A valószínőség folytonossága

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A valószínőség folytonossága"

Átírás

1 Valószíőségszámítás és statszta elıadás f. BC/B-C szasa. elıadás szeptember 9. Megszámlálható valószíőség mezı Ω{ω, ω,,ω, }, A P Ω. Jelölés: p P ω, valószíőségelszlás: p, az összegü. A σ-addtvtás matt tetszıleges A eseméyre megy a véges esetre láttt számítás: A ω p : ω A : ω A Példa: Háyadra dbju az elsı fejet egy szabálys érmével? p /,, A valószíőség flytssága Állítás. Ha A A,, és A A... ar az A A jelöléssel lm A A Bzyítás. A A A \ A A \ A3. dszjut felbtás, tehát a P A \ A + A \ A sr verges. A fet felbtást A -re alalmazva: A A + A \ A + + A + \ A Eseméye uójáa valószíősége A B PA + PB PA B Példa: Magyar ártyacsmagból étszer húzu vsszatevéssel. M a valószíősége, hgy húzu prsat? A: elsı prs, B: másd prs AB/4, A B/ Tehát A B7/ PA B C PA + PB + PC PA B PA C PB C + PA B C zta Pcaré frmula Képlet az általás esetre: + A A A ahl Aj j j < j <... < j az téyezıs metszete valószíőségee összege. j Alalmazás Ha az egyes eseméye és metszete s egyfrmá valószíőe, ar + A A A A Átfgalmazás metszetere: A A A A Megállapdás:. Példa: M a valószíősége, hgy adtt számú cadbásból mde számt legalább egyszer megaptu?

2 s s Megldás A : az számt em dbtu A A Feltételes valószíőség. Az A eseméy valószíőségét eressü. Tudju, hgy B eseméy beövetezett. A relatív gyarságal: csa azat a ísérleteet ézzü, amelyebe B beövetezett. Eze részsrzatba az A relatív gyarsága: r A B / r B d d Feltételes valószíőség. Megfelelıje a valószíőségere: A B A B B az A eseméy B-re vatzó feltételes valószíősége feltétel: B>. Példa: cadbás. A{párs számt dbu} B{3-ál agybbat dbtu} A B/3. Példá, szmulácó Mtavétel Mty Hall játé: 3 ajtó özül ell a játésa választaa. Egy mögött yereméy autó va, a más ettı mögött ecse. Mutá választttu, a mősrvezetı yt egy más ecsés ajtót. Eze utá döthetü: tartu az eredet választásu mellett, vagy a harmad, még bezárt ajtót választju ább. M a jó stratéga? zmulácó Teljes eseméyredszer Defícó. Eseméye A, A,..., srzata teljes eseméyredszer, ha egymást párét zárjá és egyesítésü Ω. Tulajdság: P A + A +... Legtöbbször véges s elembıl álló teljes eseméyredszereet vzsgálu. Teljes valószíőség tétele. Legye B, B,..., pztív valószíőségő eseméyebıl álló teljes eseméyredszer, A A tetszıleges. Er P A A B B + A B B... + Bzyítás. A A B A B dszjut tagra btás, tehát A A B + A B +... és P A B A B B adja a tételt.

3 Példá Összetett mdelle pl. emtıl függı valószíősége: a szívaság valószíősége a férfaál., a ıél. Tfh. ugyaay a férf, mt a ı. M a valószíősége, hgy egy találmra választt ember szíva? A teljes eseméyredszer: {férf} {ı}. p./+./.55 Bayes tétele Legye B, B,..., pztív valószíőségő eseméyebıl álló teljes eseméyredszer, A A pztív valószíőségő. Er A B B B A A B B Vsszaöveteztetés az elsı lépés eredméyére. Bzyítás. A evezı éppe P A a teljes valószíőség tétele matt. A számláló pedg P A B, defícó szert. Példa Ha egy találmra választt ember szíva, m a valószíősége, hgy férf? p.5/.5+.5/. Ha egy, az egészségesere 5% eséllyel téves dagózst adó szőrıvzsgálatál betege tőü, ar a betegség téyleges valószíősége p a betegség vszge, {Bbeteg, Eegészséges} a teljes eseméyredszer: B pzpz BB/pz BB+ pz EEp/p+.5-p vszg. pztív teszteredméyél Betegség valószíusége vszg az adtt ppulácóba Eseméye függetlesége Ha a B eseméy beövetezése em beflyáslja az A valószíőségét, azaz A BA, ar azt mdju, hgy az A és B függetlee. Ez így em deáls defícó em szmmetrus, P B> ell hzzá, ezért Defícó. Az A és B eseméye függetlee, ha A BAB. Példá Húzu egy lapt egy magyarártyacsmagból. A: prs B: ász. P A/4, P B/8, P A B/3, tehát függetlee. A függetleség agy rta azs ísérletbıl meghatárztt eseméyeél! Tpus eset függetleségre: A az elsı, B a másd ísérlet eredméye. Tulajdság Ha A és B dszjuta, ar csa trváls P A vagy P B esetbe függetlee. Ha A és B függetlee, ar mplemetere s függetlee. Ömagutól csa a trváls eseméye függetlee. A B eseté csa ar függetlee, ha legalább az egy trváls. 3

4 Általásítás Két eseméyredszer függetle, ha az elsı tetszıleges eleme függetle a másd tetszıleges elemétıl. eseméy függetle, ha P A. A A A... A teljesül tetszıleges < < < dexsrzatra és mde számra. Megjegyzése Nem elég a fet szrzat-tulajdságt -re megövetel. Ha csa ez teljesül: párét függetleségrıl beszélü. függetle ísérlet eseté az egyes ísérletehez tartzó eseméye függetlee. A gyarlatba ez a tpus, fts elıfrdulása ee a függetlesége. Klasszus valószíőség mezı eseté függetle ísérleteet végezve, a edvezı és az összes eseméye száma s összeszrzód. Példa: szabálys cával dbva: elsı dbás párs és a másd hats3/3. Tvább általásítás Végtele s eseméyt függetlee evezü, ha tetszılegese választva özülü véges sat, függetle eseméyeet apu. Végtele s függetle ísérlethez tartzó valószíőség mezı s értelmezhetı. Ha A az -ed ísérlethez tartz, ar A,A,, A, függetle. Valószíőség váltzó. A legtöbbször em maga a ísérlet meetele a realzálódtt elem eseméy haem egy számszerősíthetı eredméy az érdees. Példa: par termelés mıségelleırzés: a érdés az esetleges selejtese száma, em pedg az, hgy ptsa mely elemeet s választttu. gyarlat esetbe em s adód természetese az Ω halmaz pl. dıjárás megfgyelés. Valószíőség váltzó. Mtavétel példa flyt. N termé, elemő mta. Ω elemszáma: N elejtese száma X: és özött szám. Matematalag: X : Ω R függvéy Feltétel: legye értelme pl. aa a valószíőségérıl beszél, hgy Xa. Haslóéppe más természetes feltétele s legye valószíősége. Frmálsa: megöveteljü, hgy {ω: Xω B} A teljesüljö mde, az tervallumból megszámlálhatóa s halmazmővelettel elıállítható B-re. A gyarlatba általába em jelet prblémát. Példá Kcadbás: X a dbtt szám. Ω{,,,}, X. Értéészlete: {,,,}. X az elsı lya dbás srszáma, amr jö. Ω{,,,} {,,,} {,,,}... X értéészlete: {,, } Ipar termelés: X az elsı selejt gyártásáa dıptja. X értéészlete: R +. X egy adtt termé hssza. X értéészlete: R + részhalmaza em szüséges elızetese rlátz. 4

5 Dszrét valószíőség váltzó Defícó: az X dszrét valószíőség váltzó, ha értéészlete x,, x legfeljebb megszámlálható. A valószíőség váltzó defícójából adódóa {ω:xω x }{Xx } A azaz p :P Xx értelmes. Eze meg s határzzá X elszlását. Véges vagy megszámlálható valószíőség mezı mde valószíőség váltzó dszrét. Nem célszerő a természetszerőe flyts értéészlető X dszretzálása egyszerőbbe a flyts mdelle. Példá dszrét valószíőség váltzóra Xωc mde ω-ra. Elevezés: elfajult elszlás. Xc. X ar, ha egy adtt, p valószíőségő A eseméy beövetez és ülöbe elevezés: az A eseméy dátra. P X-p P Xp Példá. A bmáls és a hpergem. el. összehaslítása Mtavételél legye X a mtába levı selejtese száma. Vsszatevéses esetbe bmáls elszlás: M M X,..., N N Vsszatevés élül esetbe: M N M hpergemetra elszlás P X,..., N p,4,35,3,5,,5,, Hp.gem N,M Bmáls p.5 Tulajdság Ha X dszrét valószíőség váltzó, f :R R tetszıleges függvéy, ar f X s dszrét valószíőség váltzó. Példa: X a gyárttt termé hssza mm-be. Tegyü fel, hgy P X8 P X/5. T.f.h. az deáls a mm. Er a d X- elszlása: P d/5, P d P d /5. Teljes eseméyredszer Ha X dszrét valószíőség váltzó, ar az A {ω:xω x } eseméye teljes eseméyredszert alta. 5

Ismétlés: Visszatevéses mintavétel. A valószínőség további tulajdonságai. Visszatevés nélküli mintavétel. A valószínőség folytonossága

Ismétlés: Visszatevéses mintavétel. A valószínőség további tulajdonságai. Visszatevés nélküli mintavétel. A valószínőség folytonossága Valószíőségszámítás és statsztka elıadás f. BC/B-C szakskak. elıadás szeptember. Ismétlés: Vsszatevéses mtavétel N termék, melybıl M selejtes elemő mta vsszatevéssel A: ptsa k selejtes va a mtába k k k,,

Részletesebben

Szita (Poincaré) formula. Megoldás. Alkalmazások. Teljes eseményrendszer. Példák, szimulációk

Szita (Poincaré) formula. Megoldás. Alkalmazások. Teljes eseményrendszer. Példák, szimulációk s s Valószíűségszámítás és statszta előadás f. BC/B-C szasa. előadás szeptember 7. zta Pcaré frmula Képlet az általás esetre: A A... A ahl Aj A j j j... j... A az téyezős metszete valószíűségee összege.

Részletesebben

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. 1. előadás: Bevezetés. Számonkérés. Irodalom. Cél. Véletlen tömegjelenségek

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. 1. előadás: Bevezetés. Számonkérés. Irodalom. Cél. Véletlen tömegjelenségek Valószíűségszámítás és statszta előadás If. S - szasa 008/09. félév Zemplé drás zemple@caesar.elte.hu zemple.elte.hu. előadás: evezetés Irdalm, övetelméye félév céla Valószíűségszámítás tárgya Törtéet

Részletesebben

Teljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele

Teljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +

Részletesebben

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. Bayes tétele. Példák. Események függetlensége. Példák.

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. Bayes tétele. Példák. Események függetlensége. Példák. Valószínűségszámítás és statisztia előadás Info. BSC B-C szaosona 20018/2019 1. félév Zempléni András 2.előadás Bayes tétele Legyen B 1, B 2,..., pozitív valószínűségű eseményeből álló teljes eseményrendszer

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás előadás formata BSC/ szaosoa és matemata elemző BSC-see 2015/2016 1. félév Zemplé drás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás 1 előadás al.mat BSc szaosoa 2015/2016 1. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye A félév célja Valószíűségszámítás

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

1. elıadás: Bevezetés. Számonkérés. Irodalom. Valószínőségszámítás helye a tudományok között. Cél

1. elıadás: Bevezetés. Számonkérés. Irodalom. Valószínőségszámítás helye a tudományok között. Cél 1 Valószíőségszámítás 1 elıadás alk.mat és elemzı szakosokak 2013/2014 1. félév Zempléi Adrás zemplei@ludes.elte.hu http://www.cs.elte.hu/~zemplei/ 1. elıadás: Bevezetés Irodalom, követelméyek A félév

Részletesebben

24. Kombinatorika, a valószínűségszámítás elemei

24. Kombinatorika, a valószínűségszámítás elemei 4. Kombiatoria, a valószíűségszámítás elemei Kombiatoria A véges halmazoal foglalozó tudomáyterület. Idő hiáyába csa a evezetes összeszámolásoal foglalozu. a) Sorbaállításo (ermutáció) alafeladat: ülöböző

Részletesebben

Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3.

Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3. Valószíőségszámítás és statsztka elıadás Ifo. BSC B-C szakosokak 4/5. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/. elıadás: Bevezetés Irodalom, követelméyek A félév célja Valószíőségszámítás

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Valószínőségszámítás

Valószínőségszámítás Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás 1 előadás mat. BSc alk. mat. szakráyosokak 2016/2017 1. félév Zemplé Adrás zemple@ludes.elte.hu http://zemple.elte.hu/ 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

1.1. Műveletek eseményekkel. Első fejezet. egy véletlen esemény vagy bekövetkezik, vagy nem következik be. Egyszerű

1.1. Műveletek eseményekkel. Első fejezet. egy véletlen esemény vagy bekövetkezik, vagy nem következik be. Egyszerű Első fejezet Elemi valószíűségelmélet A valószíűségelmélet alapvető fogalma a véletle eseméy. A véletle ísérlet végrehajtásaor egy véletle eseméy vagy beövetezi, vagy em övetezi be. Egyszerű példa véletle

Részletesebben

Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK.

Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK. Valószínőségszámítás feladato A FELADATOK MEGOLDÁSAI A 2. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínősége, hogy mindegyine ugyanaz az oldala erül felülre? 2. Két teljesen

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

VII. FEJEZET A STATISZTIKA ÉS A VALÓSZÍNŰSÉGSZÁMÍTÁS ELEMEI. VII.1. Statisztikai adatok és jellemzőik

VII. FEJEZET A STATISZTIKA ÉS A VALÓSZÍNŰSÉGSZÁMÍTÁS ELEMEI. VII.1. Statisztikai adatok és jellemzőik Statszta és valószíűségszámítás 305 VII. FEJEZET A STATISZTIKA ÉS A VALÓSZÍNŰSÉGSZÁMÍTÁS ELEMEI VII.. Statszta adato és jellemző VII... Statszta adato és ábrázolásu A mdea életbe gyara hallu statszta adatoról.

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Kombinatorikus optimalizálás jegyzet TARTALOM

Kombinatorikus optimalizálás jegyzet TARTALOM Kmbatrkus ptmalzálás egyzet az elıadás és a kadtt szakrdalm alapá Készítette: Schmdt Péter Alk. Mat., II. évf. 00-0 TARTALOM KOMBINATORIKUS OPTIMALIZÁLÁS... HALMAZOK... Halmaz lefedése... Sperer-redszerek...

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei

8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei 9 8 7 6 5 4 3 0 4 3.5 3.5.5 0.5 0 3 4 5 7 8 9 Magyar Eszter Emelt szitő érettségi tétele 8. tétel: Adatsoaságo jellemzıi, a valószíőségszámítás elemei ADATSOASÁGO JELLEMZİI STATISZTIA: Statisztia: Tömegese

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

2. Igazolja, hogy a dugattyús kompresszorok mennyiségi foka a. összefüggéssel határozható meg? . Az egyenletből fejezzük ki a hasznos térfogatot:

2. Igazolja, hogy a dugattyús kompresszorok mennyiségi foka a. összefüggéssel határozható meg? . Az egyenletből fejezzük ki a hasznos térfogatot: Fúó & Kmresszr /. Egy Rts-fúó muadugattyújáa átmérője 40 m, hssza m, eresztmetszete 88 m. Határzzu meg a fúó száítótejesítméyét a éeges ymás, ha a éeges frduatszám 00 frd/mi! Mera a fúó tejesítméyszüségete,

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Zárthelyi dolgozat 2014 C... GEVEE037B tárgy hallgatói számára

Zárthelyi dolgozat 2014 C... GEVEE037B tárgy hallgatói számára Záthely dlgzat 4 C.... GEVEE37B tágy hallgató számáa Név, Nept ód., Néháy ss övd léyege töő válaszat adj az alább édésee! (5xpt a Ss és páhzams mmácós ptll felslása és legftsabb jellemző. Páhzams ptll

