és a sikeresebbek örökítődhettek tovább. Ennél a kísérletnél is a TFT-hez igen hasonló tulajdonságokkal rendelkező iterált stratégiát kódoló génszekvencia jött ki eredményül. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 7 / 37

8 2. példa 1. játékos 2. játékos B K J F (1,0) (1,2) (0,1) L (0,3) (0,1) (2,0) Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 8 / 37

9 2. példa 1. játékos 2. játékos B K J F (1,0) (1,2) (0,1) L (0,3) (0,1) (2,0) Az 1. játékos egyik stratégiája sem dominálja szigorúan a másikat, de a 2. játékos K stratégiája szigorúan dominálja J-t elhagyjuk. A megmaradt mátrixban F szigorúan dominálja L-et, az így megmaradtban pedig K dominálja B-t. (F,K) "Szigorúan dominált stratégiák iteratív kiküszöbölése" Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 9 / 37

10 Nullösszegű játékok Minden A valós mátrix definiál egy játékot, ahol a sorjátékos az egyik sort, az oszlopjátékos az egyik oszlopot választja, és a sorjátékos nyereménye a választott sor és oszlop találkozásában levő a ij elem, míg az oszlopjátékosé a ij. A mátrix - kifizetési mátrix, A mátrix sorai/oszlopai - a sor/oszlop játékos tiszta stratégiái, pl (feltűntetve a minimális nyereséget és a maximális veszteséget): A = Ha a sorjátékos a második sort választja, az oszlopjátékos pedig a harmadik oszlopot, akkor garantált, hogy a sor legalább 1-et nyer, de az is, hogy többet nem. Azaz ezek megjátszását optimális illetve egyensúlyi stratégiáknak tekinthetjük. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 10 / 37

11 Nullösszegű játékok II: A nyeregpont Jelentse m i az i-edik sor minimumát, M j pedig a j-edik oszlop maximumát, azaz m i = mina ij, M j = max j i a ij Legyen továbbá Ekkor m = maxm i és M = minm j i j m M (a minimumok maximuma a maximumok minimuma) Ha m = M akkor r,s hogy a rs = m = M (ez a mátrix nyeregpontja) Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 11 / 37

12 Cournot-duopólium Egy folytonos példa Egy iparág, két meghatározó vállalat, melyek egy homogén terméket állítanak elő. Stratégiák: termelési volumenek. Adott az inverz keresleti függvény, amely az iparág össztermeléséhez rendeli hozzá azt a legmagasabb árat, amelyen a piac kiürül. Adott a vállalatok (azonos) költségfüggvénye. Definiáljuk azt a játékot ahol a kifizetőfüggvények a bruttó nyereségek (a költségekkel csökkentett árbevétel). Tfh: az inverz keresleti függvény és a költségfüggvény lineáris. Ha q 1 és q 2 jelölik a két vállalat (nemnegatív) termelési volumenét, akkor az i játékos kifizetőfüggvénye: f i (q 1,q 2 ) = q i p(q 1,q 2 ) C(q i ) p(q 1,q 2 ) = max{a b(q 1 +q 2 ), 0} C(q i ) = cq i, a,b,c > 0, a > c, i = 1, 2 c - termelési költség, q i - termelt mennyiség, p - a termék ára 0 termelési volumen 0 nyereség. Túl nagy termelési volumen veszteség, függetlenül attól, mekkora termelést választ a másik. NE-t lásd később. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 12 / 37

13 Dominancia S i : Azon stratégiaprofilok halmaza, amik nem tartalmazzák az i játékos stratégiáját. (csonka stratégiaprofilok) ha s i S i akkor s = (s i,s i ) az a stratégiaprofil ahol az i játékos az s i stratégiáját, míg a többiek s i -t játszák. Definíció Legyen G = {S 1,...,S n ; f 1,...,f n }-ben s i és t i S i az i játékos két stratégiája. s i szigorúan dominálja t i -t ha gyengén dominálja ha f i (s i,s i ) > f i (t i,s i ) s i S i Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 13 / 37

14 Nash-egyensúly Definíció Legyen G = {S 1,...,S n ; f 1,...,f n }-ben egy n-személyes játék normál formában. Egy s stratégiaprofilt Nash-egyensúlypontnak (NEP v NE) nevezünk, ha f i (s i,s i) f i (s i,s i) s i S i i = 1,...,n vegyük észre hogy egyszerre csak 1 játékos válthat stratégiát Definíció Az s S stratégiaprofilt domináns Nash-egyensúlypontnak (DNEP) nevezünk, ha f i (s i,s i ) f i (s i,s i ) s S i = 1,...,n "függetlenül attól hogy a másik mit játszik, én a DNEP-hez tartozó stratégiával járok jobban" - minden játékosra pl a fogolydilemmában a (V,V) DNEP, a nemek harcában a (W,W) nem DNEP. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 14 / 37

15 Erős Nash-egyensúly (N>2) esetén érdekes. Koalíció: játékosok egy halmaza. Definíció Legyen G = {S 1,...,S n ; f 1,...,f n }-ben egy n-személyes játék normál formában. Egy s stratégiaprofilt erős Nash-egyensúlypontnak (SNE) nevezünk, ha s NE, és C 2 N f i (s C,s C ) f i(s C,s C ) i C &( j C) (f j (s C,s C ) < f j(s C,s C )) Az erős Nash-egyensúly (SNE - Strong Nash Equilibrium) egy olyan NE, amire igaz hogy nem létezik olyan koalíció ami ha koordináltan változtatja meg a stratégiáját - a többiek változatlan döntése mellett - akkor azzal minden tagja jobban jár (és legalább egyikük szigorúan). Szemben a NE unilaterális deviációival, az SNE koalíciós elhajlást is megenged. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 15 / 37

16 Erős Nash-egyensúly: Ellenpélda Legyen S 1 = {F,L}, S 2 = {B,J}, S 1 = {E,H} P3 : S 3 = E P3 : S 3 = H P1 P2 B J F (2,2,2) (3,1,0) L (0,1,3) (1,2,3) P1 P2 B J F (1,4,1) (0,0,0) L (3,0,3) (2,1,-1) S=(F,B,E) NE (unilaterális deviációkra stabil), de C = {1, 3} hogy T=(L,B,H) esetén f i (T) > f i (S) i C Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 16 / 37

17 Felcserélhetőség Definíció Ha s = (s 1,...,s n ) és t = (t 1,...,t n ) a G = {S 1,...,S n ; f 1,...,f n } játék két NEP-je és u = (u 1,...,u n ) u i {s i,t i } i = 1,...,n szintén NEP akkor s és t felcserélhetőek. Ha G-nek csak egyetlen NEP-je van vagy 2 NEP-je felcserélhető, akkor G rendelkezik a felcserélhetőségi tulajdonsággal. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 17 / 37

18 Antagonizmus Definíció A G = {S 1,S 2 ;f 1,f 2 } kétszemélyes játékot antagonisztikusnak nevezzük, ha s 1,t 1 S 1 és s 2,t 2 S 2 stratégiapárosra f 1 (s 1,s 2 ) f 1 (t 1,t 2 ) f 2 (s 1,s 2 ) f 2 (t 1,t 2 ) (ha átmegyünk t-ből s-be, az első játékos kifizetése pontosan akkor nő ha a másodiké csökken) Antagonisztikus játékokban a játékosok érdekei ellentétesek. A konstans összegű játékok (f 1 +f 2 = c) antagonisztikusak, de nem minden antagonisztikus játék konstans összegű. Tétel Minden antagonisztikus játék rendelkezik a felcserélhetőségi tulajdonsággal, és minden NEP-ben mindkét játékos kifizetőfüggvényének értéke azonos (nem a két játékosra, hanem a két NEP-ra vonatkozva). Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 18 / 37

19 Nash halmaz, stratégiai ekvivalencia E. = G = {S 1,...,S n ; f 1,...,f n } NEP-jei. e f iff ha e és f E felcserélhetőek. A reláció reflexív, szimmetrikus de nem tranzitív. Definíció Az E egy olyan D részhalmazát, amelyre d 1,d 2 D esetén d 1 d 2 Nash-halmaznak nevezzük. Ha egy Nash-halmaz nem valódi részhalmaza egyetlen Nash-halmaznak sem, akkor maximális Nash-halmaznak hívjuk. Definíció Legyen G = {S 1,...,S n ; f 1,...,f n } H = {S 1,...,S n ; g 1,...,g n } G és H stratégiailag ekvivalens, ha NEP-jaik halmaza megegyezik. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 19 / 37

