JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS"

Átírás

1 Mtemtik emelt szint Jvítási-értékelési útmuttó MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERFORRÁS MINISZTÉRIUM ÉRETTSÉGI VIZSGA 0. május.

2 Mtemtik emelt szint Jvítási-értékelési útmuttó Formi elírások: Fontos tudnivlók. A dolgoztot vizsgázó áltl hsznált szín&tl eltér szín& tolll kell jvítni, és tnári gykorltnk megfelelen jelölni hibákt, hiányokt stb.. A feldtok mellett tlálhtó szürke tégllpok közül z elsben feldtr dhtó mximális pontszám vn, jvító áltl dott pontszám mellette lev tégllpb kerül.. Kifogástln megoldás esetén elég mximális pontszám beírás megfelel tégllpokb. 4. Hiányos/hibás megoldás esetén kérjük, hogy z egyes részpontszámokt is írj rá dolgoztr. Trtlmi kérések:. Egyes feldtoknál több megoldás pontozását is megdtuk. Amennyiben zoktól eltér megoldás születik, keresse meg ezen megoldásoknk z útmuttó egyes részleteivel egyenérték& részeit, és ennek lpján pontozzon.. A pontozási útmuttó pontji tovább bonthtók. Az dhtó pontszámok zonbn csk egész pontok lehetnek.. Nyilvánvlón helyes gondoltmenet és végeredmény esetén mximális pontszám dhtó kkor is, h leírás z útmuttóbn szereplnél kevésbé részletezett. 4. H megoldásbn számolási hib, ponttlnság vn, kkor csk rr részre nem jár pont, hol tnuló hibát elkövette. H hibás részeredménnyel helyes gondoltmenet lpján tovább dolgozik, és megoldndó problém lényegében nem változik meg, kkor következ részpontszámokt meg kell dni. 5. Elvi hibát követen egy gondolti egységen belül (ezeket z útmuttóbn ketts vonl jelzi) formálisn helyes mtemtiki lépésekre sem jár pont. H zonbn tnuló z elvi hibávl kpott rossz eredménnyel, mint kiinduló dttl helyesen számol tovább következ gondolti egységben vgy részkérdésben, kkor erre részre kpj meg mximális pontot, h megoldndó problém lényegében nem változik meg. 6. H megoldási útmuttóbn zárójelben szerepel egy megjegyzés vgy mértékegység, kkor ennek hiány esetén is teljes érték& megoldás. 7. Egy feldtr dott többféle helyes megoldási próbálkozás közül vizsgázó áltl megjelölt változt értékelhet. 8. A megoldásokért jutlompont (z dott feldtr vgy feldtrészre elírt mximális pontszámot meghldó pont) nem dhtó. 9. Az olyn részszámításokért, részlépésekért nem jár pontlevonás, melyek hibásk, de melyeket feldt megoldásához vizsgázó ténylegesen nem hsznál fel. 0. A vizsgfeldtsor II. részében kit&zött 5 feldt közül csk 4 feldt megoldás értékelhet. A vizsgázó z erre célr szolgáló négyzetben feltehetleg megjelölte nnk feldtnk sorszámát, melynek értékelése nem fog beszámítni z összpontszámáb. Ennek megfelelen megjelölt feldtr esetlegesen dott megoldást nem is kell jvítni. H mégsem derül ki egyértelm&en, hogy vizsgázó melyik feldt értékelését nem kéri, kkor utomtikusn kit&zött sorrend szerinti legutolsó feldt lesz z, melyet nem kell értékelni. írásbeli vizsg / 0. május.

3 Mtemtik emelt szint Jvítási-értékelési útmuttó 9. b) Az lpkock térfogt: V 7 cm. k A gyártás során ennek kockánk minden csúcsából egy olyn (derékszög&) tetrédert vágnk le, melynek három lpj egybevágó, cm befogójú egyenl szárú derékszög& háromszög, és ezek lpok páronként merlegesek egymásr. Ezen lpok közül bármelyiket lplpnk tekintve tetréder mgsság cm. A 8 csúcsnál levágott tetréderek térfogtánk összege: 4 V 8 ( cm ). pont A visszmrdó test térfogt: V V 5 77 cm. k Így V k V 77 V k 8 95 %. Összesen: 7 pont Ez pont világos rjz esetén kkor dhtó, h rról leolvshtók z dtok is. írásbeli vizsg / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó. ) els megoldás Az f függvény egy negtív fegyütthtós másodfokú függvénynek egy zárt intervllumr vett lesz&kítése. Grfikonj egy lefelé nyitott prbolánk egy íve. Teljes négyzetté kiegészítéssel x x { ( x ) 4. A ( ;4) pont prbol tengelypontj, mely függvény grfikonjánk is pontj. Tehát f [ ; ] intervllumon szigorún monoton növ, [ ; 5 ] intervllumon pedig szigorún monoton fogyó. Az eddigiekbl következik, hogy ( ) mximumhelye f-nek és mximum értéke 4. A minimum zárt intervllum két htáránk vlmelyikénél lehet: f ( ), f ( 5). Az f függvény minimumhelye z 5, minimum értéke f ( 5). I. Összesen: 7 pont Megjegyzések:. H megoldást grfikonkészítéssel kezdi, és rról helyesen olvss le monotonitási viszonyokt és szélsértékeket, kkor jár 7 pont, h grfikon helyességét indokolj.. H hibás grfikonról olvss le jól kért értékeket, kkor jó leolvsásért pontot kpjon (monotonitás + szélsértékek )!. A monotonitási trtományokhoz hozzászámíthtjuk z x értéket, vgy ki is zárhtjuk zt. Mindkét változtot fogdjuk el helyes válsznk! írásbeli vizsg / 0. május.

4 Mtemtik emelt szint Jvítási-értékelési útmuttó. ) második megoldás A vlós számok hlmzán értelmezett x x x függvény derivált függvénye: x x. Ahol derivált függvény pozitív, ott z eredeti függvény szigorún monoton növ, hol negtív, ott szigorún monoton fogyó. x! 0 œ x és x 0 œ x!. A vlós számok hlmzán értelmezett x x x függvénybl lesz&kítéssel kpott f függvény tehát [ ; [ intervllumon szigorún monoton növ, ] ;5 ] intervllumon pedig szigorún monoton fogyó. Az eddigiekbl következik, hogy ( ) mximumhelye f-nek és mximum értéke 4. A minimum zárt intervllum két htáránk vlmelyikénél lehet: f ( ), f ( 5). Az f függvény minimumhelye z 5, minimum értéke f ( 5). Megjegyzés: Összesen: 7 pont A monotonitási trtományokhoz hozzászámíthtjuk z x értéket, vgy ki is zárhtjuk zt. Mindkét változtot fogdjuk el helyes válsznk!. b) Az lg x x lg 5 h x x! 0, és x lg 5 kifejezés kkor értelmezhet, lg x z. Az egyenltlenség megoldás vlós számok hlmzán: x vgy x!, de d x d 5, így z x d 5 feltételnek kell teljesülnie. A lg x x lg 5 pontosn kkor teljesül, h x x 5. Ennek vlós megoldási 4 és. Tehát zon x vlós számokr értelmezhet kifejezés, melyekre x d 5 és x z teljesül. Összesen: 7 pont Bármilyen formábn megdott helyes válsz ot ér. ; > ]; 5 ] vgy { x R x d 5, x z }. írásbeli vizsg 4 / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó 9. ) Az üzem npi hszn n drb készlet gyártás esetén:,5 n 8 n 0, n n 00 h,5 0, n 6 n 00.,5 Az f : R o R ; f x 0, x 6 x 00 0,5 függvény deriválhtó és f (x) 0, x 6. Az f szélsértékének létezéséhez szükséges, hogy f (x) = 0 teljesüljön. 0,5 0, x 6 0 œ x ,5 0,5 Mivel f (x) 0,5 x 0, ezért x 400 esetén npi hszon mximális, hiszen f mximumhelye egyben h mximumhelye is (mert 400 eleme h értelmezési trtományánk is). Npi 400 építkészlet gyártás esetén lesz hszon mximális. x A mximális hszon:,5 h 400 0, (euró). Összesen: 9 pont H h függvény deriváltját képezi, ez pont nem jár. H vizsgázó mximumot zzl indokolj, hogy z els derivált z x 400 környezetében eljelet vált (pozitívból negtívb megy át), ez pont jár. írásbeli vizsg / 0. május.

5 Mtemtik emelt szint Jvítási-értékelési útmuttó 8. b) hrmdik megoldás A megoldás során kihsználjuk, hogy tized méterre (egész deciméterre) kerekítve kell megdni z eredményt. A megépített kerítés hossz leglább 0 +, m és legfeljebb EF 6, m. Zoli kerítésre leglább, Ft-ot, legfeljebb 6, Ft-ot költött. A kerítésre költött összeg leglább 6,5 m, de legfeljebb 8,05 m terület& telekrész értékével egyezik meg. x 0 A FG=x jelöléssel: h! 8, 05, kkor Zoli biztosn jobbn járt. Ebbl ( kerekítésre vló tekintettel) z dódik, hogy x t, (m). A 6,5 m -hez trtozó FG távolság: 6,5 0,08 (m). (A monotonitás mitt minden ennél kisebb x esetén Zoli rosszbbul jár.) Azt kell már csk megvizsgálni, hogy z, m, illetve z, m hosszú FG szksz esetén jól járhtott-e Zoli. pont FG (m),, kerítés költsége (Ft) telekrész értéke (Ft) egyenleg Zoli szempontjából (Ft) pont Láthtó, hogy FG=, m is elnyös Zolink. Összefogllv: h FG leglább, m (és legfeljebb 8 m), kkor Zoli jól járt kerítés megépítésével. Összesen: pont írásbeli vizsg 0 / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó. ) A német és frnci vizsgávl rendelkez hllgtó közül = 9-nek vn ngol vizsgáj is. Mindhárom kérdésre 9-en válszoltk igennel. pont Összesen: pont. b) els megoldás A ngol nyelvvizsgás közül 9 = fnek vn egy vgy két nyelvvizsgáj. Tehát hllgtó trtozik z ngol nyelvvizsgávl rendelkezk közül német vgy frnci nyelvvizsgávl nem rendelkezk hlmzink uniójáb. Ezen hlmzok elemszám külön-külön 7 illetve 8, z unió elemszám. A két hlmz közös részébe tehát 5 = elem trtozik. A közös részbe pedig cskis ngol vizsgávl rendelkez hllgtók trtoznk. Ezek lpján beírhtjuk z lábbi hlmzábráb z egyértelm&en dódó elemszámokt: pont pont A három nyelvvizsg közül leglább eggyel rendelkezk szám + + = 6. Mindhárom kérdésre nemmel (9 6 =) f válszolt. Összesen: 9 pont írásbeli vizsg 5 / 0. május.

6 Mtemtik emelt szint Jvítási-értékelési útmuttó. b) második megoldás Jelöljük x-szel csk ngol nyelvvizsgávl rendelkez hllgtók számát. Ezzel jelöléssel következ Venn-digrmot hozhtjuk létre: H ez gondolt csk megoldás során derül ki, ez pont jár. pont A pont z ngol hlmz helyes kitöltéséért jár. Az ngol nyelvvizsgávl rendelkezk szám, tehát 4 x. Csk ngol nyelvvizsgávl x hllgtó rendelkezik. Beírv x megkpott értékével megfelel elemszámokt: A három nyelvvizsg közül leglább eggyel rendelkezk szám + + = 6. Egyetlen nyelvvizsgávl sem rendelkezik 9 6 = f, tehát mindhárom kérdésre hllgtó válszolt nemmel. Összesen: 9 pont írásbeli vizsg 6 / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó 8. b) másik megoldás Elegend kedvez G pontokt FH szksz pontji között keresni. Az x=fg jelöléssel: h x növekszik, kkor z EG szksz hossz szigorún monoton csökken (mert z EHG derékszög& háromszög EH befogój mindig 0 m hosszú, másik befogój pedig csökken), z EFG háromszög területe szigorún monoton n (hiszen FG oldl n, hozzá trtozó mgsság nem változik). Ebbl következik, hogy elegend megvizsgálni, mely esetben egyenl kerítésre fordított költség cserébe kpott telekrész értékével. A kerítésért kpott telekrész területe (x-et méterben 0 x mérve): = 5 x ( m ), értéke x (Ft). A kerítés hossz (Pitgorsz- tétellel): x x, kerítés megépíttetésének költsége: 5000 x x x 40 x x, zz x 40 x 00 0 x (hol x pozitív), x 40 x x. Ebbl: 899 x 40 x Ennek pozitív megoldás x,8. Tehát leglább, m (és legfeljebb 8 m) hosszú FG szksz. Összesen: pont írásbeli vizsg 9 / 0. május.

7 Mtemtik emelt szint Jvítási-értékelési útmuttó 8. b) els megoldás A feldt megértése (pl. egy jó vázlt). ( FG x és EG y jelölés esetén) Az EFG háromszög T területe: T = 5 x (m ); Zoli telkéhez cstolt terület értéke: x (Ft). Az új kerítés hosszát z EHG derékszög& háromszögbl számíthtjuk. FG 0 x. * Alklmzv Pitgorsz tételét: y 0 x 0 * 0 y x x. * Az EG hosszú kerítés megépíttetésének költsége: x x. Zoli jobbn járt, tehát x 40 x x, zz x 40 x 00 0 x (hol x pozitív, és méterben dj meg kérdéses hosszt.) (Mivel mindkét oldl nemnegtív, ezek négyzete között relációjel változtln.) x 40 x x. Ebbl x 40 x 00 (hol x pozitív). Az x 899 x 40 x 00 (x R) másodfokú függvény egyetlen pozitív zérushelye, 8. (A másik zérushely, ) Ez másodfokú függvény pozitív számok hlmzán szigorún n. Mivel,8 m, m, így leglább, m (és legfeljebb 8 m) hosszú FG szksz. Összesen: pont Megjegyzés: Koszinusztétel lklmzásávl is megdhtó z FG oldl ( *-gl jelölt pontokhoz): $ GFE ) D jelöléssel tg D =, 5, zz D 56, EFG háromszög EG oldlár koszinusztétel lklmzás. 6,06 y x 7, x cos56, írásbeli vizsg 8 / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó. els megoldás H hétfn egy rekeszben x kg sárgbrck volt, és ebbl összesen y db rekesszel vásárolt, kkor kedden egy rekeszben ( x ) kg volt, és ekkor összesen ( y 8 ) db rekesszel vásárolt. Így z xy 65 és z ( x )( y 8) 65 egyenleteknek kell teljesülniük. Tehát z xy ( x 65 )( y 8) 65 ½ ¾ egyenletrendszer megoldását keressük, hol x és y pozitív számot jelöl. A második egyenletben zárójel felbontásávl z xy y 8 x 6 65 egyenlethez jutunk. Mivel xy 65, így 65 y 8 x 6 65, zz 4 x y 8. Ebbl y 4 x 8. Az xy 65 egyenletben y helyére 4 x 8 -t helyettesítve, 4 x 8 x 65 0 másodfokú egyenletet kpjuk. Ennek pozitív megoldás: x 7, 5. (A negtív megoldás: 5,5) Innen y. Ezekkel z értékekkel számolv: kedden 5,5 kg szibrck volt egy rekeszben, és összesen 0 rekesszel vásárolt kiskeresked. (Az értékek szöveg feltételeinek megfelelnek.) Tehát hétfn egy rekeszben 7,5 kg sárgbrck volt, és ekkor összesen rekesszel vásárolt kiskeresked. Összesen: pont H ez gondolt csk megoldás során derül ki, ez pont jár. Ez pont szöveg szerinti ellenrzésért dhtó. írásbeli vizsg 7 / 0. május. $

8 Mtemtik emelt szint Jvítási-értékelési útmuttó. második megoldás H hétfn n drb rekesz sárgbrckot vásárolt 65 kiskeresked, kkor egy rekeszben kg n sárgbrck volt. Így kedden n 8 drb rekesz szibrckot vett, és 65 ekkor egy rekeszben n kg szibrck volt. pont pont n 8 65 n 65. pont Rendezve kpjuk: n 8 n pont Ennek egyetlen pozitív gyöke n ( másik gyök n 0 ). Hétfn rekesz sárgbrckot vett kiskeresked, egy rekeszben 7,5 kg gyümölcs volt. Ezek z értékek megfelelnek feldt minden feltételének (kedden 0 rekesszel vásárolt, egy rekeszben 5,5 kg szibrck volt). Megjegyzés: pont Összesen: pont H hétfn minden rekeszben s kg sárgbrck volt, kkor, A felírhtó egyenlet ekkor: 8 65 Gyökök: s 7, 5 és s 5, 5. Ez pont szöveg szerinti ellenrzésért dhtó. 65 drb rekesszel vásárolt. s 65 s. Rendezve: 4 s 8 s s írásbeli vizsg 8 / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó 7. b) második megoldás lkosr vontkozón számolunk, mert z rányok mint ngyságától függetlenek lkos közül betegszik meg, egészséges mrd beteg közül 50 dohányzik, 750 nem dohányzik egészséges lkos közül dohányos, nem dohányos. pont A 50 dohányos között 50 beteg vn, ez dohányosok számánk 0,6%-. A nem dohányos között 750 beteg vn, ez nem dohányosok számánk,5%-. Összesen: 9 pont 8. ) A telek felosztásánk megértése (pl. egy jó vázlt). Az EF átfogójú, 0 és 0 befogójú derékszög& háromszög (EFH) megdás. Pitgorsz tételének lklmzás: EF 0 0 EF 6, méter. Összesen: 4 pont írásbeli vizsg 7 / 0. május.

9 Mtemtik emelt szint Jvítási-értékelési útmuttó 7. b) els megoldás Az dtok áttekintéséhez célszer& ábrát készíteni. város lkosság (00%) nem beteg (95%) beteg (5%) 80% 0% 45% 55% nem beteg és nem dohányos nem beteg és dohányos beteg és dohányos beteg és nem dohányos (Modellt készít: szövegnek megfelel 4 diszjunkt csoportb sorolj város lkosságát.) Kiszámítjuk, hogy város lkosságánk hány százlék trtozik négy csoportb. Nem beteg és nem dohányos: 0,95 0,8 0,76, zz 76%; nem beteg és dohányos: 0,95 0, 0,9, zz 9%; beteg és dohányos: 0,05 0,45 0,05, zz,5%; beteg és nem dohányos: 0,05 0,55 0,075, zz,75%. A város lkosink (9 +,5 =),5%- dohányos, közöttük város lkosink,5%- beteg, tehát dohányosok között,5 00 % betegek,5 rány. Egy tizedes jegyre kerekítve ez 0,6%. A város lkosink (76 +,75=) 78,75%- nem dohányos, közöttük város lkosink,75%- beteg, tehát nem dohányosok között,75 00 % 78,75 betegek rány. Egy tizedes jegyre kerekítve ez,5%. Összesen: 9 pont Ez pont kkor is jár, h megoldás erre gondoltr épít. írásbeli vizsg 6 / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó 4. ) els megoldás Az ábrák jelöléseit hsználjuk. Legyen gúl lpéle, mgsság m. AC, z AEC háromszög területe: () 64 m. H jelölés z ábrán világos, ez pont jár. Az lplppl párhuzmos síkmetszet négyzet, melynek oldl 4 cm hosszú. Az ABCD és ABCD négyzet (vgy két E csúcsú gúl) (középpontos) hsonlóság mitt megfelel szkszok rány egyenl: 4 m 4, m. Ezt behelyettesítve z (ACE háromszög területére felírt) () egyenletbe: 64, 8. A gúl lplpjánk területe 8 cm. 8 Ÿ 8 (mert >0), gúl mgsság: m 8 (cm). Összesen: 0 pont írásbeli vizsg 9 / 0. május.

10 Mtemtik emelt szint Jvítási-értékelési útmuttó 4. ) második megoldás Legyen gúl lpéle, mgsság m. AC, z AEC háromszög területe: () 64 m. Az lplppl párhuzmos síkmetszet (négyzet) (középpontosn) hsonló z lplphoz. A hsonló síkidomok területérl tnultk szerint ezért: m, 6 vgyis m, mibl (>0 és m>0 mitt) m következik. Ezt behelyettesítve z (ACE háromszög területére felírt) () egyenletbe: 64, 8. A gúl lplpjánk területe 8 cm. 8 Ÿ 8 (mert >0), gúl mgsság: m 8 (cm). Összesen: 0 pont H jelölés z ábrán világos, ez pont jár. 4. b) H z AD él felezpontj F, z ABCD négyzet középpontj G, kkor kérdezett szög: D EFG ). Az EGF derékszög& háromszögbl: 8 tg D, 4 54,7 D $. Összesen: pont írásbeli vizsg 0 / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó 7. ) Az n 00 és p 0, 05 prméter& binomiális eloszlás lpján számolhtunk. Annk vlószín&sége, hogy 00 ember között 00 nincs beteg: 0,95, nnk vlószín&sége, hogy közöttük beteg vn: ,05 0,95. Annk vlószín&sége, hogy 00 ember között legfeljebb egy, z újfjt betegségségben szenved vn: 0,95 0,05 0,95 0,0059 0,0 0, 07. (Nekünk komplementer esemény vlószín&sége kell,) tehát nnk vlószín&sége, hogy 00 ember között leglább két z újfjt betegségségben szenved vn 0,07 0, 969 A kérdezett vlószín&ség két tizedes jegyre kerekítve: 0,96. Összesen: 7 pont Ez pont kkor is jár, h megoldás erre gondoltr épít. írásbeli vizsg 5 / 0. május.

11 Mtemtik emelt szint Jvítási-értékelési útmuttó 6. b) második megoldás Közvetlenül megszámoljuk, hogy 4 egyenl vlószín&ség& eset közül hány végzdik több kék mint piros golyó húzásávl. Legyen z els szám kék, második piros, hrmdik fehér golyók szám: (,0,4), (,0,), (,0,), (4,0,), (5,0,0), (,,), (,,), (4,,0), (,,0). Mivel különböz színek egyformán gykorik, ezért fenti esetek közül zonosk vlószín&ség szempontjából következk: (,0,4), (4,0,), (4,,0) (,0,), (,0,), (,,0) (5,0,0) (,,) (,,) Az els hárms összesen 5! 5 5 4! -féleképpen, második hárms 5! 5!! =0 -féleképpen, hrmdik (5,0,0) -féleképpen, míg 5! 5 negyedik (,,)! =0-féleképpen következhet be. Végül z ötödik (,,) 0 következhet be, zz 5!!! 0 4 -féleképpen kedvez esetek szám: A keresett vlószín&sége tehát: 0,95 4 Összesen: 8 pont H vizsgázó nem zonos rendszerben számítj ki z összes és kedvez esetek számát, legfeljebb 5 pont dhtó. Megjegyzés: H vizsgázó elbb több kék mint piros golyó húzásánk vlószín&ségét számítj ki, és b) els megoldásánk gondoltmenetét követve dj meg z egyenl számú kék és piros golyó húzás vlószín&ségét, kkor lklmzzuk b) els megoldásánk pontozását! írásbeli vizsg 4 / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó 5. ) II. Összesen: pont 5. b) els megoldás Tetszleges D > ; 0 esetén sin D, sin D, sin D. Ezek egy számtni sorozt egymást követ tgji, h, zz 4 sin D sin D sin D. Átlkítv: sin D sin D sin D. D E D E A sin D sin E sin cos zonosságot lklmzv bl oldlr: sin D cosd sin D. 0-r rendezés és szorzttá lkítás után: sin D D. cos 0 (A bl oldlon álló szorzt pontosn kkor 0, h vlmelyik tényezje 0.) A vlós számok hlmzán sin D 0 pontosn kkor, h D ks, zz, h S D k (k Z). Mivel D > 0 ; ezért. lehetséges értékei: S S 0; ; Œ; ; Œ. cos D tekintett intervllumon pontosn kkor teljesül, h D 0 vgy D S, ezeket z értékeket pedig már megkptuk z elz eset vizsgáltkor. H D 0, D S vgy D S, kkor,, ; S h D, kkor 0,, 4, tehát ez négy D érték megoldást d. S D esetén nem kpunk megfelel megoldást, ugynis ekkor. Összesen: pont A számtni sorozt bármelyik definíciójánk helyes lklmzásáért jár pont. Ez z csk mind z öt jó érték felsorolásáért jár. írásbeli vizsg / 0. május.

12 Mtemtik emelt szint Jvítási-értékelési útmuttó 5. b) második megoldás Tetszleges D > ; 0 esetén sin D, sin D, sin D. Ezek egy számtni sorozt egymást követ tgji, h, zz 4 sin D sin D sin D. Átlkítv: sin D sin D sin D. A sin D sin D 4sin D és sin D sin D cosd zonosságokt lklmzv: 4sin D 4sin D 4sin D cosd. Ebbl: sin D sin D cosd 0. (A bl oldlon álló szorzt pontosn kkor 0, h vlmelyik tényezje 0.) A tekintett intervllumon sin D 0 pontosn kkor teljesül, h D 0 vgy D S vgy D S. Mivel sin D cos D, ezért bl oldl másik tényezje cos D cosd cosd D cos lkbn írhtó, és pontosn kkor 0, h cos D 0 vgy cos D. Az. eddigi lehetséges értékeihez innen két új érték dódik cos D 0 egyenletbl: S D és H D 0, D S vgy D S, kkor,, ; h S D. S D, kkor 0,, 4, tehát ez négy D érték megoldást d. S D esetén nem kpunk megfelel megoldást, ugynis ekkor. Összesen: pont A számtni sorozt bármelyik definíciójánk helyes lklmzásáért jár pont. Ez z csk mind három jó érték felsorolásáért jár. írásbeli vizsg / 0. május. Mtemtik emelt szint Jvítási-értékelési útmuttó 6. ) 5 4 különböz húzás lehetséges, (ezek mindegyike zonos vlószín&séggel következhet be). Egyform kék és piros golyók szám, h mindkett 0, vgy. Els eset 0 piros és 0 kék, zz mind z öt fehér, ez -féleképpen lehetséges. Második eset: piros és kék, fehér, ez 5! 5! =0-féleképpen következhet be. Hrmdik eset: piros és kék, fehér, ez 5! 5 4!! =0 esetben következhet be. pont A kedvez esetek szám tehát A döntetlen játszm vlószín&sége: 5 0,098 0,. 4 Összesen: 8 pont Ezt pontot kkor is megkpj, h gondoltot ugyn nem írj le, de megoldásából kiderül, hogy erre épít. 6. b) els megoldás Három eset lehetséges: zonos kihúzott piros és kék golyók szám, vgy több kék vgy több piros. pont A különböz szín& golyók zonos szám mitt több piros mint kék golyó húzásánk esélye zonos több kék mint piros golyó húzásánk esélyével. pont A több kék mint piros golyó húzásánk esélye tehát: 5 4 pont 96 0,95. 4 Összesen: 8 pont Ennél kevésbé részletezett helyes indoklás esetén is járnk ezek pontok. írásbeli vizsg / 0. május.

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik emelt szint 1111 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formi előírások: Fontos tudnivlók 1.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik középszint 061 ÉRETTSÉGI VIZSGA 007. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivlók Formi előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2 A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:

Részletesebben

ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA május 7. jár pont. 2 pont

ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA május 7. jár pont. 2 pont 8 b) Összesen (=76+09+40) db kenyeret rendeltek és 4 db-ot küldtek vissza, ez a megrendelt mennyiség,9%-a Összesen 69 (=4+8) péksüteményt rendeltek és 4 db-ot küldtek vissza, ez a megrendelt mennyiség

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika középszint Javítási-értékelési útmutató MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 04. május 6. Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása) Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 09 ÉRETTSÉGI VIZSGA 20 május MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1411 ÉRETTSÉGI VIZSGA 014. október 14. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika emelt szint Javítási-értékelési útmutató 4 MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 04 május 6 Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 05 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1414 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint ÉRETTSÉGI VIZSGA 0. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:. A dolgozatot

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0815 ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Gyakorló feladatsor 9. osztály

Gyakorló feladatsor 9. osztály Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

11. évfolyam feladatsorának megoldásai

11. évfolyam feladatsorának megoldásai évolym eldtsoránk megoldási Oldjuk meg természetes számok hlmzán következő egyenleteket x ) y 6 x! 3 b) y 6 3 ) Átrendezve megoldndó egyenlet y 6 x! 3 H x 0, kkor H x, kkor H x, kkor H x 3, kkor H x, kkor

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1011 ÉRETTSÉGI VIZSGA 010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

Matematika. Emelt szintű feladatsor pontozási útmutatója

Matematika. Emelt szintű feladatsor pontozási útmutatója Matematika Emelt szintű feladatsor pontozási útmutatója Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével. Formai kérések: Kérjük, hogy piros tollal

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 081 É RETTSÉGI VIZSGA 009. október 0. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Egy látószög - feladat

Egy látószög - feladat Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2011. jnuár 21. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 101 ÉRETTSÉGI VIZSGA 010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb: Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente

Részletesebben

MATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok

MATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok MATEMATIKA 9. osztály I. HALMAZOK Számegyenesek, intervllumok. Töltsd ki tábláztot! Minden sorbn egy-egy intervllum háromféle megdás szerepeljen!. Add meg fenti módon háromféleképpen következő intervllumokt!

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0814 ÉRETTSÉGI VIZSGA 010 május 4 MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1512 ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

4. A kézfogások száma pont Összesen: 2 pont

4. A kézfogások száma pont Összesen: 2 pont I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.

Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják. 5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 0. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formai előírások: Fontos tudnivalók. A

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometri A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 11 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0813 É RETTSÉGI VIZSGA 008 október 1 MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1311 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL

OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL HAJDER LEVENTE 1. Bevezetés A Lgrnge-féle multiplikátoros eljárást Joseph Louis Lgrnge (1736-1813) olsz csillgász-mtemtikus (eredeti nevén Giuseppe

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 080 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

14. modul Számtani és mértani közép, nevezetes egyenlőtlenségek

14. modul Számtani és mértani közép, nevezetes egyenlőtlenségek MATEMATIKA A 10. évfolym 14. modul Számtni és mértni közép, nevezetes egyenlőtlenségek Készítette: Vidr Gábor Mtemtik A 10. évfolym 14. modul: Számtni és mértni közép, nevezetes egyenlőtlenségek A modul

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben