Dinamikus geometriai programok
|
|
- Marika Kovács
- 8 évvel ezelőtt
- Látták:
Átírás
1 2011. február 19.
2 Eszköz és médium (fotó: ugyanez egyben: Enter
3 Reform mozgalmak a formális matematika megalapozását az életkjori sajátosságoknak megfelelő tárgyi tevékenységnek kell megalapozni, mint pl. rajzolás, becslés, mérés Mi számított az 1800-as években új technológiának a matematika tanításában? A különböző grafikus módszerek ma már minden országban megtalálhatók a matematika órákon... (1912) szaktantermi mozgalom (USA, 1900 körül). felszereltsége: különböző rajzoló eszközök, mint pl. négyzetrácsos papír, mérőszalag, metronóm, konkáv és konvex tábla
4 Mi az, hogy dinamikus geometria? szerkesztések a számítógép lehetőségeivel: visszavonás, mentés, interaktivitás, az adatok variálása alappontok származtatott pontok nyomvonal (adott tulajdonságú pontok halmaza) dinamikus szöveg (pl. egy szakasz hossza) algebrai bevitel (egyes programoknál, pl. GeoGebra) fázisok export lehetőségek (grafikus, html) táblázatkezelő
5 A kínálatból Geometry Scetchpad (USA, Kanada,... ) Cabri (Franciaország, Magyarország,... ) Cinderella (Németország,... ) Euclid (Magyarország) GeoGebra:
6 Mire használhatom? pontos statikus ábrák készítése, pl. nyomtatáshoz, beillesztéshez nyomvonal, ponthalmazok keresése diszkusszió, a határesetek vizsgálata sejtés megfogalmazása
7 Hogyan használhatom? Mód passzív mód (képet készítünk, amelyet máshol használunk) tanár egyedül (szemléltetés, problémafelvetés) Enter minimális felszerelés a folyamatot a tanár irányítja és kontroll alatt tartja csak frontális munkában lehetséges a diáknak nem kell ismernie az eszközt vegyes (közös problémamegoldás) Enter teljes felszerelés (vagy interaktív tábla) a diáknak nem kell mélyen ismernie az eszközt, a fókusz a matematikán van diák egyedül (önálló problémamegoldás) teljes felszerelés a tanulónak (valószínűleg) mélyen ismernie kell az eszközt (idő) a saját felfedezés élménye otthon (is) használható nem biztos, hogy a kívánt felfedezésre vezet web-bel támogatott (web-alapú) oktatás a diáknak a technológiát nem feltétlenül kell ismerni, a tanuló kisalkalmazást használ
8 Mikor használjam? ha megvannak a technikai feltételek ha tartalmilag és formailag a munkalap kifogástalan ha megállapítható a hozzáadott érték
9 Hozzáadott érték többszörös reprezentáció: algebrai, szöveges, grafikus interaktivitás variálhatóság dinamikus szövegelemek pontosság...
10 Dinamikus munkalapok készítése A dinamikus munkalap célja mindig egy kisebb tantervi egység (jellemzően egy feladat, tétel, fogalom) feldolgozása, mely linkkel kapcsolódik egy online tananyaghoz.
11 Alapelvek Vizualizáció: használjunk szöveget és ábrát együtt! A matematikai tartalom vizualizációja a megértés egyik kulcsa. A dinamikus munkalap nem öncélű: legyen megállapítható a hozzáadott érték!
12 Dinamikus munkalap kinézete Olvashatóság: megnyitáskor minden olvasható legyen (ne legyen takarásban, megfelelő betűméret, kerüljük a görgetést: a munkalap férjen ki egy képernyőre.)! Közelség: az összetartozó kép és tartalom egymáshoz közel legyen! Tömörség: az érdekes elemek a megértést zavarhatják. Kerülendő a felesleges szöveg, kép, hang, dekoráció! Egyértelmű használat: mi a munkalap célja, mit mozgathatok, mire kell válaszolnom? Mértéktartás: egy munkalap ne tartalmazzon néhány (3-4) kérdésnél, feladatnál, utasításnál többet! Megfelelő stílus: tömör, világos, személyes stílusú szöveg, mely a célközönséghez szól Ne vonjuk el a figyelmet: ne használjunk (a matematikai tartalomhoz nem kapcsolódó) dekoratív elemeket, pl. háttérkép, hangeffektus, zene!