20 3 tétel Tétel G = {S 1,...,S n ; f 1,...,f n } játék esetén ha ϕ i : R R szig. mon. növő minden i-re, akkor a H = {S 1,...,S n ; ϕ 1 f 1,...,ϕ n f n } játék stratégiailag ekvivalens G-vel. Tétel A G = {S 1,...,S n ; f 1,...,f n } játék játékban a szigorúan dominált sratégiák iteratív kiküszöbölésével egyetlen NEP-et sem vesztünk el. Tétel Ha a G = {S 1,...,S n ; f 1,...,f n } játék véges, és a szigorúan dominált sratégiák iteratív kiküszöbölésével egyetlen s stratégiaprofil marad, akkor s a G játék egyetlen NEP-je. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 20 / 37

21 Egzisztencia I Érmepárosítás: ha megegyezik az oldal az 1. játékos nyer (és vica versa). Véges, 2 személyes, 0 összegű játék. játékos 2 Fej Írás játékos 1 Fej (1,-1) (-1,1) Írás (-1,1) (1,-1) táblázat: Érmepárosítási játék kifizetési bimátrixa Nincs NEP. G = {S 1,...,S n ; f 1,...,f n }, legyen most S i R ki (elég véges dimenzióra kimondani) Recall: NEP: f i (s i,s i ) f i(s i,s i ) s i S i i = 1,...,n Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 21 / 37

22 Best-response function Definíció Az i játékos B i : S 2 Si legjobbválasz-leképzése B i (s) = {t i S i f i (t i,s i ) f i (r i,s i ), r i S i } B i (s) az i-ik játékos legjobb stratégiáit tartalmazza, ha a többi játékos az s i csonka stratégiaprofilban szereplő stratégiákat játsza. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 22 / 37

23 Legjobbválasz-leképzés - példa Közlegelők problémája ("Tragedy of the commons"): 2 parasztnak van 3-3 tehene.. tehenek száma a legelőn liter tej/tehén játékos 2. játékos (4,4) (3,6) (2,6) 2 (6,3) (4,4) (2,3) 3 (6,2) (3,2) (0,0) Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 23 / 37

24 Egzisztencia II Definíció Az egész játékra vonatkozó B : S 2 S B(s) = B 1 (s)... B n (s) vagyis t B iff t i B i (s) i = 1,...,n Az s S stratégiaprofil akkor és csak akkor NEP-ja a G játéknak, ha s fixpontja a B legjobbválasz-leképzésnek, vagyis ha s B(s ) Tétel Legyen G = {S 1,...,S n ; f 1,...,f n } normál formában megadott játék, ahol a stratégiahalmazok véges dimenziós euklideszi terek nemüres, konvex, kompakt részhalmazai, és a kifizetőfüggvények folytonosak a stratégiaprofilok S halmazán. Ha a G játékra vonatkozó B legjobbválasz-leképzés egyértékű, akkor G-nek van legalább egy NEP-je. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 24 / 37

25 Cournot-duopólium III f i (q 1,q 2 ) = q i p(q 1,q 2 ) c(q i ) p(q 1,q 2 ) = max{a b(q 1 +q 2 ), 0} Ha a második vállalat kibocsátása q 2, az első vállalat legjobb válasza erre az f 1 (q 1 ) = q 1 (a b(q 1 +q 2 )) cq 1 = aq 1 bq 2 1 bq 1 q 2 cq 1 kvadratikus kifizetésfüggvényt maximalizáló q 1 : df 1 (q 1 ) dq 1 = a 2bq 1 bq 2 c = 0 q 1 = a c 2b q 2 2 A legjobb válasz az egyik játékos q i kibocsátására max{ a c legjobbválasz-leképzés egyértelmű (vagyis egy függvény). 2b qi 2, 0} és a Fixpont (duopólium): q 1 = q 2 = q = a c 2b q a c 2 q = 3b a szimmetria miatt az egész iparág kibocsátása qtot D = 2(a c) 3b, az ár pedig p D = a+2c 3 Monopol kibocsátás (q1 M = q 1 ha q 2 = 0): a c 2b, monopolár: pm = a+c 2 p D < p M, qtot D > qm TOT Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 25 / 37

