11. Előadás. Megyesi László: Lineáris algebra, oldal. 11. előadás Kvadratikus alakok, Stratégiai viselkedés
|
|
- Jázmin Biróné
- 5 évvel ezelőtt
- Látták:
Átírás
1 11. Előadás Megyesi László: Lineáris algebra, oldal.
2 Gondolkodnivalók Leontyev-modell, Sajátérték 1. Gondolkodnivaló Határozzuk meg, hogy az x valós paraméter mely értékeire lesz az alábbi A mátrix egy működőképes gazdaság ráfordítási mátrixa. ( ) 0.1 x A = Ezen x értékek közül, mikor lesz a (, 3) árvektorral rendelkező termék előállítása minden ágazatban nyereséges? A gazdaság akkor működőképes, ha a Leontyev-inverz nem tartalmaz negatív értéket. Határozzuk meg az A mátrix Leontyev-inverzét: (E A) 1 -et.
3 Gondolkodnivalók Leontyev-modell, Sajátérték E A = ( ) ( 0.1 x ) = ( 0.9 x inverzét kell meghatároznunk. Elemi bázistranszformációkat végrehajtva: ) a 1 a e x e e a e x a a 1.8 x 10 3 a x x e e x 1.8 x ahol a második generáló elem választásnál természetesen fel kell tenni, hogy x 1.8, különben nincs inverze. Az indexek szerint rendezve megkapjuk a Leontyev-inverzet: (E A) 1 = ( 1.8 x x 10 3 x 1.8 x x ).,
4 Gondolkodnivalók Leontyev-modell, Sajátérték (E A) 1 = ( 1.8 x x 10 3 x 1.8 x x A gazdaság akkor működőképes, ha a Leontyev-inverz nem tartalmaz negatív értéket. Ahhoz, hogy az első sor első eleme, és a második sorban szereplő elemek ne legyenek negatívak a nevezőnek is pozitívnak kell lenni: 1.8 x > > x. Mivel a nevezők pozitívak, így az első sor második elemének számlálójának is nemnegatívnak kell lennie: 10 3 x 0 x 0. Tehát a gazdaság működőképes, ha: 0 x < 1.8 ).
5 Gondolkodnivalók Leontyev-modell, Sajátérték A feladat másodikrészében az a kérdés, hogy a működőképes gazdaság esetén kapott x értékek közül, mikor lesz a (, 3) árvektorral rendelkező termék előállítása minden ágazatban nyereséges. Először határozzuk meg a költséget: va = ( 3 ) ( 0.1 x ) = ( 1.1 x + 1. ). Az első ágazat nyereséges (1.1 < ). A második akkor nyereséges, ha x + 1. < 3, tehát x < 0.9. Ezt a működőképességre vonatkozó feltétellel összevetve kapjuk: 0 x < 0.9
6 Gondolkodnivalók Leontyev-modell, Sajátérték. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez tartozó sajátaltér egy bázisát. A = α 5 6 α. A 5 pontosan akkor sajátértéke az A mátrixnak, ha az A ( 5)E mátrix determinánsa A+5E = 1 α 6 α + 5 = α α 3 = (α 3) = 0. Tehát a 5 akkor lesz sajátértéke az A-nak, ha α = 3.
7 Gondolkodnivalók Leontyev-modell, Sajátérték Az A mátrix (α = 3 esetén) 5 sajátértékéhez tartozó sajátalterének egy bázisa az (A + 5E)x T = 0 homogén lineáris egyenletrendszer fundamentális rendszere x 1 x x 3 = x 1 + 3x 4x 3 x 1 + 3x x 3 x 1 6x + 8x 3 Ennek a homogén lineáris egyenletrendszernek az együtthatómátrixa, éppen az A mátrix (α = 3 esetén) Így a sajátaltér egy bázisa: ( 3, 1, 0) , = x 1 = 3x, x 3 = 0..
