1. ábra ábra
|
|
- Virág Natália Barnané
- 8 évvel ezelőtt
- Látták:
Átírás
1 A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll, akkor az ehhez tartozó A ij előjeles aldeterminánst úgy kapjuk, hogy A-ból elhagyjuk az i-edik sorát és a j-edik oszlopát, majd a kapott (n 1) (n 1)-es mátrix determinánsát (1) ij -nel szorozzuk (lásd az 1. ábrát). j. A = A ij = (1) ij det 1. ábra Az A ij definíciójában szereplő (1) ij előjelet sakktáblaszabálynak is szokták nevezni, mert ez i és j függvényében úgy változik, mint a sakktábla mezőinek színei (lásd a 2. ábrát). (Figyelem! A sakktáblaszabálynak semmi köze nincs a determináns definíciójában szereplő előjelezési szabályhoz, amely a permutációk inverziószámától függ.) 2. ábra A kifejtési tétel a következőt mondja ki: ha az (n n-es) A mátrix valamelyik sorának, vagy oszlopának minden elemét megszorozzuk a hozzá tartozó elője- Összeállította: Szeszlér Dávid c BME Számítástudományi és Információelméleti Tanszék,
2 les aldetermináns értékével és a kapott n kéttényezős szorzatot összeadjuk, akkor A determinánsának értékét kapjuk. Ha például a tételt az i-edik sorra alkalmazzuk (vagyis az i-edik sor szerint fejtjük ki a determinánst ), akkor a tétel állítása képletben: det A = a i1 A i1 a i2 A i2... a in A in. Hasonlóan, ha a j-edik oszlop szerint fejtünk ki, akkor a tétel ezt állítja: A kifejtési tétel bizonyítása det A = a 1j A 1j a 2j A 2j... a nj A nj. A bizonyításhoz elevenítsük fel a determináns definícióját. Az n n-es A mátrix elemei közül kiválasztott n elemet nevezzünk bástyaelhelyezésnek, ha minden sorban és minden oszlopban éppen egy kiválasztott elem áll. (Az elnevezést az motiválta, hogy a mátrixot sakktáblának képzelve úgy helyezünk el rajta n bástyát, hogy a sakk szabályai szerint semelyik kettő ne üsse egymást.) Ha az első sorból a π 1 -edik, a másodikból a π 2 -edik, stb., az n-edik sorból a π n -edik elemet választjuk, akkor a bástyaelhelyezés definíciója miatt a π 1, π 2,..., π n számok éppen az 1, 2,..., n számok egy permutációját (valamilyen sorrendben való felírását) adják meg. Ebből azonnal látszik, hogy bástyaelhelyezésből éppen annyi van, mint permutációból, vagyis n! = n(n 1) A determináns definíciója szerint mind az n! lehetséges bástyaelhelyezésre össze kell szorozni az abban szereplő n mátrixelemet, a szorzatot valamilyen szabály szerint (erre később visszatérünk) el kell látni vagy előjellel, végül az így kapott n! n-tényezős, előjeles szorzat összege adja meg det A értékét. Képletben: det A = ± a 1π1 a 2π2... a nπn. π 1,...,π n permutáció Válasszuk most ki az A mátrixnak például az i-edik sorát. Amikor det A értékét a fenti definíció szerint kiszámítjuk, minden bástyaelhelyezés pontosan egy elemet tartalmaz az i-edik sorból. Ezért megtehetjük, hogy a det A definíciójában szereplő n! szorzatot aszerint csoportosítjuk, hogy az i-edik sorból melyik elemet tartalmazzák. Ha az egyik ilyen csoport tagjai az i-edik sorból az elemet tartalmazzák, akkor ezekből a szorzatokból kiemelhető az közös tényező. Ezt mind az n csoportra elvégezve det A így írható: det A = a i1 (...) a i2 (...)... a in (...). Gondoljuk most meg, hogy a fenti felírásban mi kerül az elemmel szorzott (...) zárójelbe. Mivel n-tényezős szorzatokból emeltük ki az közös tényezőt, 2
3 ezért a zárójelben (n 1)-tényezős szorzatok előjeles összege áll. Másrészt mivel a kiemelés előtt a szorzatok minden sorból és oszlopból egy elemet tartalmaztak, ezért kiemelése után olyan (n 1) tényezős szorzatok keletkeznek, amelyek az i-edik sor és a j-edik oszlop kivételével az A minden további sorából és oszlopából pontosan egy elemet tartalmaznak. Más megfogalmazásban: az -vel szorzott (...) zárójelben éppen az A ij értelmezésében szereplő (n 1) (n 1)-es determináns definíció szerinti kiszámításakor keletkező szorzatok előjeles összege áll. Mindez elmondható akkor is, ha az i-edik sor helyett az A mátrix j-edik oszlopát szemeljük ki és az ebben szereplő elemek szerint csoportosítunk. Ezzel pedig a kifejtési tétel állítását majdnem bebizonyítottuk: det A definíció szerinti kiszámításánál, illetve a kifejtési tétel tetszőleges sorra vagy oszlopra való alkalmazásánál ugyanazt az n! előjeles szorzatot adjuk össze. Azt kell még belátni, hogy minden ilyen n-tényezős szorzat ugyanazt az előjelet kapja a kétféle kiszámítás során. Ehhez elevenítsük fel a determináns definíciójában szereplő előjelezési szabályt is. Azt már említettük, hogy minden bástyaelhelyezéshez az 1, 2,..., n számok egy permutációja tartozik. A π 1, π 2,..., π n permutáció inverziószáma definíció szerint azoknak az 1, 2,..., n számok közül választható számpároknak a száma, amelyek nagyság szerint csökkenő sorrendben szerepelnek a permutációban (nem feltétlenül egymás után), vagyis amelyek inverzióban állnak egymással. (Például az 3, 4, 1, 5, 2 permutáció inverziószáma 5, mert a (3, 1), (3, 2), (4, 1), (4, 2), (5, 2) számpárok állnak benne inverzióban.) A determináns definíciója szerint egy adott bástyaelhelyezésben szereplő elemek szorzatához tartozó előjel (1) I, ahol I jelöli a megfelelő permutáció inverziószámát. A kifejtési tétel bizonyításához érdemes ezt az előjelezési szabályt némileg átfogalmazn Hogyan kaphatjuk meg a permutáció felírása nélkül egy szorzat előjelét? Ha például az és az a kl elemek szerepelnek a bástyaelhelyezésben, akkor ez azt jelenti, hogy a megfelelő permutációban az i-edik helyen j, a k-adik helyen l áll (vagyis π i = j és π k = l): i k... j... l... Ha most j és l inverzióban állnak, az azt jelenti, hogy j > l, vagyis és a kl Északkelet-Délnyugat pozícióban vannak egymáshoz képest (mint a 3a ábrán). Ha viszont j és l nem állnak inverzióban, akkor j < l, vagyis és a kl Északnyugat- Délkelet pozícióban vannak (mint a 3b ábrán). Ezt felhasználva a determináns definíciójában szereplő előjelezési szabály így is fogalmazható: egy n-tényezős szorzathoz tartozó előjel (1) I, ahol I jelöli a megfelelő bástyaelhelyezésben az elemek közül kiválasztható, egymással ÉK-DNy pozícióban álló párok számát. 3
4 l. j. j. l. a kl k. k. a kl 3a ábra 3b ábra Térjünk most vissza a kifejtési tétel bizonyítására. Válasszunk egy a 1π1 a 2π2... a nπn ( ) szorzatot és vizsgáljuk meg, hogy valóban ugyanazt az előjelet kapja-e a definíció szerinti, illetve a kifejtési tétel szerinti számításnál. Az imént láttuk, hogy a definíció szerinti számításkor az előjel az ÉK-DNy pozícióban álló elempárok számától függ; jelöljük ezt a számot I-vel. Tegyük fel, hogy a kifejtési tétel szerinti számításnál a ( ) szorzat az A ij tagban szerepel (vagyis π i = j és a kifejtési tételt vagy az i-edik sorra, vagy a j-edik oszlopra alkalmaztuk). Ekkor az előjelet két tényező befolyásolja: egyrészt a sakktáblaszabály szerinti (1) ij előjel, másrészt az A ij értelmezésében szereplő determináns definíció szerinti kiszámításában az a 1π1... a i1,πi1 a i1,πi1... a nπn ( ) szorzathoz tartozó előjel. Az utóbbi előjel pedig (1) J, ahol J most a ( ) szorzatnak megfelelő bástyaelhelyezésben jelöli az ÉK-DNy pozícióban álló párok számát. Mivel a ( )-nak megfelelő bástyaelhelyezés csak az elemben különbözik az eredeti, ( )-nak megfelelő bástyaelhelyezéstől, ezért J annyival kevesebb I-nél, amennyi ÉK-DNy pozícióban álló elempárban szerepel. Az sora és oszlopa az A mátrixot négy részre osztja; jelölje p, q, illetve r a négy rész közül a bal felsőben, a jobb felsőben, illetve a bal alsó részben lévő, a ( ) bástyaelhelyezéshez tartozó elemek számát (lásd a 4. ábrát). Ekkor éppen a jobb felső és a bal alsó részben levő, összesen q r elemmel áll ÉK-DNy pozícióban. A fentiek szerint tehát J = I (q r). Vegyük még észre azt is, hogy mivel az első i1 sor mindegyikében pontosan egy elem szerepel a bástyaelhelyezésben, ezért p q = i 1. Hasonlóan, az első 4
5 p π i = j. q r 4. ábra j 1 oszlop mindegyikében is pontosan egy elem szerepel, így pr = j 1. Ezek összevetéséből: q r = i j (2p 2). Ezt behelyettesítve az előző bekezdés végén kapott összefüggésbe: J = I (i j) 2(p 1). Összevetve tehát az eddig mondottakat, a kifejtési tétel szerinti számításnál a ( ) szorzat előjele: (1) ij (1) J = (1) ij (1) I(ij)2(p1) = (1) I (1) 2(p1) = (1) I. Ez valóban megegyezik a ( ) definíció szerinti előjelével, amivel a tételt beláttuk. 5
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
1. A kétszer kettes determináns
1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai
Mátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
DETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1.
DETERMINÁNSSZÁMÍTÁS A (nxn) kvadratikus (négyzetes) mátrixhoz egyértelműen hozzárendelhetünk egy D R számot, ami a mátrix determinánsa. Már most megjegyezzük, hogy a mátrix determinánsa, illetve a determináns
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Lineáris algebra (10A103)
Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal
11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
1. Mátrixösszeadás és skalárral szorzás
1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása
4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános
1. A Horner-elrendezés
1. A Horner-elrendezés A polinomok műveleti tulajdonságai Polinomokkal a szokásos módon számolhatunk: Tétel (K2.1.6, HF ellenőrizni) Tetszőleges f,g,h polinomokra érvényesek az alábbiak. (1) (f +g)+h =
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).
1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b
Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság
Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
7. 17 éves 2 pont Összesen: 2 pont
1. { 3;4;5} { 3; 4;5;6;7;8;9;10} A B = B C = A \ B = {1; }. 14 Nem bontható. I. 3. A) igaz B) hamis C) igaz jó válasz esetén, 1 jó válasz esetén 0 pont jár. 4. [ ; ] Más helyes jelölés is elfogadható.
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
6. előadás. Vektoriális szorzás Vegyesszorzat
6. előadás Vektoriális szorzás Vegyesszorzat Bevezetés Definíció: Az a és b vektorok vektoriális szorzata egy olyan axb vektor, melynek hossza a vektorok abszolút értékének és hajlásszögük szinuszának
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
Csima Judit BME, VIK, november 9. és 16.
Adatbáziskezelés Függőségőrzés, 3NF-re bontás Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. november 9. és 16. Csima Judit Adatbáziskezelés Függőségőrzés, 3NF-re bontás 1
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
Valasek Gábor valasek@inf.elte.hu
Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.
XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós
MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz
Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..
Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
Csima Judit november 15.
Adatbáziskezelés Normalizálás Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2017. november 15. Csima Judit Adatbáziskezelés Normalizálás 1 / 26 Normalizálás Tétel Tetszõleges (R,
1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?
1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.
A pivotálás hasznáról és hatékony módjáról Adott M mátrixra pivotálás alatt a következ½ot értjük: Kijelölünk a mátrixban egy nemnulla elemet, melynek neve pivotelem, aztán az egész sort leosztjuk a pivotelemmel.
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
2. gyakorlat. A polárkoordináta-rendszer
. gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
= 2 z 7 5 A = B = 2 3
Bevezetés a számításelméletbe I. Zárthelyi feladatok 205. október 22.. Határozzuk meg az x 4 = y+5 4 = 2 z 3 egyenletrendszerű e egyenes minden olyan P pontját, amelyre a P -t a Q(7; 2; 4) ponttal összekötő
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
A parciális törtekre bontás?
Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus
Algebra es sz amelm elet 3 el oad as Permut aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Permutációk Waldhauser Tamás 2014 őszi félév 1. Definíció. Permutációnak nevezzük egy nemüres (véges) halmaz önmagára való bijektív leképezését. 2. Definíció. Az {1, 2,...,
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
A számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
1. Mellékosztály, Lagrange tétele
1. Mellékosztály, Lagrange tétele 1.1. Definíció. Legyen (G, ) csoport, H G részcsoport és g G tetszőleges elem. Ekkor a {gh h H} halmazt a H részcsoport g elem szerinti baloldali mellékosztályának nevezzük
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
1. Mit jelent az, hogy egy W R n részhalmaz altér?
Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
Magasabbfokú egyenletek
86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y
3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
24. szakkör (Csoportelméleti alapfogalmak 3.)
24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
Bizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.
Bizonyítási módszerek - megoldások 1. Igazoljuk, hogy menden természetes szám esetén ha (a) 9 n 3 n (b) 4 n 2 n (c) 21 n 3 n (d) 21 n 7 n (e) 5 n 25 n (f) 4 n 16 n (g) 15 n (3 n 5 n) 9 n n = 9k = 3 3k
Matematikai statisztika 1.
Matematikai statisztika 1 segédanyag Daróczi Gergely Szociológia Intézet 2010 Matematikai statisztika 1 01 Mátrixok A mátrix vízszintes vonalban elhelyezked elemei sorokat, függ leges vonalban elhelyezked
1. Bázistranszformáció
1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n
Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20.
Bevezetés a számításelméletbe I. Zárthelyi feladatok 4. október.. A p paraméter milyen értékére esnek egy síkba az A(; 3; 3), B(3; 4; ), C(4; 6; ) és D(p; ; 5) pontok?. Megadható-e R 4 -ben négy darab
Amit a törtekről tudni kell Minimum követelményszint
Amit a törtekről tudni kell Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat írtunk.
7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.