Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ"

Átírás

1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe jelöli a hibákat, hiáyokat stb. A feladatok mellett található téglalapok közül az elsőbe a feladatra adható potszám va, a javító által adott potszám a mellette levő téglalapba kerül. Kifogástala megoldás eseté elég a megfelelő maximális potszám beírása a téglalapokba. Hiáyos/hibás megoldás eseté kérjük, hogy az egyes részpotszámokat is írja rá a dolgozatra. Tartalmi kérések: Egyes feladatokál több megoldás potozását is megadtuk. Ameyibe azoktól eltérő megoldás születik, keresse meg eze megoldásokak az útmutató egyes részleteivel egyeértékű részeit és eek alapjá potozzo. A potozási útmutató potjai tovább bothatók. Az adható potszámok azoba csak egész potok lehetek. Nyilvávalóa helyes godolatmeet és végeredméy eseté maximális potszám adható akkor is, ha a leírás az útmutatóba szereplőél kevésbé részletezett. Ha a megoldásba számolási hiba, potatlaság va, akkor csak arra a részre em jár pot, ahol a tauló a hibát elkövette. Ha a hibás részeredméyel helyes godolatmeet alapjá tovább dolgozik, akkor a következő részpotszámokat meg kell adi. Elvi hiba eseté, egy godolati egysége belül a formálisa helyes matematikai lépésekre sem jár pot. Ha azoba az elhibázott részt egy újabb részkérdés követi, és a tauló az elvi hibával kapott rossz eredméyel mit kiiduló adattal helyese számol tovább, akkor erre a részre kapja meg a maximális potot. Egy feladatra adott megoldások közül csak egy (a magasabb potszámú) értékelhető. A megoldásokért jutalompot (az adott feladatra vagy feladatrészre előírt maximális potszámot meghaladó pot) em adható. Az olya részszámításokért, részlépésekért em jár potlevoás, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó téylegese em haszál fel. Ha a potozási útmutató a feladat elleőrzéséért potot ad, akkor az csak abba az esetbe adható meg, ha a vizsgázó valamilye formába írásba rögzíti az elleőrzés téyét. (Itt mide elvileg helyes módszer elfogadható.) A feladatsor II. részébe kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló égyzetbe megjelölte aak a feladatak a sorszámát, melyek értékelése em fog beszámítai az összpotszámába. Eek megfelelőe a megjelölt feladatra esetlegese adott megoldást em is kell javítai, csak a többi feladatot. Ha eze előírások alapjá a javító számára em derül ki egyértelműe, hogy a vizsgázó melyik feladat értékelését em kéri, akkor a em értékeledő feladat automatikusa a kitűzött sorred szeriti legutolsó feladat lesz. 73

2 I / 4 x 14 x + 96 = 0 pot 8 4 x - 56 x + 96 = 0 pot A hatváyozás azoosságaiak alkalmazásáért. x 7 x + 1 = 0 Másodfokú egyelet redezett alakjához való eljutásért. x = 4 vagy x = 3 pot A másodfokú egyelet megoldásáért. x 1 = Az egyik gyökért. x = log 3 1,585 A másik gyökért (közelítő érték élkül A kapott gyökök kielégítik az egyeletet, mivel ekvivales átalakításokat hajtottuk végre. Az x 1 eleme az adott itervallumak, ez tehát megoldás. Az x em eleme az itervallumak. Összese: 1 pot is). Az elleőrzésért, ill. aak megállapításáért, hogy a kapott gyökök valóba megoldások. Ha csak egy gyököt talált meg, de azt elleőrzi, akkor is jár a pot.. 3 pot A síkmetszet ábrájá szerepelie kell az ismert (r; h) és ismeretle (d; x) szakaszokak, a derékszögű háromszögek. h = 4,8 cm = 48 mm Átváltásért. D = r = 56 mm r = D/ = 8 A sugár kiszámításáért. x = h r = 0 pot A befogó kiszámításáért. (d/) = r x pot Pitagorasz-tétel felírásáért. (d/) = 8 0 Behelyettesítésért. d/ = 19,596 d = 39,19 39, A lyuk átmérője 39, mm. Mértékegységgel ellátott eredméyért. Összese: 1 pot 74

3 3. y 1 y= x x -1 1 x -1 y = x x = x, ha x > 0 y = x x = x, ha x < 0 A grafiko A grafiko megrajzolásáért összese 3 pot jár, az átalakítás leírása élkül is. Az értékkészlet: R. Az értékkészlet helyes megállapításáért. A függvéy az értelmezési tartomáyo A mootoitás helyes leírásáért. szigorúa mooto ő. Szélsőértéke ics. A szélsőérték vizsgálatáért. Összese: 6 pot 75

4 y = si x + cos x + sixcosx y = six + 1 pot A trigoometrikus átalakításért. Grafiko: pot A grafiko helyes felrajzolásáért. Akármilye módo jut a helyes grafikohoz, összese 4 pot. Az értékkészlet: [0;] Az értékkészlet helyes megállapításáért. A függvéy szigorúa mooto ő: [-π/4 + kπ ; π/4 + kπ], k Z szigorúa mooto csökke: [π/4 + kπ ; 3/4π + kπ] A mootoitás helyes leírásáért. A fv. max. helyei: x = π/4 + kπ, miimumhelyei: x = 3/4π + kπ A szélsőértékek helyéért. A miimum értéke 0, a maximumé. A szélsőértékek értékéért. Összese: 8 pot megoldás: A =14; N =15; F = 11 potosa két yelvet taulók = 6 Ha a midhárom yelvet tauló diákok száma x, akkor: A + N + F potosa két yelvet taulók x = 30 5 pot 5 pot A feladat adataiak helyes elképzeléséért (pl. Vediagramo feltütetett számok). A kérdezett számosság meghatározásához alkalmas összefüggés felírásáért (em feltétleül egyelettel) x = 30 Helyes umerikus egyelet. x = Helyes umerikus eredméyért. tehát diák taulja midhárom yelvet. Helyes szöveges válaszért. Összese: 13 pot 76

5 . megoldás: 30 diák midegyike részt vesz egy yelvórá, ez 30 óra. 6-a két yelvet is taulak, ez +6 óra, azaz eddig 36 yelvóra (a diákok óráit számolv. Összese 40 yelvóra va, hiáyzik tehát még 4 óra, ami abból adódik, hogy vaak, akik 3 órá is részt veszek. pot 3 pot 3 pot pot Nyilvá ember eseté adódik +4 óra, ha a midegyikük még - órá jele va. pot Tehát tauló taul 3 yelvet. Összese: 13 pot Megjegyzés: Szisztematikus próbálgatással, kísérletezéssel yert helyes eredméyért, ha azt elleőrzi is, de em bizoyítja, hogy más megoldás em lehetséges, 8 pot adható. II. Az alábbi öt feladat (5. 9.) közül a taulóak tetszés szerit választott égyet kellett megoldai és égyet kell értékeli! 5. A futóövéy havi övekedéséek hosszúságai mértai sorozatot alkotak, amelyek első tagja a 1 = 100, a háyadosa q = 4/5 = 0,8. A mértai sorozat felismeréséért, az a 1 és a q meghatározásáért 3 pot jár A 1. havi övekedés a mértai sorozat 1. tagja: a 1 = a 1 q 0 = 100 0,8 0 = 1,15 A 1. hóapba 1,15 cm-t fog ői A övekedések összege túl kell, hogy lépje a 400 cm-t. Összese: 5 pot S S = a 1 q 1 q 1 0,8 1 = , ,8 4 0, Redezve: 0,8 0, log 0,8 0, 77

6 lg 0, 7,1 lg 0, 8 Tehát a 8. hóapba éri el a 400 cm-es hosszt. Az meghatározásáért 4 pot jár. Összese: 7 pot c) Az előző pothoz hasolóa: q 1 0,8 1 S = a1 = q 1 0,8 1 pot Redezve: 0,8 0, Ez viszot em lehetséges, azaz a 600 cm-es Az elletmodás felismeréséért 4 pot hosszúságot már em éri el a övéy. jár. Összese: 4 pot pot Ezt a 3 potot botai kell, ha va hibás válasz is. Az adható potszám: a jó válaszok feléek egészrésze. Összese: 3 pot Számtai közép: Értéke:,66 Mediá: 3, pot Idoklás élkül is elfogadható. hisze az 50. és az 51. család is 3 gyermekes a gyermekszám szeriti sorba redezéskor. Módusz: 3, mert ez a leggyakoribb érték. pot Idoklás élkül is elfogadható. Összese: 6 pot c) 9 családba va legfeljebb 4 gyermek. pot A jó esetbe közülük kell kiválasztai kettőt: 9 Az összes esetbe 100 családból kell kiválasztai kettőt: 100. A keresett esély e kettő háyadosa: = = 0, pot Tehát erre az esély kb. 84,6%. Összese: 7 pot 78

7 7. Rajz 3 pot A geometriai modell helyes elképzeléséért. ABT derékszögű háromszögbe: m tg30 = m 3 3 m = m m = 3 1 0, 73 A magasság meghatározásáért 3 pot adható. Két hasoló háromszögből (ABC és DBE): m x = x 0,73 x = x m AC 0,73 x = 4 3 0,54 A égyzet oldala 0,54 méter. Összese: 10 pot Az AB oldalegyees iráyszöge 30, tehát 3 meredeksége. 3 Az A pot segítségével felírva az egyees egyeletét: y = x ( y = 0,58x + 0,85) A BC oldalegyees iráyszöge 135, így meredeksége 1. A C pot segítségével felírva az egyelete: y = x + 6 A két egyees metszéspotja adja a B csúcs koordiátáit: B ( 5 3; 1+ 3) pot B (3,7;,73) Összese: 6 pot 79

8 = ( 1) ( 1) = Kiemelés 4 8 = ( 1) ( 1) = Szorzattá alakítás 4 4 = ( 1) ( 1) ( + 1)= ( 4 1) ( + 1) ( + 1 ) ( + 1)= = ( 4 1) ( + 1) ( + 1) ( + 1) 4 Egyik téyező szorzattá alakítása Másik téyező szorzattá alakítása 51 = = 4 ( 1) ( + 1) ( + 1) ( + 1) Összese: 5 pot = Mivel páratla, ezért mide téyező páros, így a szorzat biztosa osztható 7 -el. Az 1 és az + 1 szomszédos páros számok, tehát az egyik 4-gyel is osztható. Tehát a szorzat összességébe osztható 9 -el. Összese: 4 pot c) A 7 73 = 511téglalap felbotható 511 égyzetre. Az 51 potot csak úgy lehet elhelyezi 511 égyzetbe, hogy legalább egy égyzetbe va pot. pot pot Egy égyzetbe két pot között a legagyobb távolság az átló: a 1, 414. Ha a =1, akkor két pot távolsága biztosa kisebb, mit 1,4. Ekkor aak a két potak a távolsága, amelyik egy égyzetbe esik kisebb mit 1,4, így már 1,5.él is kisebb. Összese: 7 pot 80

9 9. Rajz 3 pot A feladat helyes értelmezéséért Az eltűés pillaatába a hajó csúcsát (H) a megfigyelővel összekötő egyees a földgömb éritője, az éritési pot L. A Föld középpotját jelöljük O-val. OLH háromszög derékszögű, melyek egyik befogója r, átfogója pedig r + 4. Az LH befogó Pitagorasz-tétellel kiszámolva: LH ( r + 4) = = r LH = Az LH érték meghatározásáért pot jár. Tekitettel arra, hogy a HOL szög ige kicsi, az LH távolság jó közelítéssel megegyezik az LF ívhosszal, a megtett út tehát kb. 17,5 km. (Eél potosabb eredméyt ics értelme adi, hisze a hullámokat, a légköri viszoyokat, a Föld em tökéletes gömb voltát em vettük figyelembe.) Összese: 6 pot 1. megoldás: Egy óra alatt elfogy y = 1,4 + 0,005v toa üzemayag. t óra alatt: M toa fogy el, ezért M M t = = y 1,4 + 0,005 v 81

10 s = v t, ezért a hajó által megtett út: M v s = 1,4 + 0,005 v Azt kell tudi, hogy ez az út mekkora v eseté lesz a legagyobb, tehát a függvéy maximumát keressük. A tört értéke akkor a legagyobb, ha a evező a legkisebb, hisze a számláló kostas. M A kifejezést átalakítva: s = 1,4 + 0,005v v A evező a középértékek közötti evezetes egyelőtleség alapjá: 1,4 + 0,005v v 1,4 0,005v v pot Akkor áll fe az egyelőség, ha a jobboldal álladó, ekkor a tört értéke miimális: 1,4 = 0,005v v Ahoa: 1,4 v = = 80 0,005 v = 16,73 Tehát a hajó sebessége 16,73 mérföld/óra. Összese: 10 pot. megoldás: Egy óra alatt elfogy y = 1,4 + 0,005v toa üzemayag. t óra alatt: M toa fogy el, ezért t = M y M = 1,4 + 0,005 v s = v t, ezért a hajó által megtett út: M v s = 1,4 + 0,005 v Azt kell tudi, hogy ez az út mekkora v eseté lesz a legagyobb, tehát a függvéy maximumát keressük. A szélsőérték meghatározásához deriváljuk a függvéyt: M ( 1,4 + 0,005v ) Mv 0,01v s' = 3 pot 1,4 + 0,005v ( ) 8

11 Redezve: 1,4 0,005v s' = M ( 1,4 + 0,005v ) Szélsőérték ott lehet, ahol a derivált ulla: 1,4 0,005v = 0 v = 80 v = 16,73 (mérföld/ór Eze a helye az eredeti függvéyek maximuma va, ha a derivált pozitívból egatívba vált előjelet. Ez teljesül, mert a deriváltba a evező pozitív, a számláló pedig a változó pozitív értékeiél szigorúa mooto csökke. Összese: 10 pot 83

Matematika. Emelt szintű feladatsor pontozási útmutatója

Matematika. Emelt szintű feladatsor pontozási útmutatója Matematika Emelt szintű feladatsor pontozási útmutatója Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével. Formai kérések: Kérjük, hogy piros tollal

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 09 ÉRETTSÉGI VIZSGA 0 május 8 MATEMATIA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fotos tudivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1611 ÉRETTSÉGI VIZSGA 017. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fotos tudivalók Formai előírások: 1. Kérjük,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika emelt szit Javítási-értékelési útmutató MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 0. október. Fotos tudivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 5 ÉRETTSÉGI VIZSGA 05. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika emelt szit Fotos tudivalók

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 05 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 003. május-június MATEMATIKA EMELT SZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 003 MATEMATIKA Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 09 ÉRETTSÉGI VIZSGA 20 május MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek? Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1411 ÉRETTSÉGI VIZSGA 014. október 14. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

P R Ó B A É R E T T S É G I m á j u s EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I m á j u s EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0. m á j u s MATEMATIKA EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0815 ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint ÉRETTSÉGI VIZSGA 0. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:. A dolgozatot

Részletesebben

Próbaérettségi P R Ó B A É R E T T S É G I m á j u s EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Próbaérettségi P R Ó B A É R E T T S É G I m á j u s EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0. m á j u s MATEMATIKA EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Próbaérettségi 00 Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell

Részletesebben

3. A megoldóképletből a gyökök: x 1 = 7 és x 2 = Egy óra 30, így a mutatók szöge: 150º. 3 pont. Az éves kamat: 6,5%-os. Összesen: 2 pont.

3. A megoldóképletből a gyökök: x 1 = 7 és x 2 = Egy óra 30, így a mutatók szöge: 150º. 3 pont. Az éves kamat: 6,5%-os. Összesen: 2 pont. . 3650 =,065 0000 Az éves kamat: 6,5%-os I.. D C b A a B AC = a + b BD = b a 3. A megoldóképletből a gyökök: x = 7 és x = 5. Ellenőrzés 4. Egy óra 30, így a mutatók szöge: 50º. írásbeli vizsga 05 3 / 007.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1414 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 101 ÉRETTSÉGI VIZSGA 010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 081 É RETTSÉGI VIZSGA 009. október 0. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:. Kérjük,

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA február 10.

PRÓBAÉRETTSÉGI VIZSGA február 10. PRÓBAÉRETTSÉGI VIZSGA 08. február 0. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA Javítási útmutató 08. február 0. STUDIUM GENERALE MATEMATIKA SZEKCIÓ Matematika Írásbeli

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1911 ÉRETTSÉGI VIZSGA 019. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl). ) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 171 ÉRETTSÉGI VIZSGA 018. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 11 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA május 7. jár pont. 2 pont

ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA május 7. jár pont. 2 pont 8 b) Összesen (=76+09+40) db kenyeret rendeltek és 4 db-ot küldtek vissza, ez a megrendelt mennyiség,9%-a Összesen 69 (=4+8) péksüteményt rendeltek és 4 db-ot küldtek vissza, ez a megrendelt mennyiség

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1011 ÉRETTSÉGI VIZSGA 010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 005.október 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 05. május 5. EMELT SZINT I. ) Oldja meg a valós számok halmazá az alábbi egyeleteket! a) si x cos x (6 pot) b) x x x (7 pot) a) cos x si x helyettesítése. Nullára redezve: si x si

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 080 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika középszint Javítási-értékelési útmutató MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 04. május 6. Fontos tudnivalók

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0814 ÉRETTSÉGI VIZSGA 010 május 4 MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8.

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8. . feladat: Eg 5 fős osztálba va fiú és 4 lá. z iskolai bálo (fiú-lá) pár fog tácoli. Háféleképpe tehetik ezt meg? párok sorredje em számít, viszot az, hog ki kivel tácol, az már ige. (0 pot) Válasszuk

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1512 ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B) Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1311 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

N - edik gyökvonás. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

N - edik gyökvonás. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Brósch Zoltá (Debrecei Egyetem Kossuth Lajos Gyakorló Gimáziuma) N - edik gyökvoás DEFINÍCIÓ: (Négyzetgyökvoás) Egy em egatív x valós szám égyzetgyöké azt a em egatív valós számot értjük, amelyek égyzete

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 1. MINTAFELADATSOR KÖZÉPSZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

4. A kézfogások száma pont Összesen: 2 pont

4. A kézfogások száma pont Összesen: 2 pont I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1613 ÉRETTSÉGI VIZSGA 017. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,

Részletesebben