8 Definíció Kvadratikus alakok Kvadratikus alaknak hívjuk a homogén másodfokú többhatározatlanú polinomokat. Példa A következő polinomok: x 1, x 1 x 1 x + x, x 1 + x 3 x 1 x 3 kvadratikus alakok, hiszen bennük minden tag pontosan másodfokú, de az x 1 x, x 1 x x 3 nem kvadratikus alakok.
9 Kvadratikus alak mátrixa Bármely kvadratikus alak a következőképpen írható: xax T = n n a ij x i x j, i=1 j=1 azonban ha i j, akkor a fenti felírásban a ij x i x j és a ji x j x i is szerepel. Természetes feltenni, hogy a ij = a ji, vagyis a ij és a ji éppen az x i x j szorzat együtthatójának a fele. Ha ezt a feltevést tesszük, akkor a kvadratikus alak mátrixa: a 11 a 1... a 1n a 1 a... a n A = a 1n a n... a nn szimmetrikus mátrix.
10 Példa Az 5x1 3x 1x + 4x 1 x 3 x + 3x x 3 4x3 kvadratikus alak mátrixa: , 3 4 vagyis a mátrix főátlójába kerülnek a négyzetes tagok együtthatói, a többi elem pedig a megfelelelő vegyes tag együtthatójának a fele lesz: például az 1. sor 3. eleme éppen az x 1 x 3 együtthatójának, a 4-nek a fele, de ugyanúgy kerül az 1. oszlop 3. elemébe is. Az xax T a kvadratikus alakot adja vissza: 5 3 x 1 (x 1 x x 3 ) 3 3 x = 3 4 x 3 = 5x1 3x 1x + 4x 1 x 3 x + 3x x 3 4x3.
11 Kanonikus alakra hozás Definíció Az olyan kvadratikus alakokat, melyekben nincs vegyes tag, kanonikus alakú kvadratikus alakoknak nevezzük. Példa Kanonikus alak: x 1 + x x 3 vagy x 1. Egy kvadratikus alak kanonikus alakra hozható a mátrixának felhasználásával is, ha kinullázzuk a kvadratikus alak mátrixának sorait és oszlopait is. Eltérés a Gauss-eliminációhoz képest, hogy itt az oszlopokat és a SOROKAT IS ki kell nullázni, és mindenképpen a mátrix főátlójába eső elemmel.
12 Megengedett lépés A kvadratikus alak mátrixán a következő átalakítás végezhető: a mátrix i. sorának c-szeresét hozzáadjuk a mátrix j. sorához, majd ezután a mátrix i. oszlopának c-szeresét hozzáadjuk a mátrix j. oszlopához. Példa Hozzuk kanonikus alakra az kvadratikus alakot. x 1 x 1 x + 4x 1 x 3 + x x x 3 + x 3 A kvadratikus alak mátrixa:
13 Először a főátló első elemével nullázzuk ki az oszlopát, majd a sorát A következő lépésben a főátló második eleme segítségével nullázzuk ki az oszlopát és a sorát: Tehát a kvadratikus alak (egyik) kanonikus alakja y 1 + y 4y 3. Megjegyzés A kanonikus alakra hozás során a változók száma csökkenhet. Például az x1 + x 1x + x kvadratikus alak (egyik) kanonikus alakja y1.
14 Egy trükk Mi van akkor, ha egy kvadratikus alak mátrixának a főátlójában nincs alkalmas nem-0 elem, amivel ki lehetne nullázni az oszlopát / sorát? Ekkor végre kell hajtani egy speciális átalakítást a mátrixon: keresni kell egy olyan sort, melyben a főátlóban lévő elem 0, viszont van 0-tól különböző elem a sorban, majd ezt a nem-0 elemet be kell vinni a főátlóba a következő példában leírt módon. Példa Határozzuk meg a x 1 + x x 3 kvadratikus alak kanonikus alakját. A mátrixa: Látható, hogy nincs alkalmas "nullázó elem" a főátló. helyén.