26 Mi a baj a NEP-al? Tekintsük ismét a közlegelők problémáját: Adott egy közlegelő amely 10 tehenet tud eltrartani úgy hogy ekkor mindegyik tehén 10 l tejet ad (egységnyi idő alatt). Az egyik gazda gondol egyet és kiküld még egy tehenet a legelőre egy-egy tehénnek már kevesebb fű jut, ezért mindegyik csak 9 l tejet ad. Viszont az a gazda amelyik 2 tehenet legeltet 2*9=18 l tejhez jut. Ezt észreveszi egy másik gazda is, ő is kiküld még egyet még kevesebb fű jut a teheneknek, egy tehén már csak 8 l tejet ad, de a 2 dezertőrnek 16 l teje lesz. Mikor már 8 gazda tart 2 tehenet, ők 2*(10-8)=4 l tejet kapnak, a 9-ik gazda nem nyer semmit a 2. tehénnel. Ha egy gazda úgy dönt hogy visszavonja az egyik tehenét, rosszabbul jár. Annyi Nash-egyensúly van, ahány féleképpen 10-ből el tudunk hagyni 2-őt = 10 alatt a 2=45. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 26 / 37

27 Unicitás Definíció A G = {S 1,...,S n ; f 1,...,f n } játék pontosan akkor konkáv ha az S = S 1,...,S n stratégiahalmazok kompaktak és konvexek, és az f i (s i,s i ) függvény konkáv s i -ben rögzített s i mellett i-re Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 27 / 37

28 Példa Cournot-duopólium. S i = [0, 1], c : [0, 1] R, c(x) = 1 2x, p : [0, 2] R p(q TOT ) = { q TOT ha 0 q TOT q TOT egyébként A profitfüggvéynek: f i : [0, 1] 2 R, f i (x 1,x 2 ) = x i p(x 1 +x 2 ) 1 2 x i, i {1, 2} Elemi számolással igazolható hogy f i szigorúan konkáv fv-e x i -nek a [0, 1] intervallumon. Ugyancsak belátható hogy az X 1 = {(x 1,x 2 ) 2 x 1 1 1, 2 x 2 1, x 1 +x 2 = 3 2 } halmaz minden eleme NEP (hf). Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 28 / 37

29 Unicitás II Tétel Legyen G = {S 1,...,S n ; f 1,...,f n } konkáv játék, és tegyük fel hogy a B legjobbválasz-leképzés egyértékű. Ha a B függvény kontrakció, akkor G-nek csak egy egyensúlypontja van. f a d távolságfüggvénnyel ellátott M metrikus téren kontrakció ha ( 0 k < 1)( (x,y) M)(d(f(x),f(y)) kd(x,y)) Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 29 / 37

30 Kevert stratégiák Neumann János 1928 Adott valószínűséggel játszhatunk 1 adott stratégiát. i N egy kevert stratégiája q i Q ahol (s j S i ) q i (s j ) > 0 és s j S i q i (s j ) = 1 (q i (s j ) egy függvény ami az i-ik játékos minden lehetséges stratégiájához egy valószínűséget rendel - tiszta: q i (s j ) = 1 csak 1 j esetén, a többire 0) Kevert stratégia kombinációk kifizetőfüggvények várható értékek: q = (q 1,...,q n ) Q = Q 1... Q n Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 30 / 37

31 Kevert stratégiák - példa: nullösszegű játék p - annak a valsége hogy Peti Down the line -t szervál (CC - cross court) q - annak a valsége hogy Jani DL-re számítva helyezkedik Jani q-mix DL (q) CC (1 q) DL (p) (50,50) (80,20) 50q+80(1-q) Peti CC (1 p) (90,10) (20,80) 90q+20(1-q) p-mix 50p+10(1-p) 20p+80(1-p) Peti optimális p választása: válasszuk meg p-t úgy, hogy Jani ne preferálhassa egyik tiszta stratégiáját sem! 50p + 10(1 p) = 20p + 80(1 p) p=0.7 Jani sikerrátája = = = 38% Petié = 62% Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 31 / 37

32 Kevert stratégiák - példa: nullösszegű játék/2 Jani q-mix DL (q) CC (1 q) DL (p) (50,50) (80,20) 50q+80(1-q) Peti CC (1 p) (90,10) (20,80) 90q+20(1-q) p-mix 50p+10(1-p) 20p+80(1-p) Jani optimális q választása: válasszuk meg q-t úgy, hogy Peti ne preferálhassa egyik tiszta stratégiáját sem! 50q + 80(1 q) = 90q+20(1 q) q=0.6 Peti sikerrátája = 62% Janié = 38% Ha pl p = 0.7, q = 0.5, Jani kifzetése = = 38 Mindegy! Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 32 / 37

33 Kevert stratégiák - példa: nullösszegű játék/3 Jani q-mix DL (q) CC (1 q) DL (p) (50,50) (80,20) 50q+80(1-q) Peti CC (1 p) (90,10) (20,80) 90q+20(1-q) p-mix 50p+10(1-p) 20p+80(1-p) p = 0.5, q = 0.5 Jani kifzetése = = 40 p = 0.5, q = 0.7 Jani kifzetése = = 36 p = 0.5, q = 0.3 Jani kifzetése = = 44 Ha Peti p = 0.5-öt játszik p = 0.7 helyett, Jani-nak van értelme preferálnia a CC stratégiát. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 33 / 37

34 Kevert stratégiák - példa: nullösszegű játék/4 ábra: Legjobbválasz-függvények Jani és Peti esetében Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 34 / 37

35 Kevert stratégiák - példa: nullösszegű játék/ q 0 0 p Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 35 / 37

36 Kevert Nash egyensúly q = (q 1,...q n) kevert NE ha ( i N)( q i Q i )f i (q i,q i ) f i(q i,q i ) Tétel Nash, 1951: Ha az n személyes játék tiszta stratégiahalmazai végesek, akkor a keveréssel létrejövő halmazok szorzatán defniált játéknak van legalább egy kevert egyensúlya. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 36 / 37

37 Kevert stratégiák - nemek harca (nem nullösszegű) Tekintsük ismét a nemek harca játékot: fiú lány Welhello Blind Myself Wellhello (1,2) (0,0) Blind Myself (0,0) (2,1) táblázat: Nemek harca játék kifizetési bimátrixa A randomizált NE: Fiú: q(wellhello)= 2/3, q(blind Myself)= 1/3 Lány: q(wellhello)= 1/3, q(blind Myself)= 2/3. Várható kifizetés: (2/3, 2/3), ami igazságos, de alacsonyabb mint a determinisztikus NE esetén. (pl fiú: = = 6 9 = 2 3 ) Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 37 / 37

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 2. ea 1 / 31

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 2. ea 1 / 31 Játékelmélet és hálózati alkalmazásai 2. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 2. ea 1 / 31 1 Az információ szerepe Játékok extenzív formában Csercsik

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 8 Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek

Részletesebben

2015/ Szegedi Tudományegyetem Informatikai Intézet

2015/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Egy példa Adott két TV csatorna (N1, N2), melyek 100 millió nézőért versenyeznek.

Részletesebben

Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001)

Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001) Játékelmélet szociológusoknak J-1 Bevezetés a játékelméletbe szociológusok számára Ajánlott irodalom: Mészáros József: Játékelmélet (Gondolat, 2003) Filep László: Játékelmélet (Filum, 2001) Csontos László

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez

Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez Piaci szerkezetek VK Gyakorló feladatok a 4. anyagrészhez Cournot-oligopólium Feladatgyűjtemény 259./1. teszt Egy oligopol piacon az egyensúlyban A. minden vállalat határköltsége ugyanakkora; B. a vállalatok

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 7. Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek

Részletesebben

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK 1.Feladat JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK Az alábbi kifizetőmátrixok három különböző kétszemélyes konstans összegű játék sorjátékosának eredményeit mutatják: 2 1 0 2 2 4 2 3 2 4 0 0 1 0 1 5 3 4 3

Részletesebben

A stratégiák összes kombinációján (X) adjunk meg egy eloszlást (z) Az eloszlás (z) szerint egy megfigyelő választ egy x X-et, ami alapján mindkét

A stratégiák összes kombinációján (X) adjunk meg egy eloszlást (z) Az eloszlás (z) szerint egy megfigyelő választ egy x X-et, ami alapján mindkét Készítette: Jánki Zoltán Richárd Robert Aumann (1930) Izraeli-amerikai matematikus 1974-ben általánosította a Nash-egyensúlyt 2005-ben közgazdasági Nobel-díjat kapott (kooperatív és nem-kooperatív játékok)

Részletesebben

Nem-kooperatív játékok

Nem-kooperatív játékok Nem-kooperatív játékok Versengő ágensek konfliktusai játékelmélet Cselekvéseivel mások cselekvéseinek hatását befolyásolják. Ettől a cselekvések (mind) várható haszna meg fog változni. A változás az én

Részletesebben

Játékelmélet 1. Forgó Ferenc Pintér Miklós Simonovits András Solymosi Tamás. (elektronikus jegyzet)