13 Interaktivitás Engedjünk meg annyi interaktivitást, amennyit csak lehet: a látható elemek legyenek mozgathatók, változtathatók! Használjunk dinamikus szövegelemeket! (Pl. egy változó szög mértéke.) Kevés statikus szöveget használjunk: ha hosszabb statikus szövegre van szükség, akkor ezt inkább a kiinduló weboldalra kell tenni!
14 Szöveg Tömör, világos, személyes stílusban fogalmazzuk meg a szöveget! A munkalap a diáknak szól: a tanároknak szóló mondanivalót külön dokumentumban kell elhelyezni. A kérdéseket specifikusak legyenek. Kerülendők az olyan általános kérdések, mint Milyen következtetést tudsz levonni? A szöveg a munkalapra utaljon. Ha a munkalap csak szemléltetést tartalmaz, akkor helyesebb feladatok, kérdések nélkül elkészíteni.
15 Értékelési szempontok (összefoglalás) kinézet interaktivitás szöveg hozzáadott érték
Dinamikus geometriai programok
2010. szeptember 18. Ebben a vázlatban arról írok, hogyan válhatnak a dinamikus geometriai programok a matematika tanítás hatékony segítőivé. Reform mozgalmak a formális matematika megalapozását az életkjori
GeoGebra: eszköz és médium
Kovács Zoltán zeus.nyf.hu/ kovacsz Nyíregyházi F iskola Varga Tamás Módszertani napok, 2010 Névjegy oktatás: geometria és határterületei matematikus és programtervez hallgatóknak, technológia alkalmazása
Dinamikus geometriai programok
2011 október 22. Eszköz és médium (fotó: http://sliderulemuseum.com) Enter MTM1007L információ: zeus.nyf.hu/ kovacsz feladatok: moodle.nyf.hu Reform mozgalmak A formális matematikát az életkori sajátosságoknak
Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor
Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret
Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-
Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges
MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA
MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal
A dinamikus geometriai rendszerek használatának egy lehetséges területe
Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december
Követelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
2013/2014.tanév TANMENET
2013/2014.tanév TANMENET a. osztály.. tantárgyának tanításához. Összeállította: Ellenőrizte: Jóváhagyta:... tanár munkaközösség vezető igazgató Sopron, 2013. szeptember 01. Informatika tanmenet a 12G.
5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS
MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott
Értékelés a BUS programhoz elkészült termékek magyar változatáról Készítette: Animatus Kft. Jókay Tamás január 07.
Értékelés a BUS programhoz elkészült termékek magyar változatáról Készítette: Animatus Kft. Jókay Tamás 2011. január 07. Tartarlom Guide book,,...3 Trainer s slides,,...4 Trainer s handbook,,...5 CD,,...6
13. modul: MÁSODFOKÚ FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály
SZERZŐ: Kiss Róbert. Oldal1
A LOGO MindStorms NXT/EV3 robot grafikus képernyőjét használva különböző ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott alakzatok (kör, téglalap, szakasz, pont) meghatározó
17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK
MATEMATIK A 9. évfolyam 17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK KÉSZÍTETTE: DARABOS NOÉMI ÁGNES Készítette: Darabos Noémi Ágnes Matematika A 9. évfolyam. 17. modul: EGYENLETEK,
Bevezető. Mi is az a GeoGebra? Tények
Bevezető Mi is az a GeoGebra? dinamikus matematikai szoftver könnyen használható csomagolásban az oktatás minden szintjén alkalmazható tanításhoz és tanuláshoz egyaránt egyesíti az interaktív geometriát,
Matematikai, informatikai, fizikai kompetenciák fejlesztése
ÚJBUDAI PETŐFI SÁNDOR ÁLTALÁNOS ISKOLA Matematikai, informatikai, fizikai kompetenciák fejlesztése Petőfi-MIF műhely Oktatási segédanyag Szerkesztők: Dr. Pereszlényiné Kocsis Éva, Almási Klára, Gáspár
SZERZŐ: Kiss Róbert. Oldal1
A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott
16. modul: ALGEBRAI AZONOSSÁGOK
MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott
Előadás készítés. Szentesi Péter 2010
Előadás készítés Szentesi Péter 2010 Mire használható? Előadás készítés Előadás segédlet készítés Emlékeztető az előadó számára Kiadvány készítés Prezentáció készítés kezdése A PowerPoint indítás Válasszunk
Tanítási gyakorlat. 2. A tanárok használják a vizuális segítséget - képeket adnak.
1. szakasz - tanítási módszerek 1. A tananyagrészek elején megkapják a diákok az összefoglalást, jól látható helyen kitéve vagy a füzetükbe másolva mindig elérhetően, hogy követni tudják. 2. A tanárok
Résztvevői ütemterv. IKT eszközök hatékony alkalmazása a természettudományos oktatásban c. továbbképzési program
Résztvevői ütemterv IKT eszközök hatékony alkalmazása a természettudományos oktatásban c. továbbképzési program A továbbképzés: alapítási engedély száma: óraszáma (megszerezhető kreditpontok száma): 30
ECDL Táblázatkezelés. www.nomina3p.hu 1. 4.1.1 A táblázatkezelés első lépései. 4.1.2 Beállítások elvégzése
4.1 Az alkalmazás 4.1.1 A táblázatkezelés első lépései 4.1.2 Beállítások elvégzése 4.1.1.1 A táblázatkezelő alkalmazás megnyitása és bezárása. 4.1.1.2 Egy és több munkafüzet (dokumentum) megnyitása. 4.1.1.3
A foglalkozás céljának eléréséhez a következő tevékenységeket végezzük el:
A FOGLAKOZÁS ADATAI: SZERZŐ Kiss Róbert A FOGLALKOZÁS CÍME Dinamikus rajzolás robotképernyőn A FOGLALKOZÁS RÖVID LEÍRÁSA A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva
Mi legyen az informatika tantárgyban?
Mi legyen az informatika tantárgyban? oktatás fő területei: digitális írástudás; számítástudomány; információs technológiák. Digitális írástudás szövegszerkesztés, adat vizualizáció, prezentáció, zeneszerkesztés,
A matematikai feladatok és megoldások konvenciói
A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott
TUDNIVALÓK A WEB-FEJLESZTÉS I. KURZUSRÓL
TUDNIVALÓK A WEB-FEJLESZTÉS I. KURZUSRÓL http://bit.ly/a1lhps Abonyi-Tóth Andor Egyetemi tanársegéd 1117, Budapest XI. kerület, Pázmány Péter sétány 1/C, 2.404 Tel: (1) 372-2500/8466 http://abonyita.inf.elte.hu
Vári Péter-Rábainé Szabó Annamária-Szepesi Ildikó-Szabó Vilmos-Takács Szabolcs KOMPETENCIAMÉRÉS 2004
Vári Péter-Rábainé Szabó Annamária-Szepesi Ildikó-Szabó Vilmos-Takács Szabolcs KOMPETENCIAMÉRÉS 2004 2005 Budapest Értékelési Központ SuliNova Kht. 2 Országos Kompetenciamérés 2004 Tartalom 1. Bevezetés...4
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK
Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK MATEMATIKA FIZIKA BIOLÓGIA FÖLDRAJZ KÉMIA Az OFI kínálata - természettudományok Matematika Matematika Ajánlatunk:
A fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK
Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A
MATEMATIKA évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!
Matematika A 9. szakiskolai évfolyam 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! MATEMATIKA A 9. szakiskolai évfolyam 1. modul:gondolkodjunk, RENDSZEREZZÜNK! Tanári útmutató 2 A modul célja Időkeret Ajánlott
INFORMATIKA 1-8. évfolyam. 1. rész: 1-4. évfolyam
INFORMATIKA 1-8. évfolyam 1. rész: 1-4. évfolyam Bevezető Az informatika tantárgy igyekszik tartalmilag korszerű, a technikai fejlődéssel lépést tartó, szinte naponta változó ismereteket nyújtani, azokat
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor
Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály
A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba
A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata
Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.
Matematika A 9. szakiskolai évfolyam 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA Készítették: Vidra Gábor és Koller Lászlóné dr. MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 11. modul: EGYENLETEK, EGYENLŐTLENSÉGEK
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR
MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok
A tantárgyelem kódja: KIT0301G
A mérföldkő megnevezése: A tantárgy megnevezése: A mérföldkő kódja: A tantárgy kódja: A tantárgyelem megnevezése: Számítástechnika az egészségügyben védőnőknek A tantárgyelem kredit-értéke: A tantárgyelem
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
Ageometriai problémamegoldás útja a rajzoknál kezdõdik, hiszen a helyes következtetéshez
Iskolakultúra 2003/12 Nagyné Kondor Rita Dinamikus geometriai rendszerek a geometria oktatásában A számítógépes rajzolóprogramok új lehetőségeket nyitnak meg a geometria tanításában: gyorsan, pontosan,
Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK
Matematika A 9. szakiskolai évfolyam 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul: Az abszolútérték-függvény és más nemlineáris függvények
Digitális írástudás kompetenciák: IT alpismeretek
Digitális írástudás kompetenciák: IT alpismeretek PL-5107 A továbbképzés célja: A program az alapvető számítógépes fogalmakban való jártasságot és a számítógépek alkalmazási területeinek ismeretét nyújtja
Parametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések
Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Az óra címe: Testek ábrázolása Az órát tartja: Tóth Zsuzsanna Előzetes ismeretek: Ponthalmazok síkban és térben (pont, vonal, egyenes,
Informatika tanterv nyelvi előkészítő osztály heti 2 óra
Informatika tanterv nyelvi előkészítő osztály heti Számítógép feladata és felépítése Az informatikai eszközök használata Operációs rendszer Bemeneti egységek Kijelző egységek Háttértárak Feldolgozás végző
Résztvevői ütemterv. A Szabad hozzáférésű komplex természettudományos tananyagok tanórai és tanórán kívüli felhasználása c. továbbképzési program
Résztvevői ütemterv A Szabad hozzáférésű komplex természettudományos tananyagok tanórai és tanórán kívüli felhasználása c. továbbképzési program A továbbképzés: alapítási engedély száma: óraszáma (megszerezhető
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA matematika 9. évfolyam 1. Számtan, algebra 15 óra 2. Gondolkodási módszerek, halmazok, kombinatorika, valószínűség, statisztika 27 óra 3. Függvények, sorozatok,
HELYI TANTERV / INFORMATIKA
Célok és kompetenciák Alap és legfontosabb cél INFORMATIKA TANTERV A GIMNÁZIUM 9. ÉVFOLYAMAI SZÁMÁRA A tanuló képes legyen a modern információs társadalom előnyeit kihasználni, veszélyeit kikerülni. Legyen
A DINAMIKUS GEOMETRIAI RENDSZEREK ÉS AZ ÁBRÁZOLÓ GEOMETRIA
A DINAMIKUS GEOMETRIAI RENDSZEREK ÉS AZ ÁBRÁZOLÓ GEOMETRIA NAGYNÉ KONDOR Rita Debreceni Egyetem, Műszaki Kar Műszaki Alaptárgyi Tanszék 4028 Debrecen, Ótemető u. 2 4. rita@mk.unideb.hu KIVONAT A GeoGebra
Takács Katalin - Elvárások két értékelési területen. Az értékelés alapját képező általános elvárások. Az értékelés konkrét intézményi elvárásai
Terület Szempont Az értékelés alapját képező általános elvárások Az értékelés konkrét intézményi elvárásai Alapos, átfogó és korszerű szaktudományos és szaktárgyi tudással rendelkezik. Kísérje figyelemmel
2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje.
2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. Az oktatási folyamat tervezése a központi kerettanterv alapján a helyi tanterv elkészítésével kezdődik. A szakmai munkaközösség tagjai
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Egy feladat megoldása Geogebra segítségével
Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra
TANFOLYAMI AJÁNLATUNK
TANFOLYAMI AJÁNLATUNK Én félek a számítógéptől, inkább hozzá sem nyúlok! Hányszor hallhatjuk ezt a mondatot az örökifjú korú társainktól, pedig nem ördöngösség, bárki megtanulhatja a legalapvetőbb funkciókat.
OKM ISKOLAI EREDMÉNYEK
OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak
JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül
LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. oldal JOGSZABÁLY 24/2007. (IV. 2.) OKM rendelet a közoktatás minõségbiztosításáról és minõségfejlesztésérõl szóló 3/2002. (II. 15.) OM rendelet módosításáról...
Fontos a pontosság. Miklós Ildikó Középiskolai Matematikai és Fizikai Lapok
Fontos a pontosság Miklós Ildikó Középiskolai Matematikai és Fizikai Lapok miklosildiko@komal.hu Amikor egy geometriai feladathoz megpróbálunk ábrát rajzolni, elıfordulhat, hogy nehézségekbe ütközünk:
Programozástanítási célok teljesítése a Logóval és a Scratch-csel
Programozástanítási célok teljesítése a Logóval és a Scratch-csel Bernát Péter Készült az "Országos koordinációval a pedagógusképzés megújításáért című TÁMOP- 1. Problémamegoldás 1/a. Problémamegoldás
Modul bevezetése. Matematika 5. osztály 2009-2010. A negatív számok 0541. modul
Modul bevezetése Matematika 5. osztály 2009-2010 A negatív számok 0541. modul MODULLEÍRÁS A modul célja Időkeret Korosztály Modulkapcsolódási pontok A képességfejlesztés fókuszai Számfogalom bővítése.
Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint Készítette:
CodeMeter - A Digitális Jogkezelő
CodeMeter - A Digitális Jogkezelő Másolásvédelem és Komplett Kereskedelmi Rendszer Digitális Tananyagokhoz CodeMeter a jövő Digitális Jogkezelése Mikola Rezső ügyvezető ig. MrSoft Kft. T: 1-280-8811 -
GEOMATECH @ Sikerélmény a tanulásban
GEOMATECH @ Sikerélmény a tanulásban A KÉPZÉS RÖVID ISMERTETÉSE A GEOMATECH matematikai és természettudományos feladattár és képzés-támogatási portál olyan korszerű, digitális, a Nemzeti alaptantervhez
PLC és számítógép hálózat, programozás, ellenőrzés végrehajtása és értékelése
II. ADATLAP - Programmodul részletes bemutatása Valamennyi programmodulra külön-külön kitöltendő 1. A programmodul azonosító adatai Ügyeljen arra, hogy a programmodul sorszáma és megnevezése azonos legyen
Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással
Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Ismeretek, tananyagtartalmak Négyzet, téglalap tulajdonságai A kerület
9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
Dinamikus geometriai rendszerek jellemzõi
Dinamikus módszerek alkalmazása a geometriaoktatás különbözõ területein Árki Tamás SzTE JGYTFK Matematikai Tanszék Ebben a cikkben a dinamikus geometriai rendszerek tipikus szolgáltatásainak módszertani
INFORMATIKA ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK AZ ÉRETTSÉGI VIZSGA RÉSZLETES TEMATIKÁJA
A témakörök előtt lévő számok az informatika tantárgy részletes vizsgakövetelménye és a vizsga leírása dokumentumban szereplő témaköröket jelölik. KÖVETELMÉNYEK 1.1. A kommunikáció 1.1.1. A kommunikáció
Programozási nyelvek 1. előadás
Programozási nyelvek 1. előadás I. A nyelv története Logo Seymour Papert, 1968,1969 - szövegkezelés, M.I.T. Később: grafika, mikroszámítógépekre átdolgozva Cél: minél kisebb gyerekeknek is, természetes
Tanácsok bemutatók készítéséhez. Farkas Attila Eszteházy Károly Főiskola
Tanácsok bemutatók készítéséhez Farkas Attila Eszteházy Károly Főiskola témakör időtartam Előkészületek a prezentáció célja (ismeretátadás, értékesítés ) hallgatóság száma hallgatóság érdeklődési köre
Informatika 6. évfolyam
Informatika 6. évfolyam Egészséges, ergonómiai szempontok ismerete. A számítógép és a legszükségesebb perifériák rendeltetésszerű használata. Helyesírás ellenőrzése. Az adat fogalmának megismerése Útvonalkeresők,
INFORMATIKA TANMENET SZAKKÖZÉPISKOLA 9.NY OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013. 09. 01. Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 INFORMATIKA
4. évfolyam. Tematikai egység/ Fejlesztési cél. Órakeret 4 óra. 1. Az informatikai eszközök használata
4. évfolyam Tematikai egység/ nevelési-fejlesztési 1. Az informatikai eszközök használata Alkalmazások megismerése, futtatása számítógépen. Kapcsolattartás a számítógéppel ismert programokon keresztül.
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
A digitális korszak kihívásai és módszerei az egyetemi oktatásban
Csapó Benő http://www.staff.u-szeged.hu/~csapo A digitális korszak kihívásai és módszerei az egyetemi oktatásban Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a természettudományi
KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK
5. osztály KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK A SOKSZÍNŰ MATEMATIKA TANKÖNYVCSALÁD TANKÖNYVEIBEN ÉS MUNKAFÜZETEIBEN A matematikatanítás célja és feladata, hogy a tanulók az őket körülvevő világ mennyiségi
Online misszió lehetőségei Drupal [+ Google]
Online misszió lehetőségei Drupal [+ Google] Hirdesd az evangéliumot, állj vele elő, akár alkalmas, akár alkalmatlan! (2Tim 4,2) Nagy Gusztáv Jézus Krisztus képviselője férj négy gyermekes családapa tanszéki
Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.
Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt
II. ADATLAP - Programmodul részletes bemutatása
II. ADATLAP - Programmodul részletes bemutatása 1. A programmodul azonosító adatai 1.1. Program megnevezése Webszerkesztés, a web programozás alapjai 1.2.. A modul sorszáma 1 1.3. A modul megnevezése Web
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
ECDL képzés tematika. Operáció rendszer ECDL tanfolyam
Operáció rendszer ECDL tanfolyam Alapok A Windows áttekintése Asztal Tálca Start menü Lomtár használata Súgó használata Felhasználói fiókok kezelése Kijelentkezés, felhasználóváltás Fájlok és mappák Sajátgép
2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
A beadandó 4 db feladatból áll. Mindegyik feladatra külön jegyet kap, amelyek beszámítanak a félév végi jegybe.
Beadandó feladatok A beadandó 4 db feladatból áll. Mindegyik feladatra külön jegyet kap, amelyek beszámítanak a félév végi jegybe. A leadási határidő lecsúszása esetén -1 jegy az adott feladatra, 2 óránként.
TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 9. a, b osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
Ismerkedés az Office 2007 felhasználói felületével
Ismerkedés az Office 2007 felhasználói felületével A szalag kezelése Az új Fájl File menü A Gyorselérési eszköztár Az új nézetvezérlő elemek Összefoglalás Tudnivalók a Windows XP-t használó olvasók számára
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,
Szöveges értékelés. Magiszter.NET. Elérhetőségeink: Tel: 62/550-748; 550-749 Fax: 62/550-919 E-mail: magiszternet@infotec.hu Honlap: www.infotec.
Magiszter.NET Szöveges értékelés Elérhetőségeink: Tel: 62/550-748; 550-749 Fax: 62/550-919 E-mail: magiszternet@infotec.hu Honlap: www.infotec.hu Ügyfélszolgálat: H-P 8:00-16:00 A Magiszter.Net rendszerben
INFORMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
1. oldal, összesen: 6 oldal INFORMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: gyakorlati és szóbeli. Emeltszinten: gyakorlati és szóbeli. Az informatika érettségi vizsga
Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor
Matematika A 9. szakiskolai évfolyam 15. modul SÍKIDOMOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 15. modul: SÍKIDOMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Matematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
ECDL SELECT START (új neve ECDL Base)
1. Kinek ajánljuk Munkavállalóknak: ECDL SELECT START (új neve ECDL Base) A PC használatához szükséges valamennyi ismeretet garantáltan megszerezhetik. Biztosan nyújtja a munkakör ellátásához szükséges
II. ADATLAP - Programmodul részletes bemutatása
II. ADATLAP - Programmodul részletes bemutatása 1. A programmodul azonosító adatai Ügyeljen arra, hogy a programmodul sorszáma és megnevezése azonos legyen a I. A program általános tartalma fejezet 11.
7. Óravázlat. frontális, irányított beszélgetés. projektor, vagy interaktív tábla az ismétléshez,
7. Óravázlat Cím: Információk feltöltése, biztonságos, jogszerű megosztása Műveltségi terület / tantárgy: Informatika Évfolyam: 7-8. évfolyam (vagy felette) Témakör: Az információs társadalom/ Az információkezelés
KOGNITÍV KATEGÓRIÁK AZ OKTATÁSÁBAN
KOGNITÍV KATEGÓRIÁK AZ ANALÍZIS SZÁMÍTÓGÉPES OKTATÁSÁBAN Klingné Takács Anna Kaposvári Egyetem, Gazdaságtudományi Kar, Matematika és Fizika Tanszék Matematikát, fizikát és informatikát oktatók XXXIV. országos
ÖSSZEHASONLÍTÓ GEOMETRIA BEVEZETÉS
Nagyné Kondor Rita ÖSSZEHASONLÍTÓ GEOMETRIA BEVEZETÉS Az élő, korszerű matematikaoktatás legfontosabb feladata, hogy önálló gondolkozásra, a döntéshelyzetek megismerésére és megoldására nevelje a fiatalokat.