15 A következőképpen állíthatunk elő "nullázó elemet": adjuk hozzá a 3. sor felét a. sorhoz, és a 3. oszlop felét is a. oszlophoz: Most már van megfelelő "nullázó elem": Így az (egyik) kanonikus alak: y 1 + y y
16 Tehetetlenségi tétel FONTOS: a kanonikus alak nem egyértelműen meghatározott, valójában a változók "összekeveredhetnek", illetve az együtthatóik is megváltozhatnak (kivéve az előjelüket). Tehetetlenségi tétel Kvadratikus alak kanonikus alakjában a pozitív, illetve negatív együtthatójú négyzetes tagok száma meghatározott. Megjegyzés Ha egy kvadratikus alak (egyik) kanonikus alakja például x 1 + x, akkor nem lehet egy másik kanonikus alakja y 1 y + y 3. Vagyis a kvadratikus alak kanonikus alakjaiban szereplő pozitív, illetve negatív indexek száma a kvadratikus alak egy jellemzője.
17 Kvadratikus alakok osztályozása (értékkészletük szerint) Definíció Egy n változós q kvadratikus alakot pozitív definitnek nevezünk, ha bármely x 1,..., x n esetén q(x 1,..., x n ) 0, és q(x 1,..., x n ) = 0 csak akkor, ha x 1 =... = x n = 0, pozitív szemidefinitnek nevezünk, ha bármely x 1,..., x n esetén q(x 1,..., x n ) 0, és van olyan (x 1,..., x n ) 0, melyre q(x 1,..., x n ) = 0, negatív definitnek nevezünk, ha bármely x 1,..., x n esetén q(x 1,..., x n ) 0, és q(x 1,..., x n ) = 0 csak akkor, ha x 1 =... = x n = 0, negatív szemidefinitnek nevezünk, ha bármely x 1,..., x n esetén q(x 1,..., x n ) 0, és van olyan (x 1,..., x n ) 0, melyre q(x 1,..., x n ) = 0, indefinitnek nevezünk, ha felvesz pozitív és negatív értékeket is.
18 Példa A q = x1 + x kétváltozós kvadratikus alak pozitív definit, hiszen x1 + x 0, és x 1 + x = 0 x 1 = x = 0. Az q = x1 + x 1x + x kétváltozós kvadratikus alak pozitív szemidefinit, hiszen x1 + x 1x + x = (x 1 + x ) 0, ugyanakkor (x 1 + x ) = 0 teljesül, ha x 1 = x pl: q( 1, 1) = 0. A q = x1 3x 1x + x kétváltozós kvadratikus alak indefinit, hiszen q(1, 0) = 1 > 0 és q(1, 1) = 1 < 0.
19 Kvadratikus alakok osztályozása (kanonikus alakjuk szerint) Egy n változós kvadratikus alak pontosan akkor pozitív definit, ha kanonikus alakjában n db pozitív együtthatójú változó van, pozitív szemidefinit, ha kanonikus alakjában csak pozitív együtthatójú változó van, de n-nél kevesebb, negatív definit, ha kanonikus alakjában n db negatív együtthatójú változó van, negatív szemidefinit, ha kanonikus alakjában csak negatív együtthatójú változó van, de n-nél kevesebb, indefinit, ha kanonikus alakjában van pozitív és negatív együtthatójú változó is.
20 Példa Határozzuk meg az x1 + x 1x 3 + x + x x 3 + x3 osztályát. kvadratikus alak A kvadratikus alak mátrixát diagonális alakra hozzuk: Így a kanonikus alak: y1 + y. A kanonikus alakban csak pozitív együtthatók vannak, azonban a változószáma csökkent (3-ról -re), ezért pozitív szemidefinit a kvadratikus alak. Ellenőrzésképpen: ha x 1 = 1, x = 1, x 3 = 1, akkor a kvadratikus alak értéke tényleg 0.
21 Pozitív definit kvadratikus alakok A pozitív definit kvadratikus alakok máshogy is jellemezhetők. Először szükség van a főminor fogalmára: Definíció: Négyzetes mátrix k. főminorán az első k sor, illetve első k oszlop kiválasztásával adódó aldeterminánsát értjük. Példa mátrix főminorai: 1, =, és a teljes determináns, aminek értéke 4 (vegyük észre, hogy n n-es mátrix esetén az 1. főminor mindig a mátrix bal felső eleme, az n. főminor mindig éppen a mátrix determinánsa).
22 Pozitív definit kvadratikus alakok Tétel Egy kvadratikus alak pontosan akkor pozitív definit, ha minden főminora pozitív (azaz nem lehet 0 sem). Példa x 1 3 x 1x + 4x 1 x 3 + 3x + x x x 3 kvadratikus alak pozitív definit, hiszen mátrixa: , 40 melynek főminorai pozitívak:, 3 1 9,
23 Stratégiai viselkedés Definíció Ha egy ágazat csak néhány vállalatból áll, oligopóliumnak nevezzük. Definíció Ha egy ágazat csak két vállalatból áll, duopóliumnak nevezzük. Az a vállalat, amelynek néhány versenytársa van, ha árra és kibocsátásra vonatkozó döntéseket hoz, akkor minden ágazati szereplő reakcióját figyelembe kell venni. A stratégiai döntések következményeit a játékelmélet segítségével lehet előre jelezni. A játékokat lehet aszerint osztályozni, hogy van-e a játékosok között összejátszás, ez alapján kooperatív és nem kooperatív játékokat különböztetünk meg.
24 Nem kooperatív játékok Nem kooperatív esetben a játék megoldását adja az úgynevezett Nash-féle egyensúlyi helyzetek keresése. Nash-egyensúly Egyensúlynak nevezünk egy helyzetet, ha egyik játékosnak sem éri meg egyoldalúan változtatni rajta, azaz nem nyer azon, ha kimozdul az adott helyzetből. Példa Tekintsünk egy partszakaszt, amin két fagyiárus osztozkodik. a vevők ahhoz az árushoz mennek, aki hozzájuk közelebb van. Hova álljon a két árus, hogy a lehető legtöbb vevőt szerezze meg? Többféle igazságos elosztása van a partszakasznak, de csak egy olyan, ami egyensúlyi helyzet: ha mindkét árus a partszakasz felénél árulja a fagyit.
25 Bimátrixjátékok Tekintsünk egy kétszemélyes játékot, ahol mindkét játékosnak véges sok stratégiája van. Ekkor az egyes stratégiapárokhoz rendelhetünk úgynevezett kifizetéseket, amellyel azt ábrázoljuk, hogy mennyit nyernek a játékosok, ha az adott stratégiapárt választják. Például két-két startégia esetén: Az első játékos kifizetései:. játékos 1. strat.. strat. 1. játékos 1. strat. a 11 a 1. strat. a 1 a A második játékos kifizetései:. játékos 1. strat.. strat. 1. játékos 1. strat. b 11 b 1. strat. b 1 b
26 Bimátrixjátékok A kifizetéseket szokás egy mátrixban ábrázolni, ekkor az egyes stratégiapároknál szereplő értékek közül az első mindig az első játékos kifizetése (nyereménye), a második érték pedig a másodiké: 1. játékos. játékos 1. strat.. strat. 1. strat. a 11, b 11 a 1, b 1. strat. a 1, b 1 a, b A legismertebb bimátrixjáték a fogoly-dilemma:
27 Fogoly-dilemma Két férfit fegyveres rablással gyanúsítanak, nincs döntő bizonyíték ellenük, de ők ezt nem tudják. A rendőr felajánlja mindegyiküknek, hogy ha bevallja a rablást, de a másik tagad, akkor a beismerő vallomást tevő rabot felmentik, a tagadó rab 0 évet kap. Ha mindketten vallanak, akkor az enyhítő körülmény, így 5-5 évet kapnak. Ha mindketten tagadnak, akkor a rájuk bizonyítható tiltott fegyverviselésért 1-1 évet kapnak.
28 Fogoly-dilemma A táblázat a következő: 1. rab. rab vall tagad vall 5, 5 0, 0 tagad 0, 0 1, 1 Ha lenne kooperációra lehetőség, azaz összebeszélhetnének, akkor mindketten a tagadást választhatnák. Ha nincs lehetőség kooperációra, akkor Nash-egyensúlyt kell keresni, azaz azt a helyzetet, ahonnan egyik játékosnak sem éri meg kimozdulni. A vall-vall helyzet esetén, ha egyoldalúan más stratégiát választanak, akkor rosszabbul járnak, tehát ez Nash-egyensúly. Hasonló helyzet fordul elő a fegyverkezési verseny, és a kartell megállapodások esetén.
29 Legnagyobb kedvezmény elve Duopólium esetén (két vállalat alkotja az ágazatot) tegyük fel, hogy a vállalatok csak két stratégia közül választhatnak alacsony vagy magas árat ajánlanak. A profit a következőképpen alakul: 1. vállalat. vállalat alacsony magas alacsony 70, , 10 magas 10, , 100 A nem kooperatív esetben az egyensúly az alacsony-alacsony stratégiapár. Ez az, ahonnan nem éri meg egyoldalúan kimozdulni. A fogoly-dilemmához hasonlóan a kooperáció ennél magasabb kifizetést adna (magas-magas), de annak egyoldalú megszegésével jobban járnak, tehát nem egyensúly.
30 Legnagyobb kedvezmény elve A legnagyobb kedvezmény elve azt jelenti, hogy a vásárlónak megígérik, hogy ha a jövőben bárki másnak alacsonyabb árat kínálnak, akkor neki is ezen az alcsonyabb áron adják a terméket. Ha az árváltoztatás miatti költséget 50 egységnek vesszük, akkor a következőképpen alakul a profit: 1. vállalat. vállalat alacsony magas alacsony 70, 70 90, 10 magas 10, , 100 Tehát lemondanak arról, hogy nyerjenek az árcsökkentésen, ehelyett egy olyan rendszert alakítottak ki, ahol az árcsökkentés veszteséghez vezet. Elérték azt, hogy egyik vállalat se akarja az árat csökkenteni.
31 Gondolkodnivalók Kvadratikus alak, Sratégiai viselkedés 1. Gondolkodnivaló Vegyük észre, hogy egy q kvadratikus alak pontosan akkor negatív definit, ha q pozitív definit. Ezt felhasználva adjuk meg a negatív definit kvadratikus alakok jellemzését a mátrixuk főminorai segítségével.
32 Gondolkodnivalók Kvadratikus alak, Stratégiai viselkedés. Gondolkodnivaló Egy duopólium két tagjának kifizetéseit (nyereségét) mutatja az alábbi táblázat. A vállalatoknak két stratégiája van, kicsi vagy nagy kibocsátást választhatnak. 1. vállalat Milyen stratégiát válasszanak, ha (a) egyszerre lépnek a vállalatok;. vállalat kicsi nagy kicsi 130, , 140 nagy 140, 80 50, 50 (b) először az 1. vállalat lép, azután a. vállalat; (c) először az 1. vállalat, majd a. vállalat, végül megint az 1. vállalat lép.
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli.
Játékelmélet Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli Irodalom előadás jegyzet J. D. Williams: Játékelmélet Filep László: Játékelmélet 1. Előadás Történeti
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 8 Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június
KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
A stratégiák összes kombinációján (X) adjunk meg egy eloszlást (z) Az eloszlás (z) szerint egy megfigyelő választ egy x X-et, ami alapján mindkét
Készítette: Jánki Zoltán Richárd Robert Aumann (1930) Izraeli-amerikai matematikus 1974-ben általánosította a Nash-egyensúlyt 2005-ben közgazdasági Nobel-díjat kapott (kooperatív és nem-kooperatív játékok)
7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció
7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Bázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
Első zárthelyi dolgozat megoldásai biomatematikából * A verzió
Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Matematika elméleti összefoglaló
1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
1. Bázistranszformáció
1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Lineáris algebra (10A103)
Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
f B B 1 B 2 A A 2 0-1
az előadáson tárgyalt példák-1 Fogolydilemma A játék 2 2-es, nem-kooperatív, kétszemélyes és szimmetrikus. A játékos lehetőségei: A 1 : elismeri a bankrablást B játékos lehetőségei: B 1 : elismeri a bankrablást
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
1. Mit jelent az, hogy egy W R n részhalmaz altér?
Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001)
Játékelmélet szociológusoknak J-1 Bevezetés a játékelméletbe szociológusok számára Ajánlott irodalom: Mészáros József: Játékelmélet (Gondolat, 2003) Filep László: Játékelmélet (Filum, 2001) Csontos László
JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK
1.Feladat JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK Az alábbi kifizetőmátrixok három különböző kétszemélyes konstans összegű játék sorjátékosának eredményeit mutatják: 2 1 0 2 2 4 2 3 2 4 0 0 1 0 1 5 3 4 3
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix
Közgazdaságtan I. 11. alkalom
Közgazdaságtan I. 11. alkalom 2018-2019/II. 2019. Április 24. Tóth-Bozó Brigitta Tóth-Bozó Brigitta Általános információk Fogadóóra szerda 13-14, előzetes bejelentkezés szükséges e-mailben! QA218-as szoba
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 12. hét STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET
MIKROÖKONÓMIA I. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. B STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET K hegyi Gergely, Horn Dániel, Major Klára Szakmai felel s: K hegyi Gergely 2010.
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Lineáris algebra (10A103)
Lineáris algebra (10A103) Kátai-Urbán Kamilla (1. előadás) Mátrixok 2019. február 6. 1 / 35 Bevezetés Előadás Tudnivalók (I.) Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Az előadáson készített
Többváltozós, valós értékű függvények
TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.
Mátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
Szélsőérték-számítás
Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y
1. A kétszer kettes determináns
1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez
Piaci szerkezetek VK Gyakorló feladatok a 4. anyagrészhez Cournot-oligopólium Feladatgyűjtemény 259./1. teszt Egy oligopol piacon az egyensúlyban A. minden vállalat határköltsége ugyanakkora; B. a vállalatok
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
1. Mátrixösszeadás és skalárral szorzás
1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
A parciális törtekre bontás?
Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek
1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
Diszkrét matematika I. gyakorlat
Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség
11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal
11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden
Többváltozós, valós értékű függvények
Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
1. ábra ábra
A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest
Differenciálegyenletek megoldása próbafüggvény-módszerrel
Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós
MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.
MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra
3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Gazdasági matematika II.
Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2007/8 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2007/8 tanév, II. félév 1 / 186 Félévközi
Universität M Mis is k k olol ci c, F Eg a y kultä etem t, für Wi Gazda rts ságcha tudft o sw máis n s yen i scha Kar, ften,
6. Előadás Piaci stratégiai cselekvések leírása játékelméleti modellek segítségével 1994: Neumann János és Oskar Morgenstern Theory of Games and Economic Behavior. A játékelmélet segítségével egzakt matematikai
Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.
Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és
: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ február 15
Diszkrét matematika II, 2 el adás Rang, sajátérték Dr Takách Géza NyME FMK Informatikai Intézet takachinfnymehu http://infnymehu/ takach/ 25 február 5 Gyakorlati célok Ezen el adáson, és a hozzá kapcsolódó
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,