Játékelmélet 1. Forgó Ferenc Pintér Miklós Simonovits András Solymosi Tamás. (elektronikus jegyzet) Játékelmélet 1 (elektronikus jegyzet) Forgó Ferenc Pintér Miklós Simonovits András Solymosi Tamás 2005 1 Ez a munka az OTKA T046194 pályázat támogatásával készült. 2 El szó Nagyon sok jó játékelmélet könyv

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két

Részletesebben

Universität M Mis is k k olol ci c, F Eg a y kultä etem t, für Wi Gazda rts ságcha tudft o sw máis n s yen i scha Kar, ften,

Universität M Mis is k k olol ci c, F Eg a y kultä etem t, für Wi Gazda rts ságcha tudft o sw máis n s yen i scha Kar, ften, 6. Előadás Piaci stratégiai cselekvések leírása játékelméleti modellek segítségével 1994: Neumann János és Oskar Morgenstern Theory of Games and Economic Behavior. A játékelmélet segítségével egzakt matematikai

Részletesebben

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 Játékelmélet és hálózati alkalmazásai 4. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 1 Nash bargaining 2 Kooperatív játékok TU CFF játékok tulajdonságai

Részletesebben

11. Előadás. Megyesi László: Lineáris algebra, oldal. 11. előadás Kvadratikus alakok, Stratégiai viselkedés

11. Előadás. Megyesi László: Lineáris algebra, oldal. 11. előadás Kvadratikus alakok, Stratégiai viselkedés 11. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Leontyev-modell, Sajátérték 1. Gondolkodnivaló Határozzuk meg, hogy az x valós paraméter mely értékeire lesz az alábbi A mátrix

Részletesebben

Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 12. hét STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET

Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 12. hét STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET MIKROÖKONÓMIA I. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. B STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET K hegyi Gergely, Horn Dániel, Major Klára Szakmai felel s: K hegyi Gergely 2010.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 17. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Sarokba a bástyát! = nim

Sarokba a bástyát! = nim Nim-összeadás, játékok összege Sarokba a bástyát! = nim Nim (két csomóval) Két kupac kaviccsal játszunk. Egy lépésben valamelyikből (de csak az egyikből!) elvehetünk bármennyit. Az nyer, aki az utolsó

Részletesebben

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok 1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

PIACI SZERKEZETEK BMEGT30A hét, 1-2. óra: Játékelméleti bevezető, Cournot- és Bertrandoligopólium

PIACI SZERKEZETEK BMEGT30A hét, 1-2. óra: Játékelméleti bevezető, Cournot- és Bertrandoligopólium PIACI SZERKEZETEK BMEGT30A104 7. hét, 1-2. óra: Játékelméleti bevezető, Cournot- és Bertrandoligopólium PRN: 9., 10. fejezet 2019.03.25. 10:15 2019.03.27. 12:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu)

Részletesebben

Az előadásokat és a gyakorlatokat pénteken az M 316 tanteremben tartjuk. Az előadás időpontja: , a gyakorlat időpontja:

Az előadásokat és a gyakorlatokat pénteken az M 316 tanteremben tartjuk. Az előadás időpontja: , a gyakorlat időpontja: Játékelmélet (2017 / 2018-as tanév, II. félév) (TTMME0208 / TMME0205, TTMMG0208 / TMMG0205) Az előadásokat és a gyakorlatokat pénteken az M 316 tanteremben tartjuk. Az előadás időpontja: 10 00 11 45, a

Részletesebben

PIACI SZERKEZETEK BMEGT30A hét, 1-2. óra: Játékelmélet, Cournot- és Bertrand-oligopólium

PIACI SZERKEZETEK BMEGT30A hét, 1-2. óra: Játékelmélet, Cournot- és Bertrand-oligopólium PIACI SZERKEZETEK BMEGT30A104 7. hét, 1-2. óra: Játékelmélet, Cournot- és Bertrand-oligopólium PRN: 9. és 10. fejezet 2018.03.19. 10:15 2018.03.21. 12:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Oligopóliumok

Részletesebben

Közgazdaságtan I. 11. alkalom

Közgazdaságtan I. 11. alkalom Közgazdaságtan I. 11. alkalom 2018-2019/II. 2019. Április 24. Tóth-Bozó Brigitta Tóth-Bozó Brigitta Általános információk Fogadóóra szerda 13-14, előzetes bejelentkezés szükséges e-mailben! QA218-as szoba