Részletesebben

Eseme nyalgebra e s kombinatorika feladatok, megolda sok

Eseme nyalgebra e s kombinatorika feladatok, megolda sok Eseme yalgebra e s kombiatorika feladatok, megolda sok Szűk elméleti áttekitő Kombiatorika quick-guide: - db. elemből db. sorredjeire vagyuk kívácsiak: permutáció - db. elemből m < db. háyféleképp rakható

Részletesebben

Turing-gép május 31. Turing-gép 1. 1

Turing-gép május 31. Turing-gép 1. 1 Turing-gép 2007. május 31. Turing-gép 1. 1 Témavázlat Turing-gép Determinisztikus, 1-szalagos Turing-gép A gép leírása, példák k-szalagos Turing-gép Univerzális Turing-gép Egyéb Turing-gépek Nemdeterminisztikus

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Emelt szintő érettségi tételek. 10. tétel Számsorozatok Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

Matematika A4 III. gyakorlat megoldás

Matematika A4 III. gyakorlat megoldás Matematia A4 III. gyaorlat megoldás 1. Független eseménye Lásd másodi gyaorlat feladatsora.. Diszrét eloszláso Nevezetes eloszláso Binomiális eloszlás: Tipius példa egy pénzdobás sorozatban a feje száma.

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 7. Bevezetés a valószínűségszámításba Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Definíciók, tulajdonságok Példák Valószínűségi mező

Részletesebben

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában 9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

1. előadás: Bevezetés. Valószínűségszámítás survey statisztika MA. Számonkérés. Irodalom. Cél. A valószínűségszámítás tárgya

1. előadás: Bevezetés. Valószínűségszámítás survey statisztika MA. Számonkérés. Irodalom. Cél. A valószínűségszámítás tárgya Vlószíűségszámítás surve sttszt MA 6/7. félév Zemlé Adrás. elődás: Bevezetés Irodlom, övetelmée A félév célj Vlószíűségszámítás tárg Törtéet Alfoglm Vlószíűsége számítás Irodlom Töve: Deger: Vlószíűségszámítás

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be. IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

TELJES VALÓSZÍNŰSÉG TÉTELE ÉS BAYES-TÉTEL

TELJES VALÓSZÍNŰSÉG TÉTELE ÉS BAYES-TÉTEL TELJES VALÓSZÍNŰSÉG TÉTELE ÉS AYES-TÉTEL A TELJES VALÓSZÍNŰSÉG TÉTELE Egy irály úgy szeretné izgalmasabbá tenni az elítéltjeine ivégzését, hogy három ládiába elhelyez 5 arany és 5 ezüst érmét. Ha a ivégzésre

Részletesebben

1.52 CS / CSK. Kulisszás hangcsillapítók. Légcsatorna rendszerek

1.52 CS / CSK. Kulisszás hangcsillapítók. Légcsatorna rendszerek 1.52 CS / Légcsatra redszerek Alkalmazás: A légcsatraredszere építve, a légcsatráka terjedõ zaj csillapítására alkalmasak. Kialakításuk a eépített csillapító testek szerit alapvetõe hárm féle lehet: A,

Részletesebben

5 3 0,8 0,2. Számolja ki a 3

5 3 0,8 0,2. Számolja ki a 3 Megoldási útmutató, eredménye A feladato megoldásaor mindig ismételje át a feladatban szereplő fogalma definícióit. A szüséges fogalma, definíció: valószínűségi változó, diszrét-, folytonos valószínűségi

Részletesebben

Metrikus terek. továbbra is.

Metrikus terek. továbbra is. Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Olimpiai szakkör, Dobos Sándor 2008/2009

Olimpiai szakkör, Dobos Sándor 2008/2009 Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0911 ÉRETTSÉGI VIZSGA 2009. któber 30. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dlgzatkat az útmutató utasításai

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Logikai szita (tartalmazás és kizárás elve)

Logikai szita (tartalmazás és kizárás elve) Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát

Részletesebben

24. tétel Kombinatorika. Gráfok.

24. tétel Kombinatorika. Gráfok. Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció

Részletesebben

VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges.

VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges. VEKTORGEOMETRIA Mt evezü vetora? Olya meységet, amelye ráya és agysága va. Mt evezü egységvetora? Olya vetort, amelye a agysága (abszolút értée). Mt evezü ull vetora? Olya vetort, amelye a agysága (abszolút

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben