MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
|
|
- Géza Székely
- 9 évvel ezelőtt
- Látták:
Átírás
1 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához! ) Oldj meg z lábbi egyenleteket! ) log cos 4 5sin ) A logritmus definíciój szerint 8, hol vlós szám és (6 pont), hol tetszőleges forgásszöget jelöl ( pont) ( pont) 64 Ellenőrzés. helyettesítéssel, új változóvl. y ; y ( pont) 6 cos sin sin 5sin 4 0 sin y y nem megoldás, mert y 5y 0 sin k vgy 5 k (fokbn is megdhtó) ( pont) 6 6 k Ellenőrzés, vgy le kell írni, hogy gyökök igzzá teszik z eredeti egyenletet, mivel ekvivlens átlkításokt végeztünk. Összesen: 7 pont ) Mekkor értéke, h lg lg 5 lg lg lg 5? ( pont) Mivel 0-es lpú logritmusfüggvény szig. monoton nő, 75 Összesen: pont ) Oldj meg következő egyenleteket: ) 9 0 (6 pont) (6 pont) sin sin
2 ) Legyen Az másodfokú egyenletet kell megoldni. Ennek z egyenletnek gyökei: és 0 esetén egyenlet nem d megoldást, mert minden vlós kitevőjű htvány pozitív szám. Az kielégíti z eredeti egyenletet. Legyen sin Az másodfokú egyenletet kell megoldni. Ennek z egyenletnek gyökei: és. 0 sin nem d megoldást, mert sin sin A sin egyenlet gyökei: k, hol k tetszőleges egész szám. Ezek z értékek kielégítik z egyenletet. y lg lg Összesen: pont 4) Adott következő egyenletrendszer: () () y ) Ábrázolj derékszögű koordinát-rendszerben zokt pontokt, melyeknek koordinátái kielégítik () egyenletet! ( pont) Milyen, illetve y vlós számokr értelmezhető mindkét egyenlet? ( pont) c) Oldj meg z egyenletrendszert vlós számpárok hlmzán! ( pont) P( ; y ) d) Jelölje meg z egyenletrendszer megoldáshlmzát z ) kérdéshez hsznált derékszögű koordinát-rendszerben! ( pont) ) ( pont)
3 Az () egyenlet mitt y és c) d) A y lg lg lg lg A logritmusfüggvény szigorú monotonitás mitt ( pont) 5 és 4 y 5 és y 4 A másodfokú egyenletrendszer megoldási: 5 5 ; 4 illetve ; 4 miből második számpár nem trtozik z eredeti egyenlet értelmezési trtományáb, z első számpár kielégíti z eredeti egyenletrendszert. 5 5 ; 4 pont bejelölése. ( pont) Összesen: 7 pont 5) Oldj meg pozitív vlós számok hlmzán log6 egyenletet! Jelölje megdott számegyenesen z egyenlet megoldását! ( pont) 4 ( pont) 6) Melyik ngyobb: A sin 7 log 4 vgy B jelet válszmezőbe! Válszát indokolj!) A, A B B Összesen: pont? (Írj megfelelő relációs ( pont) Összesen: pont
4 7) Adj meg 8) lg lg A pozitív vlós számok hlmz. egyenlet megoldáshlmzát! ( pont) ( pont) ) Mely pozitív egész számokr igz következő egyenlőtlenség? (4 pont) Oldj meg vlós számok hlmzán z lábbi egyenlőtlenséget! (8 pont) ) Az (5 lpú eponenciális) függvény szigorún monoton növekedése mitt 5 ; ; ; 4 Az egyenlőtlenség megoldás: 0 A ( lpú eponenciális) függvény szigorú monotonitás mitt Az számok hlmzán z 9. nem megoldás z egyenletnek. Az egyenlet megoldás vlós 9) Oldj meg vlós számok hlmzán következő egyenleteket! ) ( pont) Összesen: pont lg 5 lg 5 lg 0 (6 pont) 5 55 ) Értelmezési trtomány: 5 A logritmus zonosságánk helyes lklmzás. (A lg függvény kölcsönösen egyértelmű.) (6 pont) és 5 Mindkét megoldás megfelel.
5 0 5 5 ( pont) A négyzetgyök értéke nemnegtív szám, ezért nincs vlós megoldás. 0) Htározz meg z lábbi egyenletek vlós megoldásit! ) log log 6 0 sin 6 4 Összesen: pont (7 pont) (0 pont) ) Az egyenlet bl oldlán szereplő szorzt értéke pontosn kkor 0, h vlmelyik tényezője 0. H z első tényező 0, kkor Innen log 8 H második tényező 0, kkor Innen 6 64 log 6 honnn pozitív trtományb csk z Mind két gyök kielégíti z eredeti egyenletet. sin 6 vgy n vgy n 6 6 n ) Adj meg vgy ; n A kifejezés értéke 4. ) Mennyi z sin 6 n ( pont) ( pont) 7 n ( pont) 6 6 ; n ; n 4 4, n (4 pont) Összesen: 7 pont log 8kifejezés pontos értékét! ( pont) 5 A kifejezés értéke: 5. kifejezés értéke, h? ( pont) ( pont) ( pont)
6 ) Az, b és c tetszőleges pozitív vlós számokt jelölnek. Tudjuk, hogy lg lg lg b lg c Válssz ki, hogy melyik kifejezés dj meg helyesen értékét! A: c b B: b c C: D: b c c b E: b c F: G: b c b c A helyes kifejezés: F. 4) A b, c és d pozitív számokt jelölnek. Tudjuk, hogy lg b lg c lg d ( pont) ( pont) Fejezze ki z egyenlőségből b-t úgy, hogy bbn c és d logritmus ne szerepeljen! ( pont) b c d vgy c b d 5) Melyik szám ngyobb? A lg 0 vgy B cos8. ( pont) ( pont) cos 8 A ngyobb szám betűjele: B ( pont)
7 6) István z log 0 függvény grfikonját krt felvázolni, de ez nem sikerült neki, több hibát is elkövetett ( hibás vázlt láthtó mellékelt ábrán). Döntse el, hogy melyik igz z lábbi állítások közül! ) István rjzábn hib z, hogy vázolt függvény szigorún monoton csökkenő. István rjzábn hib z, hogy vázolt függvény - höz -t rendel. c) István rjzábn hib z, hogy vázolt függvény zérushelye. ( pont). 7) Adj meg zokt z vlós számokt, melyekre teljesül: Válszát indokolj! ( pont) log 4. ( pont) A logritmus definíciój lpján: lehetséges értékek: 4, 4 6 8) Oldj meg z lábbi egyenleteket vlós számok hlmzán! ) ) Összesen: pont (5 pont), hol és (7 pont) (Az 5 lpú eponenciális függvény szigorú monotonitás mitt: 0 Ellenőrzés Az egyenlet bl oldlát közös nevezőre hozv: Az egyenlet mindkét oldlát -vel szorozv A zárójelek felbontás és összevonás után: Nullár rendezve: 6 0 A másodfokú egyenlet gyökei: ; ( pont) Ellenőrzés Összesen: pont 6
8 9) ) Oldj meg vlós számok hlmzán z 0 egyenlőtlenséget! (7 pont) Adj meg z négy tizedesjegyre kerekített értékét, h 4 0. (4 pont) c) Oldj meg lphlmzon. cos cos 0 egyenletet ; (6 pont) ) H, kkor ( 0, ezért), vgyis A -nál kisebb számok hlmzán tehát ; intervllum minden eleme 0. ( pont) megoldás z egyenlőtlenségnek. H, kkor ( 0, ezért) 0, vgyis. ( pont) A -nál ngyobb számok hlmzábn nincs ilyen elem, tehát -nál ngyobb számok között nincs megoldás z egyenlőtlenségnek. A megoldáshlmz: ; log 4, 69 c) (A megdott egyenlet cos -ben másodfokú,) így megoldóképlet felhsználásávl vgy cos. ( pont) Ez utóbbi nem lehetséges (mert koszinuszfüggvény értékkészlete ; intervllum). cos 0,5 A megdott hlmzbn megoldások:, illetve. ( pont) Összesen: 7 pont 0) Melyik z z természetes szám, melyre log 8? ( pont) 4 ( pont)
9 ) Oldj meg z lábbi egyenleteket vlós számok hlmzán! ) 5 4 (5 pont) lg lg4 (7 pont) ) ( pont) Tehát Visszhelyettesítéssel z eredeti egyenletbe megbizonyosodtunk ról, hogy z 5 ( pont) 5 megoldás helyes Értelmezési trtomány: Logritmus-zonosság lklmzásávl: A logritmus definíció lpján: 4 lg4 ( pont) ( pont) 6 Ellenőrzés, visszhelyettesítés ) Az ábrán z f : ; ; f ) Adj meg z f függvény értékkészletét! Htározz meg z szám értékét! 0,5;4 Az f értékkészlete 0,5 Összesen: pont függvény grfikonj láthtó. ( pont).. ( pont) ) Adj meg z értékét, h 5 log 5 Összesen: pont! ( pont) ( pont)
10 4) Újsághír: Szeizmológusok számítási lpján 004. december 6-án Szumátr szigetének közelében kipttnt földrengés Richter-skál szerint 9,-es erősségű volt; rengést követő cunmi (szökőár) hlálos áldoztink szám megközelítette 00 ezret. A földrengés Richter-skál szerinti erőssége és rengés középpontjábn felszbduló energi között fennálló összefüggés: M 4, 4 lg E. Ebben képletben E földrengés középpontjábn felszbduló energi mérőszám (joule-bn mérve), M pedig földrengés erősségét megdó nem negtív szám Richter-skálán. ) A Ngskir 945-ben ledobott tombomb felrobbnáskor, felszbduló energi joule volt. A Richter-skál szerint mekkor erősségű z földrengés, melynek középpontjábn ekkor energi szbdul fel? ( pont) A 004. december 6-i szumátri földrengésben mekkor volt felszbdult energi? ( pont) c) A 007-es chilei ngy földrengés erőssége Richter-skál szerint - vel ngyobb volt, mint nnk kndi földrengésnek z erőssége, mely ugynebben z évben következett be. Hányszor kkor energi szbdult fel chilei földrengésben, mint kndibn? (5 pont) d) Az óceánbn fekvő egyik szigeten földrengést követően kilkuló szökőár egy körszelet lkú részt trolt le. A körszeletet htároló körív középpontj rengés középpontj, sugr pedig 8 km. A rengés középpontj sziget prtjától 7 km távolságbn volt (lásd felülnézeti ábrán). Mekkor szárzföldön elpusztult rész területe egész négyzetkilométerre kerekítve? (6 pont) 4 ) 4,4 lg,44 0 M M 5 ( pont) 9, 4,4 lg E Tehát felszbdult energi körülbelül lg E 0,58 0 E, 8 0 J
11 c) A chilei rengés erőssége -vel ngyobb volt, mint kndi: 4,4 lg Ec 4,4 lg Ek Rendezve: lg E lg E c k Ec (A logritmus zonosságát lklmzv) lg E Ebből E E c k szer kkor volt felszbdult energi. d) Az ábr jelöléseit hsználjuk. Az AKF derékszögű háromszögből: 7 cos 8 9,. 8,4 T AKB 8 sin 8,4 00,6 km 8,4 Tkörcikk 8 08,6 km 60 T körszelet 08,6 00,6 8 km Az elpusztult rész területe körülbelül 5) ) Mely vlós számokr értelmezhető k 8 km. Összesen: 7 pont log kifejezés? Oldj meg vlós számok hlmzán z lábbi egyenletet! log 0 ( pont) ) Összesen: pont ( pont)
12 6) Egy idén megjelent iprági előrejelzés szerint egy bizonyos lktrész iránti kereslet z elkövetkező években emelkedni fog, minden évben z előző évi kereslet 6%-ávl. (A kereslet z dott termékből várhtón eldhtó mennyiséget jelenti.) ) Várhtón hány százlékkl lesz mgsbb kereslet 5 év múlv, mint idén? ( pont) Az előre jelzés szerint ugynezen lktrész ár z elkövetkező években csökkenni fog, minden évben z előző évi ár 6%-ávl. Várhtón hány év múlv lesz z lktrész ár z idei ár 65%-? (5 pont) Egy cég z előrejelzésben szereplő lktrész eldásából szerzi meg bevételeit. A cég vezetői z elkövetkező évek bevételeinek tervezésénél bból indulnk ki, hogy fentiek szerint kereslet évente 6%-kl növekszik, z ár pedig évente 6%-kl csökken. c) Várhtón hány százlékkl lesz lcsonybb z éves bevétel 8 év múlv, mint idén? (5 pont) A kérdéses lktrész egy forgáskúp lkú tömör test. A test lpkörének sugr cm, lkotój 6 cm hosszú. d) Számíts ki test térfogtát! (4 pont) ) A kereslet minden évben várhtón z előző évi kereslet változik, így 5 év múlv z idei -szorosár nő. Ez kb. 4%-kl mgsbb, mint z idei kereslet. Az ár minden évben várhtón z előző év ár 0,9 -szorosár változik, 5,06,4 így megoldndó 0,94 0,65 Ebből lg 0,65 n lg 0,94 n 6,96 egyenlet, (hol n,6 -szorosár z eltelt évek számát jelenti.). ( pont) Azz várhtón 7 év múlv lesz z ár jelenlegi ár 65%-. c) A bevételt kereslet és z ár szorztából kpjuk, így 8 év múlv jelenlegi bevétel 8,06 0,94 0,97-szerese várhtó. ( pont) Azz 8 év múlv bevétel z ideinél kb.,8 %-kl lesz lcsonybb. d) Ábr z dtok feltüntetésével. A kúp mgsságát m -mel jelölve Pitgorsz-tétel lpján: A kúp térfogt m 6 7 5,cm 5,. V 49cm. Összesen: 7 pont
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonan szolgálhatnak fontos információval
RészletesebbenExponenciális és logaritmusos feladatok Megoldások
00-0XX Középszint Eponenciális és logaritmusos feladatok Megoldások ) Oldja meg az alábbi egyenleteket! a) ( ) log + + =, ahol valós szám és b) cos = 4 sin, ahol tetszőleges forgásszöget jelöl ( pont)
RészletesebbenExponenciális és logaritmusos feladatok
005-0XX Középszint Eponenciális és logaritmusos feladatok ) Oldja meg az alái egyenleteket! ( ) log + + =, ahol valós szám és cos = 4 5sin, ahol tetszőleges forgásszöget jelöl ( pont) ) Mekkora értéke,
Részletesebben5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
Részletesebben4. Hatványozás, gyökvonás
I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)
RészletesebbenMinta feladatsor I. rész
Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB
RészletesebbenTrigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Egyenletek, egyenlőtlenségek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Egyenletek, egyenlőtlenségek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Részletesebben1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
RészletesebbenMATEMATIKA ÉRETTSÉGI október 18. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 011. október 18. KÖZÉPSZINT I. 1) Írja fel prímszámok szorzataként a 40-at! ( pont) 40 3 5 7 3 5 7 ( pont) ) Bontsa fel a 36000-et két részre úgy, hogy a részek aránya 5:4 legyen!
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometri A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Egyenletek, egyenlőtlenségek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Egyenletek, egyenlőtlenségek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Részletesebbenb) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Egyenletek, egyenlőtlenségek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Egyenletek, egyenlőtlenségek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Részletesebben9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek
. Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Részletesebbenegyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
Részletesebben3) Oldja meg a valós számpárok halmazán a következő egyenletrendszert! 5) a) Oldja meg a valós számok halmazán a következő egyenletet!
1) a) Oldja meg a 7 ( ) b) Oldja meg az - 7 - + egyenlőtlenséget a valós számok halmazán! ( pont) + 6 0egyenlőtlenséget a valós számok halmazán! 7 + egyenlőtlenség valós c) Legyen az A halmaz a ( ) megoldásainak
RészletesebbenGyökvonás. Hatvány, gyök, logaritmus áttekintés
Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
RészletesebbenEgyenletek, egyenlőtlenségek Megoldások ( ) 7 + x 2 x 2 egyenlőtlenség valós. x x x, (1 pont) (1 pont) Mivel a főegyüttható pozitív, (1 pont)
) Egyenletek, egyenlőtlenségek - megoldások Egyenletek, egyenlőtlenségek Megoldások a) Oldja meg a 7 ( ) halmazán! b) Oldja meg az halmazán! + egyenlőtlenséget a valós számok ( pont) + 6 0 egyenlőtlenséget
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Részletesebben13. Oldja meg a valós számok halmazán az alábbi egyenleteket!
A 13. Oldja meg a valós számok halmazán az alábbi egyenleteket! a) b) sin 2 x 1 2cos x a) 6 pont b) 6 pont 12 pont írásbeli vizsga, II. összetev 4 / 16 2011. október 18. 14. Egy felmérés során két korcsoportban
RészletesebbenGyakorló feladatsor 11. osztály
Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenHeves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)
Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei
Részletesebbena) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Részletesebben2. modul Csak permanensen!
MATEMATIKA C. évfolym. modul Csk permnensen! Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Csk permnensen! Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok A htványzonosságok
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Anlízis A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
Részletesebbenf (ξ i ) (x i x i 1 )
Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <
RészletesebbenMATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok
MATEMATIKA 9. osztály I. HALMAZOK Számegyenesek, intervllumok. Töltsd ki tábláztot! Minden sorbn egy-egy intervllum háromféle megdás szerepeljen!. Add meg fenti módon háromféleképpen következő intervllumokt!
RészletesebbenÉrettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?
Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Bizonyítások
) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Bizonyítások A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!
RészletesebbenÉrettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
Részletesebben11. évfolyam feladatsorának megoldásai
évolym eldtsoránk megoldási Oldjuk meg természetes számok hlmzán következő egyenleteket x ) y 6 x! 3 b) y 6 3 ) Átrendezve megoldndó egyenlet y 6 x! 3 H x 0, kkor H x, kkor H x, kkor H x 3, kkor H x, kkor
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Mtemtik emelt szint 1111 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formi előírások: Fontos tudnivlók 1.
RészletesebbenM. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:
Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente
RészletesebbenExponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása
Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0
Részletesebben5. A logaritmus fogalma, a logaritmus azonosságai
A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton
RészletesebbenHatározzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (
9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R
RészletesebbenEgyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Mtemtik középszint 061 ÉRETTSÉGI VIZSGA 007. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivlók Formi előírások:
Részletesebben7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,
RészletesebbenAbszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
Részletesebbena b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS
Mtemtik emelt szint Jvítási-értékelési útmuttó MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERFORRÁS MINISZTÉRIUM ÉRETTSÉGI VIZSGA 0. május. Mtemtik emelt szint
RészletesebbenIX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometri A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!
RészletesebbenA 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0
RészletesebbenII. A számtani és mértani közép közötti összefüggés
4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!
RészletesebbenMindig csak a kitevő?
MATEMATIKA C. évfolym. modul Mindig csk kitevő? Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Mindig csk kitevő? Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok
RészletesebbenSíkgeometria Megoldások
Síkgeometri Megoldások Síkgeometri - megoldások 1) Döntse el, hogy következő állítások közül melyik igz és melyik hmis! ) A háromszög köré írhtó kör középpontj mindig vlmelyik súlyvonlr esik. b) Egy négyszögnek
RészletesebbenFELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
RészletesebbenExponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
Részletesebben2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
RészletesebbenFeladatok a logaritmus témaköréhez 11. osztály, középszint
TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy
RészletesebbenNagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
Részletesebben1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
RészletesebbenHarmadikos vizsga Név: osztály:
. a) b) c) Számítsd ki az alábbi kifejezések pontos értékét! log 6 log log 49 4 7 d) log log 6 log 8 feladat pontszáma: p. Döntsd el az alábbi öt állítás mindegyikéről, hogy igaz vagy hamis! A pontozott
Részletesebben4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket!
Mtemtik 0. elődás Végezzük el műveleteket!. 6... Alkítsuk szorzttá következő kifejezéseket!. 8 6 6. 7. 8. y Oldjuk meg z lái egyenleteket! 9. 0. 7 0 7 6. 7. Egy kétjegyű szám számjegyeinek összege. H felseréljük
Részletesebbenfüggvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
RészletesebbenAz integrálszámítás néhány alkalmazása
Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8
RészletesebbenMatematika. Második kötet KÍSÉRLETI TANKÖNYV
Mtemtik Második kötet 10 KÍSÉRLETI TNKÖNYV tnkönyv megfelel z 51/0 (XII. ) EMMI rendelet: sz. melléklet: Kerettnterv gimnáziumok 9 évfolym számár.04 Mtemtik 6. sz. melléklet: Kerettnterv szkközépiskolák
RészletesebbenMATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 010. október 19. KÖZÉPSZINT 1) Adott az A és B halmaz: Aa; b; c; d, B a; b; d; e; f felsorolásával az A I.. Adja meg elemeik B és A B halmazokat! A B a; b; d A B a; b; c; d; e; f Összesen:
RészletesebbenGyakorló feladatsor 9. osztály
Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n
RészletesebbenSíkgeometria. c) Minden paralelogramma tengelyesen szimmetrikus. (1 pont) 5) Egy háromszög belső szögeinek aránya 2:5:11. Hány fokos a legkisebb szög?
Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra esik. b) Egy négyszögnek lehet 180 -nál
RészletesebbenII. EGYENLETEK ÉS EGYENLŐTLENSÉGEK
Egyenletek és egyenlőtlenségek 5 II EGYENLETEK ÉS EGYENLŐTLENSÉGEK Az idők folymán ngyon sok gykorlti problém merült fel, melynek megoldásához egyenletekre volt szükség A mi egyszerű és tömör mtemtiki
RészletesebbenEls gyakorlat. vagy más jelöléssel
Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,
RészletesebbenIV. Algebra. Algebrai átalakítások. Polinomok
Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol
RészletesebbenJuhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai
Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,
RészletesebbenMatematika A1a - Analízis elméleti kérdései
Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n
RészletesebbenHatvány gyök logaritmus
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenAz ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.
5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:
RészletesebbenMatematika érettségi 2015 május 5
( ) A 6-tl vló oszthtóság feltétele, hogy szám oszthtó legyen -vel és -ml. 60 6 64 66 68 X {;8} X {;8} A minden tgdás: vn olyn A brn tgdás: nem brn Vn olyn szekrény, melyik nem brn (A) A D 49 b 4 ( 0)
RészletesebbenTöbbváltozós analízis gyakorlat
Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete
RészletesebbenDifferenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke
Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)
RészletesebbenBevezetés. Alapműveletek szakaszokkal geometriai úton
011.05.19. Másodfokú egyenletek megoldás geometrii úton evezetés A középiskoli mtemtik legszerteágzóbb része másodfokú egyenletek megoldás. A legismertebb módj természetesen megoldóképlet hsznált. A képlet
RészletesebbenInformatika alapjai Tantárgyhoz Kidolgozott Excel feladatok
SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Informtik lpji Tntárgyhoz Kidolgozott Ecel feldtok Gödöllı, 8. Bevezetı Ez feldtgyőjtemény összefogllj z Informtik lpji tntárgy keretében okttott,
Részletesebben11. Sorozatok. I. Nulladik ZH-ban láttuk:
11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket
Részletesebben2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:
. Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
RészletesebbenMatematika emelt szintû érettségi témakörök 2015. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)
Mtemtik emelt szintû érettségi témkörök 05 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött
RészletesebbenFÜGGVÉNYEK x C: 2
FÜGGVÉNYEK 2005-2014 1. 2005/0511/2 Az ábrán egy [ 2; 2] intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! A: x x 2 2 B: x 2 2 x x
Részletesebben