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

PIACI JÁTSZMÁK. Bevezető Közgazdaságtan Tanszék

PIACI JÁTSZMÁK. Bevezető Közgazdaságtan Tanszék PIACI JÁTSZMÁK Bevezető 2018. 09. 03 Közgazdaságtan Tanszék banhidiz@kgt.bme.hu Általános információk Piaci játszmák (BMEGT30V200) Oktatók és témakörök: Bánhidi Zoltán (banhidiz@kgt.bme.hu) Bevezető témakörök

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Játékelméleti alapvetés - I

Játékelméleti alapvetés - I Játékelméleti alapvetés - I Fáth Gábor (SZFKI) ELTE 2005. június 1. Alkalmazások pszichológia biológia nyelvészet közgazdaságtan számítástudomány Játékelmélet filozófia politika tudomány etika kulturális

Részletesebben

KÖZGAZDASÁGTAN. Játékelmélet Szalai László

KÖZGAZDASÁGTAN. Játékelmélet Szalai László KÖZGAZDASÁGTAN Játékelmélet 2017. 10. 09. Szalai László Játékelméleti problémák Racionális, haszonmaximalizáló játékosok Döntéselmélet vs. játékelmélet Döntések közötti interakciók A játékosok által élérhető

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium

PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium PIACI SZERKEZETEK BMEGT30A104 8. hét, 1. óra: Differenciált termékes Bertrand-oligopólium PRN: 10. fejezet 2019.04.01. 10:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Emlékeztető Bertrand-modell: árverseny

Részletesebben

Közgazdaságtan. A vállalatok kínálata Szalai László

Közgazdaságtan. A vállalatok kínálata Szalai László Közgazdaságtan A vállalatok kínálata Szalai László A vállalat kínálata Döntési faktorok Termelési mennyiség Értékesítési ár Korlátozó feltételek Technológiai korlátok Termelési függvény Gazdasági korlátok

Részletesebben

Alkuegyensúlyok és stabil halmazok

Alkuegyensúlyok és stabil halmazok Alkuegyensúlyok és stabil halmazok Bednay Dezső Megjelent: Solymosi Tamás Temesi József (szerk.): Egyensúly és optimum. Tanulmányok Forgó Ferenc 70. születésnapjára. Aula Kiadó. Budapest. 2012. ISBN 978-963-339-018-4

Részletesebben

Leképezések. Leképezések tulajdonságai. Számosságok.

Leképezések. Leképezések tulajdonságai. Számosságok. Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak

Részletesebben

Piaci szerkezetek VK. Gyakorló feladatok a 3., az 5. és a 7. anyagrészhez

Piaci szerkezetek VK. Gyakorló feladatok a 3., az 5. és a 7. anyagrészhez Piaci szerkezetek VK Gyakorló feladatok a 3., az 5. és a 7. anyagrészhez Kartellek Feladatgyűjtemény 266./33. teszt A kartellekkel kapcsolatos engedékenységi politika azt jelenti, hogy A. bizonyos esetekben

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

A relációelmélet alapjai

A relációelmélet alapjai A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal

Részletesebben

BEVEZETÉS A JÁTÉKELMÉLETBE: VÁZLAT. MTA Közgazdaságtudományi Kutatóközpont Budapest, Budaörsi út 45, 1112 e-mail: simonov@econ.core.hu 2007. május 6.

BEVEZETÉS A JÁTÉKELMÉLETBE: VÁZLAT. MTA Közgazdaságtudományi Kutatóközpont Budapest, Budaörsi út 45, 1112 e-mail: simonov@econ.core.hu 2007. május 6. Simonovits András: BME, Matematikai Intézet BEVEZETÉS A JÁTÉKELMÉLETBE: VÁZLAT MTA Közgazdaságtudományi Kutatóközpont Budapest, Budaörsi út 45, 1112 e-mail: simonov@econ.core.hu 2007. május 6. i ELŐSZÓ

Részletesebben

f B B 1 B 2 A A 2 0-1

f B B 1 B 2 A A 2 0-1 az előadáson tárgyalt példák-1 Fogolydilemma A játék 2 2-es, nem-kooperatív, kétszemélyes és szimmetrikus. A játékos lehetőségei: A 1 : elismeri a bankrablást B játékos lehetőségei: B 1 : elismeri a bankrablást

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Agrárstratégiai irányok játékelméleti alapokon

Agrárstratégiai irányok játékelméleti alapokon fejlesztés,felzárkózás Agrárstratégiai irányok játékelméleti alapokon Dr. Zöldréti Attila Miskolc 2015.09.04. Mit értünk stratégia fogalma alatt? Ne tévedjünk el! Egy irányba kell haladni! Azért nem ilyen

Részletesebben

Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA

Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Alapvető fogalmak: Függvény fogalma Függvény helyettesítési értéke (függvényérték) Függvény grafikonja A

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

Mikro- és makroökonómia. Monopolisztikus verseny, Oligopóliumok Szalai László

Mikro- és makroökonómia. Monopolisztikus verseny, Oligopóliumok Szalai László Mikro- és makroökonómia Monopolisztikus verseny, Oligopóliumok Szalai László 2017.10.12. Piaci feltételek A termékek nem homogének, de hasonlóak A különbség kisebb termékjellemzőkben jelentkezik Pl.: Coca-Cola

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

PIACI JÁTSZMÁK. Fiú. Színház. Színház (4 ; 2) (0 ; 0) A38 (0 ; 0) (2 ; 4) Lány

PIACI JÁTSZMÁK. Fiú. Színház. Színház (4 ; 2) (0 ; 0) A38 (0 ; 0) (2 ; 4) Lány PIACI JÁTSZMÁK Bevezető Mindenki saját sorsának kovácsa tartja a közmondás. Ez azonban csak részben igaz; saját választásaink és cselekedeteink eredményét rendszerint más szereplők döntései is befolyásolják.

Részletesebben

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely február

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely február MIKROÖKONÓMIA II. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Formális nyelvek - 9.

Formális nyelvek - 9. Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

A tiszta stratégiával a biztosan elérhető nyereség:

A tiszta stratégiával a biztosan elérhető nyereség: Mátrixjátékok ismétlés: Mátrixjátékok megoldásáról (ismétlés) Legyen adott két játékos, A és B. A két játékos véges stratégia halmazból választ. Jelölje A stratégia vektorát u U, míg B stratégia vektorát

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Előadó: Dr. Kertész Krisztián

Előadó: Dr. Kertész Krisztián Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK

GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK 1. Egy terméket rövid távon a függvény által leírt költséggel lehet előállítani. A termelés határköltségét az összefüggés adja meg. a) Írja fel a termelés

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

1. A k-szerver probléma

1. A k-szerver probléma 1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

4. Fogyasztói preferenciák elmélete

4. Fogyasztói preferenciák elmélete 4. Fogyasztói preferenciák elmélete (ld. Temesi J.: A döntéselmélet alapjai, 47-63) 4.1 Preferencia relációk Mit jelent a fogyasztó választása? Legyen X egy olyan halmaz amelynek az elemei azok a lehetőségek

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Online migrációs ütemezési modellek

Online migrációs ütemezési modellek Online migrációs ütemezési modellek Az online migrációs modellekben a régebben ütemezett munkák is átütemezhetőek valamilyen korlátozott mértékben az új munka ütemezése mellett. Ez csökkentheti a versenyképességi

Részletesebben

DiMat II Végtelen halmazok

DiMat II Végtelen halmazok DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy

Részletesebben

A Cournot-féle duopólium

A Cournot-féle duopólium A Cournot-féle duopólium. Kínálati duopólium: két termelő állít elő termékeket. Verseny a termékmennyiségekkel 3. A piaci kereslet inverz függvénye: p a. Valamely ár mellett kialakuló keresletet két vállalat

Részletesebben

A Morra játék Módosított Morra Blöff és alullicitálás mint racionális stratégiák

A Morra játék Módosított Morra Blöff és alullicitálás mint racionális stratégiák A Morra játék Módosított Morra Blöff és alullicitálás mint racionális stratégiák Előadás felépítése Morra játék háttere, fajtái Módosított Morra Egyszerűsítési stratégiák Blöff és alullicitálás Mi az Morra?

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli.

Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli. Játékelmélet Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli Irodalom előadás jegyzet J. D. Williams: Játékelmélet Filep László: Játékelmélet 1. Előadás Történeti

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 9. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Halmazok Diszkrét

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Matematikai statisztika 1.

Matematikai statisztika 1. Matematikai statisztika 1 segédanyag Daróczi Gergely Szociológia Intézet 2010 Matematikai statisztika 1 01 Mátrixok A mátrix vízszintes vonalban elhelyezked elemei sorokat, függ leges vonalban elhelyezked

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben