A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
|
|
- Antal Fodor
- 6 évvel ezelőtt
- Látták:
Átírás
1 A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz egy részhalmazát kicsinek nevezzük, ha üres vagy kevesebb eleme van a legkisebb eleménél. Hány kicsi részhalmaz van? Megoldás: A kicsi részhalmazok számát Kn-nel jelölve, az első néhány n-re K =, K2 = 2, K3 = 3, K4 = 5. Ennek alapján azt sejtjük, hogy Kn = f n+, az n+-edik Fibonacci-szám f = f 2 =, és f n = f n +f n 2, ha n > 2. pont Mivel K = f 2 és K2 = f 3, ezért elég belátni, hogy a Kn függvény is eleget tesz a Fibonacci-féle rekurziónak, azaz n > 2-re Kn = Kn + Kn 2. Soroljuk két osztályba {,2,...,n} kicsi részhalmazait aszerint, hogy az n számot nem tartalmazzák A, illetve tartalmazzák B. Az A-beliek száma nyilván Kn. Így elég megmutatnunk, hogy a B-beliek száma megegyezik {, 2,..., n 2} kicsi részhalmazainak a számával. Ehhez kölcsönösen egyértelmű megfeleltetést létesítünk közöttük, éspedig a következőképpen. Ha a B-beli H halmaz elemei a < a 2 < < a k < a k = n, ahol a feltétel szerint k < a, akkor a H-nak megfelelő H halmaz álljon az a < < a 2 < < a k elemekből k = esetén H üres. Mivel a k n 2 és k < a k < a, ezért H valóban {,2,...,n 2} egy kicsi részhalmaza. Az is világos, hogy minden ilyen halmaz előáll egy B-beli halmaz képeként, és a megfeleltetés kölcsönösen egyértelmű. Egy másik bizonyítási lehetőség a következő. Az {,2,...,n} halmazban egy j elemű részhalmaz pontosan akkor kicsi, ha nem tartalmazza az,2,...,j elemek egyikét sem, tehát mind a j eleme a j +,j +2,...,n számok közül kerül ki. Ennek alapján a j elemű n j kicsi részhalmazok száma. Innen j Kn = n/2 j=0 n j j. 5 pont
2 s s Ennek a képletnek az alapján, az = m m könnyen igazolható a rekurzió. + s összefüggés felhasználásával m 5 pont 2. feladat Anna tetszőlegesen beosztja az n+,n+2,...,n+2k számokat k darab diszjunkt párba. Ezután megmondja Balázsnak, mennyi az egyes párokban az elemek szorzata. Legyen fn az a maximális k, amelyre ebből a k darab szorzatértékből Balázs mindig ki tudja találni az Anna által gondolt számpárokat. Bizonyítsuk be, hogy vannak olyan c és d, az n-től független pozitív konstansok, hogy minden elég nagy n-re c n < fn < d n. Megoldás: Először a felső becslést igazoljuk. Az a,a 2,...,a 6 számokat úgy fogjuk megadni, hogy a a 2 = a 3 a 6, a 3 a 4 = a 5 a 2 és a 5 a 6 = a a 4 teljesüljön. Ekkor, ha Anna ezt a hat számot akár a,a 2,a 3,a 4,a 5,a 6, akár a 3,a 6, a 2,a 5,a,a 4 párokba osztja, ugyanazok a szorzatok jönnek létre, tehát Balázs nem tudja kitalálni a párosítást. Legyen t egy később n-től függően alkalmasan megválasztandó pozitív egész, és legyen a = t 2t+2 = t 2 4, a 2 = t t = t 2 t, a 3 = t 2t = t 2 2t, a 4 = t t+ = t 2, a 5 = t 2t+ = t 2 t 2, a 6 = t t+2 = t 2 +t 2. Ekkor fennáll. Az a i számoknak n+ és n+2k közé kell esniük. Mivel t > 2-re a 3 a legkisebb és a 6 a legnagyobb a hat szám közül, ezért ez azt jelenti, hogy n+ a 3 = t 2 2t és a 6 = t 2 +t 2 n+2k kell, hogy teljesüljön. Az első egyenlőtlenségbőlt + n+3, tehát a legkisebb lehetséges választás t = + n+3 ahol x az x szám felső egészrészét jelöli, azaz a legkisebb, x-nél nem kisebb egész számot. Ezt a második egyenlőtlenségbe beírva Ez biztosan teljesül, ha 2k t t+2 n = n+3 n+3 +3 n. 2k n+3+ n+3+4 n = n+3+5 n+3+4 n = 5 n+3+7, azaz elég nagy n-re k > 3 n esetén a fenti konstrukció megvalósítható. Az alsó becsléshez megmutatjuk, hogy fn > n/2, mert 5 pont n+b n+b 2 = n+b 3 n+b 4, b < b 2 n és b 3 < b 4 n teljesüléséből b = b 3 és b 2 = b 4 következik azaz ekkor bármelyik pár szorzata különböző eredményt ad. A beszorzás elvégzése és összevonások után b +b 2 b 3 b 4 n = b 3 b 4 b b 2 adódik. A jobb oldali, n-nel osztható egész szám abszolút értéke kisebb n-nél, tehát csak 0 lehet, azaz 0 = b 3 b 4 b b 2 = b +b 2 b 3 b 4. Ez azt jelenti, hogy gx = x+b x+b 2 x+b 3 x+b 4 a nulla polinom minden együtthatója nulla, vagyis x+b x+b 2 és 2
3 x+b 3 x+b 4 mint polinomok azonosak, és így a gyöktényezős alak egyértelműségéből a kívánt b = b 3, b 2 = b 4 következik. Ugyanezt úgy is megkaphatjuk, hogy a b +b 2 = b 3 +b 4 egyenlőség négyzetéből levonjuk a b b 2 = b 3 b 4 egyenlőség 4-szeresét, négyzetgyököt vonunk, és az így adódó b 2 b = b 4 b 3 összefüggést hozzáadjuk -hoz, illetve levonjuk abból. 5 pont 3. feladat Az ABC háromszög A-val átellenes oldalán felvettük az A pontot, a B-vel átellenes oldalonb -et, ac-vel átellenesenc -et úgy, hogy azaa, BB, CC szakaszok áthaladnak ugyanazon a P ponton. Bizonyítsuk be, hogy AP PA +BP PB +CP PC < 3 BC 2 +CA 2 +AB 2. Megoldás: A tömörség kedvéért használjuk az S = AP PA +BP PB +CP PC, a = BC, b = CA, c = AB jelöléseket, ezekkel a bizonyítandó állítás S < a 2 +b 2 +c 2 /3. Legyen x = PA AA, y = PB BB és z = PC CC. Célunk, hogys-et kifejezzüka,b,c ésx,y,zsegítségével. NyilvánAP PA = x xaa 2, BP PB = y ybb 2 és CP PC = z zcc 2. Az x, y, z arányszámok rendre egyenlők a BCP, CAP, illetve ABP részháromszögek területének az ABC háromszög területéhez viszonyított arányával, ezért egyrészt érvényes az x+y+z = egyenlőség, másrészt x, y és z egymás közti arányai megegyeznek ezeknek a részháromszögeknek a területarányaival. Két ilyen részháromszögnek van közös oldala például ABP és CAP esetében AP, területarányuk tehát az ehhez az oldalhoz tartozó magasságaik aránya, ami pedig az ABC háromszög szemközti oldalának két szelete közti aránnyal a példában A B és CA arányával egyenlő. Ezért y : z = CA : A B, z : x = AB : B C és x : y = BC : C A. 3
4 Ezt felhasználva az AA, BB, CC vektorok az alábbi módon írhatók fel az ABC háromszög oldalvektorai segítségével: AA = y AB +z AC, y +z BB = z BC +x BA, z +x CC = x CA+y CB. x+y Ezekből skaláris szorzást alkalmazva képleteket kaphatunk AA 2 -re, BB 2 -re és CC 2 -re; például AA esetében AA 2 = y +z 2 y 2 c 2 +z 2 b 2 +2yz AB AC. Itt a 2 = AC AB 2 = b 2 +c 2 2 AB AC miatt 2 AB AC = b 2 +c 2 a 2, ezzel tehát ahonnan AA 2 = y +z 2 y 2 c 2 +z 2 b 2 +yzb 2 +c 2 a 2 = = yz x 2 a2 + z x b2 + y x c2, AP PA = x xaa 2 = xyz x a2 +zxb 2 +xyc 2. Hasonló formulákat kapunk a másik két szorzatra is, ezeket végül összeadva a bizonyítandó egyenlőtlenség bal oldalára az S = képlet adódik. 2yz xyz x = yz 3 x a 2 + a 2 +zx 2zx xyz y 3 y b 2 + b 2 +xy 2xy xyz z 3 z c 2 = c 2 Rátérünk az S < a 2 +b 2 +c 2 /3 egyenlőtlenség igazolására. Ehhez csak annyit használunk fel, hogy a fenti formulában a, b, c valamely háromszög oldalai tehát olyan pozitív számok, amelyekre a három háromszögegyenlőtlenség érvényes, továbbá x, y, z nemnegatív számok, melyekre x+y +z =. Az egyenlőtlenség nyilvánvaló módon érvényes, ha a fenti képletben mind a 2, mind b 2, mind c 2 együtthatója /3-nál kisebb. Először megmutatjuk, hogy ez így van, ha x, y és z mindegyike legalább /6. Általában nem várható, hogy az együtthatók mind /3- nál kisebbek legyenek, például ha x = 0 és y = z = /2 vagyis amikor P a BC oldal felezőpontja, a 2 együtthatója /2. Tegyük fel tehát, hogy x,y,z /6, és tekintsük például a 2 együtthatóját a másik kettő esetében hasonlóképpen lehet eljárni. Az yz szorzatot y +z y z y +z x yz = =
5 alapján lehet felülről becsülni, és ezzel valóban yz 3 x x x 2 5 = 5 6 < 3. Ugyancsak könnyű ellenőrizni, hogy mindhárom együttható /3-nál kisebb, ha x, y és z közül kettő is kisebb /6-nál. Az együtthatókat adó háromtényezős szorzatok tényezői között ugyanis ekkor mindhárom esetben szerepel olyan, amelynek az értéke /6-nál kisebb, a másik két tényező pedig legfeljebb, illetve 2. Tekintsük végül a fennmaradó esetet, vagyis amikor x, y és z közül pontosan az egyik kisebb /6-nál. Feltehetjük, hogy x < /6, ekkor /6 y, z 5/6. Ilyenkor a 2 együtthatója nagyobb lehet /3-nál, ezért ebben az esetben annak az /3-ot meghaladó részét átcsoportosítjuk a másik két taghoz. Eközben felhasználjuk a háromszögegyenlőtlenségből nyerhető a 2 < b+c 2 = 2b 2 +2c 2 b c 2 2b 2 +2c 2 becslést: S < 3 a2 + zx 3 y + xy 3 +2 z +2 yz 3 b 2 + x 3 3 c 2. x 3 Azt akarjuk belátni, hogy itt b 2 és c 2 együtthatója is legfeljebb /3. Elég b 2 együtthatóját megvizsgálni, hiszen a másik ebből átbetűzéssel származik. Állításunk tehát az, hogy yz zx 3 +2yz 3 y x. Ennek igazolásához fölhasználjuk, hogy -nél kisebb x-re és y-ra érvényesek az x +x, illetve y 4y egyenlőtlenségek, és ezért elegendő azt megmutatni, hogy illetve ezzel egyenértékű módon azt, hogy zx3 4y+2yz2 x, 3zx+4yz 6xyz. A bal oldalon y /6 miatt 6xyz zx, ezért elég belátni, hogy 2zx + 4yz. Itt y+z = x miatt yz x 2 /4, tehát elegendő a 2zx+ x 2 egyenlőtlenséget bebizonyítani. Átrendezéssel ez egyenértékű xx+2z 2 0-val, ami pedig nyilvánvalóan igaz, hiszen 0 x < /6 és z 5/6. 4 pont 5
Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban
Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:
Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév Kezdők I II. kategória II. forduló Kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy kört
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
= 1, azaz kijött, hogy 1 > 1, azaz ellentmondásra jutottunk. Így nem lehet, hogy nem igaz
Egyenlőtlenség : Tegyük fel, hogy valamilyen A,B,C számokra nem teljesül, azaz a bal oldal nagyobb. Mivel ABC =, ha az első szorzótényezőt B-vel, a másodikat C-vel, a harmadikat A-val szorozzuk, azaz az
Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
Egy általános iskolai feladat egyetemi megvilágításban
Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február I. forduló osztály
Zilah, 016. február 11 14. 1. feladat: Oldd meg a következő egyenletet: 1 1 1 1 5 4 1 4 3 3 1 3 5 4 4 10 Turdean Katalin, Zilah Felírjuk a létezési feltételeket:5 4 1 0, 4 3 3 0, 1 3 5 0, 4 4 10 0. Bevezetjük
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
XX. Nemzetközi Magyar Matematika Verseny
XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola
O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike
4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig
Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben
Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.
1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden
A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)
Oktatási Hivatal A 016/017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Egy húrtrapéz pontosan
Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
Az 1. forduló feladatainak megoldása
Az 1. forduló feladatainak megoldása 1. Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! Megoldás:
ARCHIMEDES MATEMATIKA VERSENY
Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.
1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
Bizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.
Bizonyítási módszerek - megoldások 1. Igazoljuk, hogy menden természetes szám esetén ha (a) 9 n 3 n (b) 4 n 2 n (c) 21 n 3 n (d) 21 n 7 n (e) 5 n 25 n (f) 4 n 16 n (g) 15 n (3 n 5 n) 9 n n = 9k = 3 3k
Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így
A Fermat-Torricelli pont
Vígh Viktor SZTE Bolyai Intézet 2014. november 26. Huhn András Díj 2014 Így kezdődött... Valamikor 1996 tavaszán, a Kalmár László Matematikaverseny megyei fordulóján, a hetedik osztályosok versenyén. [Korhű
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
1. A Horner-elrendezés
1. A Horner-elrendezés A polinomok műveleti tulajdonságai Polinomokkal a szokásos módon számolhatunk: Tétel (K2.1.6, HF ellenőrizni) Tetszőleges f,g,h polinomokra érvényesek az alábbiak. (1) (f +g)+h =
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
Komplex számok. (a, b) + (c, d) := (a + c, b + d)
Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
NULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály
. feladat: Szupercsiga egy függőleges falon mászik felfelé. Első nap 4 cm-t tesz meg, éjszaka cm-t visszacsúszik. Második napon 9 cm-t tesz meg, éjszaka 4 cm-t csúszik vissza, harmadik napon 6 cm-t mászik,
XXIII. Vályi Gyula Emlékverseny május 13. V. osztály
XXIII. Vályi Gyula Emlékverseny Marosvásárhely 207. május 3. V. osztály. Sári néni a piacon 00 db háromféle tojást vásárolt 00 RON értékben. Tudva azt, hogy a tyúktojás ára 50 bani, a libatojás 5 RON és
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2
Mat. A2 3. gyakorlat 2016/17, második félév
Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).
1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.
Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS
A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás.
Bolyai János Matematikai Társulat Oktatási Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 005/00-os tanév első iskolai) forduló haladók II. kategória nem speciális
1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a
1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor
Minden feladat teljes megoldása 7 pont
Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,
Megoldások 11. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 016. március 1115. Megoldások 11. osztály 1. feladat Egy háromszög három oldalának mér száma, a, b, c ebben a sorrendben egy mértani sorozat három egymást
4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim
Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2
SZÁMÍTÁSTUDOMÁNY ALAPJAI
SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz
1. A Hilbert féle axiómarendszer
{Euklideszi geometria} 1. A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), közte van reláció, egybevágóság (szögeké,
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató
OktatásiHivatal A 014/01. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató 1. feladat: Adja meg az összes olyan (x,
SHk rövidítéssel fogunk hivatkozni.
Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,
Ábrahám Gábor: A Jensen-egyenlőtlenség. Megoldások. Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)
Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) I. Geometriai egyenlőtlenségek, szélsőérték feladatok 1. Mivel az [ ] f :0; π ; xa sin xfolytonos az értelmezési tartományán, ezért elég azt belátni,
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk
Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely
Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely Ebben a részben geometriai problémák szélsőértékeinek a megállapításával foglalkozunk, a síkgeometriai
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.
XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután
HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.
osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z
ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:
1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre
λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Javítókulcs, Válogató Nov. 25.
Javítókulcs, Válogató 2016. Nov. 25. 1. Az A, B, C pontok által meghatározott hegyesszögű háromszögben az egyes csúcsokhoz tartozó magasságvonalak talppontjait jelölje rendre T A, T B és T C. A T A T B
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Irracionális egyenletek, egyenlôtlenségek
9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén