Correlation & Linear Regression in SPSS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Correlation & Linear Regression in SPSS"

Átírás

1 Correlation & Linear Regression in SPSS

2 Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data

3 Exercise 1 - Correlation File / Open / Employee data.sav Is there any relation between - current salary & - beginning salary? CORRELATION

4 Analyze / Correlate / Bivariate 0 I r I 0,3 weak dependence 0,3 I r I 0,7 medium-strong dependence 0,7 I r I 1 strong dependence r Shows direction and strength C Just direction! + -

5 Output Mean Std. Deviation N Current Salary $34, $17, Beginning Salary $17, $7, Current Salary Beginning Salary Current Salary Beginning Salary Pearson Correlation 1,880(**) Sig. (2-tailed),000 Sum of Squares and Cross-products , ,73 Covariance , ,27 N Pearson Correlation,880(**) 1 Sig. (2-tailed),000 Sum of Squares and Cross-products , ,45 Covariance , ,96 N

6 Exercise 2 Multiple Correlation Is there any relation between the current salary previous experience (month) month since hire beginning salary? MULTIPLE CORRELATION

7 Analyze / Correlate / Bivariate r Shows direction and strength 0 I r I 0,3 weak dependence 0,3 I r I 0,7 medium-strong dependence 0,7 I r I 1 strong dependence C Just direction! + -

8 Output View Inverse relationship & weak dependence Direct relationship & strong dependence Current Salary Previous Experience (months) Months since Hire Beginning Salary r C Pearson Correlation Sig. (2-tailed) Sum of Squares and Cross-products Covariance N Pearson Correlation Sig. (2-tailed) Sum of Squares and Cross-products Covariance N Pearson Correlation Sig. (2-tailed) Sum of Squares and Cross-products Covariance N Pearson Correlation Sig. (2-tailed) Sum of Squares and Cross-products Covariance N Correlations *. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). Matrix Previous Experience Months Beginning Current Salary (months) since Hire Salary 1 -,097*,084,880**,034,067,000 1,379E , ,5 5,59E , , , ,097* 1,003,045,034,948, , , , , ,281 3, , ,084, ,020,067,948, , , , , ,823 3, , , ,880**,045 -,020 1,000,327, , ,5 2,93E , , , Inverse relationship Direct relationship

9 Assumptions of Pearson s Correlation Coefficient Variables should be measured at the interval or ratio level There needs to be a linear relationship between the two variables There should be no significant outliers Variables should be approximately normally distributed

10 Rank-correlation Spearman rank order correlation coefficient is a nonparametric measure of the strength and of the direction of relation between two variables measured on at least an ordinal scale.

11 Exercise 3 Rank Correlation Ten students were ranked by their mathematical and musical ability: Student Ability A B C D E F G H I J Mathematics Music

12 Analyze / Correlate / Bivariate

13 6 1- n (n d 2 i ρ 2 2 1) (10-1) Strong relationship

14 Linear regression y ŷ = b 0 + b 1 x b 1 : for every 1 unit increase in x we expect y to change by b 1 units b 0 : when x=0, y=b 0 x

15 Exercise 4 Linear Regression File / Open / Employee data.sav Determine a linear relationship between the salary and the age of the employees! Create a new variable!

16 Create a new variable: age = this year date of birth (in year) This year Transform / Compute Variable

17 Analyze / Regression / Linear Regression

18 Model 1 Model Summ ary Adjusted Std. Error of R R Square R Square the Estimate,146 a,021,019 $16, a. Predictors: (Constant), age Multiple correlation coefficient Adjusted multiple determination coefficient R r 2 y1 r 2 y2 2r 1 r y r y2 r It expresses the combined effect of all the variables acting on the dependent variable Weak dependence 12 Multiple determination coefficient How many percent of the variation of the dependent variable can be explained by the variation of all the independent variables The dependent variable (current salary) is explained in 2,1% by the regression model R 2 n 1 1 (1 R n p 1 It enables to compare the multiple determination coefficient among populations / samples with different size and different number of dependent variables as it control for the number of sample / population size (n) and the number of independent variables (p) 2 )

19 F-test: for model testing We can accept the model in every significance level. The F ratio (in the Analysis of Variance Table) is and significant at p=.001. This provides evidence of existence of a linear relationship between the variables

20 Model 1 b 0 b 1 (Constant) age Unstandardized Coefficients Coefficie nts a Standardized Coefficients B Std. Error Beta t Sig , ,686 17,613,000 a. Dependent Variable: Current Salary The regression line: ŷ = b 0 + b 1 x -211,609 66,124 -,146-3,200,001 b 0 : If the x variable is 0, how much is the y. If the employees are 0-year-old, they earn $41543,805 (It doesn t mean anything.) b 1 : If the x increases by 1 unit, what is the difference in y. We can accept the parameters at every significance level. If the employees are 1 year older, they earn less money with $211,609.

21 Exercise 5 - Multiple Regression Determine the characteristics of the current salary in relation with the age, education level, beginning salary, month since hire and previous experience. y = current salary x 1 = age x 2 = education level (years) x 3 = beginning salary x 4 = month since hire x 5 = previous experience

22 Analyze / Regression / Linear y x

23 Output View

24 Output View yˆ ,049x x x x x 5

25 Thanks for your attention

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics. Correlation & Linear Regression in SPSS Petra Petrovics PhD Student Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise

Részletesebben

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation

Részletesebben

Bevezetés a Korreláció &

Bevezetés a Korreláció & Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression Correlation & Regression Types of dependence association between nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation describes the strength of a relationship,

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim

Részletesebben

Statistical Dependence

Statistical Dependence Statistical Dependence Petra Petrovics Statistical Dependence Deinition: Statistical dependence exists when the value o some variable is dependent upon or aected by the value o some other variable. Independent

Részletesebben

Korreláció számítás az SPSSben

Korreláció számítás az SPSSben Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi

Részletesebben

Regresszió számítás az SPSSben

Regresszió számítás az SPSSben Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests Nonparametric Tests Petra Petrovics Hypothesis Testing Parametric Tests Mean of a population Population proportion Population Standard Deviation Nonparametric Tests Test for Independence Analysis of Variance

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics. Nonparametric Tests Petra Petrovics PhD Student Hypothesis Testing Parametric Tests Mean o a population Population proportion Population Standard Deviation Nonparametric Tests Test or Independence Analysis

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics. Hypothesis Testing Petra Petrovics PhD Student Inference from the Sample to the Population Estimation Hypothesis Testing Estimation: how can we determine the value of an unknown parameter of a population

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

Statisztika II. feladatok

Statisztika II. feladatok Statisztika II. feladatok 1. Egy női ruhákat és kiegészítőket forgalmazó üzletlánc 118 egységénél felmérést végzett arról, milyen tényezők befolyásolják a havi összbevételüket (EUR). a) Pótolja ki a táblázatok

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Petra Petrovics DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs - descriptive

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Introduction to Multiple Correlation

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Introduction to Multiple Correlation Miskolci Egetem Gazdaságtudománi Ka Üzleti Infomációgazdálkodási és Módszetani Intézet Intoduction to Multiple Coelation Roland Szilági Ph.D. Associate pofesso Miskolci Egetem Gazdaságtudománi Ka Üzleti

Részletesebben

Statistical Inference

Statistical Inference Petra Petrovics Statistical Inference 1 st lecture Descriptive Statistics Inferential - it is concerned only with collecting and describing data Population - it is used when tentative conclusions about

Részletesebben

GyőrBike a győri közösségi bérkerékpár rendszer első éve

GyőrBike a győri közösségi bérkerékpár rendszer első éve GyőrBike a győri közösségi bérkerékpár rendszer első éve Magyar Urbanisztikai Társaság Győr-Moson-Sopron megyei csoportja MTA KRTK RKI Nyugat-magyarországi Tudományos Osztály Smart City rendezvénysorozat

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Logistic regression. Quantitative Statistical Methods. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Logistic regression. Quantitative Statistical Methods. Dr. Logistic regression Quantitative Statistical Methods Dr. Szilágyi Roland Dependent (y) Quantit ative Qualitative Gazdaságtudományi Kar Connection Analysis Qualitative Independent variable() Quantitative

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése Rezsabek Tamás GSZDI Anyag és módszer Központi Statisztikai Hivatalának adatai

Részletesebben

Kerékpáros közösségi kölcsönző rendszer működésének szabályszerűségei

Kerékpáros közösségi kölcsönző rendszer működésének szabályszerűségei Kerékpáros közösségi kölcsönző rendszer működésének szabályszerűségei MRTT XV. Vándorgyűlés MRTT XV. Vándorgyűlés Mosonmagyaróvár 2017. okt. 19-20. Önálló kerékpárflotta - smart A közösségi kerékpárrendszerekről

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Review of Correlation & Regression

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Review of Correlation & Regression Mskolc Egetem Gazdaságtudomán Kar Üzlet Informácógazdálkodás és Módszertan Intézet Revew of Correlaton & Regresson Petra Petrovcs Mskolc Egetem Gazdaságtudomán Kar Üzlet Informácógazdálkodás és Módszertan

Részletesebben

Quantitative Statistical Methods

Quantitative Statistical Methods Quantitative Statistical Methods Required Readings: Petra Petrovics: SPSS Tutorial and Exercise Book Quantitative Information Forming Methods Time Series models of business prognostics Proposed Readings:

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

Módszertani eljárások az időtényező vezetési, szervezeti folyamatokban betöltött szerepének vizsgálatához

Módszertani eljárások az időtényező vezetési, szervezeti folyamatokban betöltött szerepének vizsgálatához Módszertani eljárások az időtényező vezetési, szervezeti folyamatokban betöltött szerepének vizsgálatához Bácsné Bába Éva Debreceni Egyetem Agrártudományi Centrum, Agrárgazdasági és Vidékfejlesztési Kar,

Részletesebben

Választási modellek 3

Választási modellek 3 Választási modellek 3 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Cluster analysis in SPSS

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Cluster analysis in SPSS Cluster analysis in SPSS Cluster Analysis Cluster analysis one of the methods of classification, which aims to show that there are groups, which within-group distance is minimal, since cases are more similar

Részletesebben

Feltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2

Feltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2 Kabos: Ordinális változók Hipotézisvizsgálat-1 Minta: X 1, X 2,..., X N EVM (=egyszerű véletlen minta) X-re Feltesszük, hogy a mintaelemek között nincs két azonos. Rendezett minta: X (1), X (2),..., X

Részletesebben

Animal welfare, etológia és tartástechnológia

Animal welfare, etológia és tartástechnológia Animal welfare, etológia és tartástechnológia Animal welfare, ethology and housing systems Volume 5 Issue 4 Különszám Gödöllı 2009 282 A TÜDİ SÚLYÁNAK ÖSSZEFÜGGÉSE NÉHÁNY TESTMÉRETTEL AUBRAC ÉS CHAROLAIS

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

Normál eloszlás. Gyakori statisztikák

Normál eloszlás. Gyakori statisztikák Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,

Részletesebben

KISTERV2_ANOVA_

KISTERV2_ANOVA_ Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

Cluster Analysis. Potyó László

Cluster Analysis. Potyó László Cluster Analysis Potyó László What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

BIOMETRIA_ANOVA_2 1 1

BIOMETRIA_ANOVA_2 1 1 Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2

Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2 Esettanulmány A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre Tartalomjegyzék 1. Bevezetés... 2 2. A lineáris modell alkalmazhatóságának feltételei... 2 3. A feltételek teljesülésének

Részletesebben

A BÜKKI KARSZTVÍZSZINT ÉSZLELŐ RENDSZER KERETÉBEN GYŰJTÖTT HIDROMETEOROLÓGIAI ADATOK ELEMZÉSE

A BÜKKI KARSZTVÍZSZINT ÉSZLELŐ RENDSZER KERETÉBEN GYŰJTÖTT HIDROMETEOROLÓGIAI ADATOK ELEMZÉSE KARSZTFEJLŐDÉS XIX. Szombathely, 2014. pp. 137-146. A BÜKKI KARSZTVÍZSZINT ÉSZLELŐ RENDSZER KERETÉBEN GYŰJTÖTT HIDROMETEOROLÓGIAI ADATOK ELEMZÉSE ANALYSIS OF HYDROMETEOROLIGYCAL DATA OF BÜKK WATER LEVEL

Részletesebben

Nem. Cumulative Percent 1,00 férfi ,9 25,9 25,9 2,00 nı ,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Total ,0 100,0

Nem. Cumulative Percent 1,00 férfi ,9 25,9 25,9 2,00 nı ,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Total ,0 100,0 Függelék II. Demográfia Nem Frequency Percent Percent Cumulative Percent 1,00 férfi 727 25,9 25,9 25,9 2,00 nı 2053 73,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Korcsoport Frequency Percent Percent

Részletesebben

Statisztika II előadáslapok. 2003/4. tanév, II. félév

Statisztika II előadáslapok. 2003/4. tanév, II. félév Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az

Részletesebben

MARKETINGKUTATÁS II. Oktatási segédanyag. Budapest, 2004. február

MARKETINGKUTATÁS II. Oktatási segédanyag. Budapest, 2004. február MARKETINGKUTATÁS II. Oktatási segédanyag Budapest, 2004. február Tartalomjegyzék ELŐSZÓ... 2 1 AZ SPSS-RŐL ÁLTALÁBAN... 3 1.1 DATA EDITOR... 3 1.2 VIEWER... 4 1.3 CHART EDITOR... 4 2 ADATBEVITEL... 5 2.1

Részletesebben

Szerkezeti fa szilárdsági osztályozása Göcsök szerepe. Strength grading of stuctural lumber Effect of knots

Szerkezeti fa szilárdsági osztályozása Göcsök szerepe. Strength grading of stuctural lumber Effect of knots 19 Szerkezeti fa szilárdsági osztályozása Göcsök szerepe SISMÁNDY-KISS Ferenc 1, DIVÓS Ferenc 1 1 NymE FMK Fa-és Papíripai Technológiák Intézet Kivonat A faszerkezetek tervezésére vonatkozó nemzeti szabványt

Részletesebben

THE EFFECTIVENESS OF THE E-LEARNING APPLICATION: IMPACT ASSESSMENT OF THE QUALITY

THE EFFECTIVENESS OF THE E-LEARNING APPLICATION: IMPACT ASSESSMENT OF THE QUALITY THE EFFECTIVENESS OF THE E-LEARNING APPLICATION: IMPACT ASSESSMENT OF THE QUALITY P E T E R L E N G Y E L - I S T VÁ N F Ü Z E S I - J Á N O S PA N C S I R A - G E R G E LY R ÁT H O N Y I U N I V E R S

Részletesebben

Discussion of The Blessings of Multiple Causes by Wang and Blei

Discussion of The Blessings of Multiple Causes by Wang and Blei Discussion of The Blessings of Multiple Causes by Wang and Blei Kosuke Imai Zhichao Jiang Harvard University JASA Theory and Methods Invited Papers Session Joint Statistical Meetings July 29, 2019 Imai

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY FELTÉTELES MONDATOK 1 st, 2 nd, 3 rd CONDITIONAL I. A) Egészítsd ki a mondatokat!

Részletesebben

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon A rosszindulatú daganatos halálozás változása és között Eredeti közlemény Gaudi István 1,2, Kásler Miklós 2 1 MTA Számítástechnikai és Automatizálási Kutató Intézete, Budapest 2 Országos Onkológiai Intézet,

Részletesebben

Tudományos Ismeretterjesztő Társulat

Tudományos Ismeretterjesztő Társulat Sample letter number 5. International Culture Festival PO Box 34467 Harrogate HG 45 67F Sonnenbergstraße 11a CH-6005 Luzern Re: Festival May 19, 2009 Dear Ms Atkinson, We are two students from Switzerland

Részletesebben

Regional Expert Meeting Livestock based Geographical Indication chains as an entry point to maintain agro-biodiversity

Regional Expert Meeting Livestock based Geographical Indication chains as an entry point to maintain agro-biodiversity How Code of Practice can address the question of biodiversity (indigenous breeds, peculiarities of feeding, rearing traditional or marginalized systems)? Rendek Olga, Kerekegyháza 2009 október 20. 1 2

Részletesebben

Computer Architecture

Computer Architecture Computer Architecture Locality-aware programming 2016. április 27. Budapest Gábor Horváth associate professor BUTE Department of Telecommunications ghorvath@hit.bme.hu Számítógép Architektúrák Horváth

Részletesebben

ANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT

ANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT ANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT A feladatok megoldására 45 perc áll rendelkezésedre, melyből körülbelül 10-15 percet érdemes a fogalmazási feladatra szánnod. Megoldásaid a válaszlapra írd! 1.

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

Where are the parrots? (Hol vannak a papagájok?)

Where are the parrots? (Hol vannak a papagájok?) Where are the parrots? (Hol vannak a papagájok?) Hi Agents! This is your final test so get ready. Work your way through the exercises and when you have finished, the letters will spell out the name of

Részletesebben

A JOHNSON NEYMAN-MÓDSZER BEMUTATÁSA ÉS ALKALMAZÁSA

A JOHNSON NEYMAN-MÓDSZER BEMUTATÁSA ÉS ALKALMAZÁSA MÓDSZERTANI TANULMÁNYOK A JOHNSON NEYMAN-MÓDSZER BEMUTATÁSA ÉS ALKALMAZÁSA A Johnson Neyman-módszer bemutatását és használatának elméleti és konkrét példákkal történő megismertetését elsősorban azok az

Részletesebben

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés

Részletesebben

Az önkormányzati beruházási hajlandóság becslése a magyar kistelepülések körében OTKA KUTATÁS. A kutatást lezáró beszámoló

Az önkormányzati beruházási hajlandóság becslése a magyar kistelepülések körében OTKA KUTATÁS. A kutatást lezáró beszámoló Az önkormányzati beruházási hajlandóság becslése a magyar kistelepülések körében OTKA KUTATÁS 77871 A kutatást lezáró beszámoló A projekt legtöbb feladatát 2009-ben végzem el. Miután 2009 április és május

Részletesebben

On The Number Of Slim Semimodular Lattices

On The Number Of Slim Semimodular Lattices On The Number Of Slim Semimodular Lattices Gábor Czédli, Tamás Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai Institute, University of Szeged Conference on Universal Algebra and Lattice Theory

Részletesebben

Mapping Sequencing Reads to a Reference Genome

Mapping Sequencing Reads to a Reference Genome Mapping Sequencing Reads to a Reference Genome High Throughput Sequencing RN Example applications: Sequencing a genome (DN) Sequencing a transcriptome and gene expression studies (RN) ChIP (chromatin immunoprecipitation)

Részletesebben

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm It is like any other experiment! What is a bioinformatics experiment? You need to know your data/input sources You need to understand your methods and their assumptions You need a plan to get from point

Részletesebben

ACTA CLIMATOLOGICA ET CHOROLOGICA Universitatis Szegediensis, Tom , 2005,

ACTA CLIMATOLOGICA ET CHOROLOGICA Universitatis Szegediensis, Tom , 2005, ACTA CLIMATOLOGICA ET CHOROLOGICA Universitatis Szegediensis, Tom. 38-39, 2005, 59-69. MODELLING THE MAXIMUM DEVELOPMENT OF URBAN HEAT ISLAND WITH THE APPLICATION OF GIS BASED SURFACE PARAMETERS IN SZEGED

Részletesebben

OROSZ MÁRTA DR., GÁLFFY GABRIELLA DR., KOVÁCS DOROTTYA ÁGH TAMÁS DR., MÉSZÁROS ÁGNES DR.

OROSZ MÁRTA DR., GÁLFFY GABRIELLA DR., KOVÁCS DOROTTYA ÁGH TAMÁS DR., MÉSZÁROS ÁGNES DR. ALL RIGHTS RESERVED SOKSZOROSÍTÁSI CSAK A MTT ÉS A KIADÓ ENGEDÉLYÉVEL Az asthmás és COPD-s betegek életminõségét befolyásoló tényezõk OROSZ MÁRTA DR., GÁLFFY GABRIELLA DR., KOVÁCS DOROTTYA Semmelweis Egyetem

Részletesebben

Lineáris regresszió vizsgálata resampling eljárással

Lineáris regresszió vizsgálata resampling eljárással Lineáris regresszió vizsgálata resampling eljárással Dolgozatomban az European Social Survey (ESS) harmadik hullámának adatait fogom felhasználni, melyben a teljes nemzetközi lekérdezés feldolgozásra került,

Részletesebben

Cséplő Máté PTE Egészségtudományi Doktori Iskola, hallgató

Cséplő Máté PTE Egészségtudományi Doktori Iskola, hallgató Cséplő Máté PTE Egészségtudományi Doktori Iskola, hallgató Budapesti Rendőr Főkapitányság Közlekedésrendészeti Főosztály rendőri állományának egészségi állapota és egészségmagatartása 2012-2014 követéses

Részletesebben

Supporting Information

Supporting Information Supporting Information Cell-free GFP simulations Cell-free simulations of degfp production were consistent with experimental measurements (Fig. S1). Dual emmission GFP was produced under a P70a promoter

Részletesebben

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás

Részletesebben

Construction of a cube given with its centre and a sideline

Construction of a cube given with its centre and a sideline Transformation of a plane of projection Construction of a cube given with its centre and a sideline Exercise. Given the center O and a sideline e of a cube, where e is a vertical line. Construct the projections

Részletesebben

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium 2009.09.21 25.

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium 2009.09.21 25. First experiences with Gd fuel assemblies in the Paks NPP Tams Parkó, Botond Beliczai AER Symposium 2009.09.21 25. Introduction From 2006 we increased the heat power of our units by 8% For reaching this

Részletesebben

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY A feladatsor három részbol áll 1. A vizsgáztató társalgást kezdeményez a vizsgázóval. 2. A vizsgázó egy szituációs feladatban vesz részt a

Részletesebben

SEGÍTSÉG A GAZDÁLKODÓ EGYNYELVŰ KÖZÉPFOKÚ SZÓBELI NYELVVIZSGÁHOZ - ÜZLETI MODUL

SEGÍTSÉG A GAZDÁLKODÓ EGYNYELVŰ KÖZÉPFOKÚ SZÓBELI NYELVVIZSGÁHOZ - ÜZLETI MODUL A gazdálkodó középfokú egynyelvű üzleti nyelvvizsga szóbeli része három feladatból áll. Az első, körülbelül 5 perces rész a szakmai interjú. Ebben a részben a vizsgáztató 2-3 szakmai témában tesz fel kérdéseket

Részletesebben

A gravitációs modell felhasználása funkcionális távolságok becslésére

A gravitációs modell felhasználása funkcionális távolságok becslésére A gravitációs modell felhasználása funkcionális távolságok becslésére Dusek Tamás egyetemi tanár Széchenyi István Egyetem Eger, 2015. november 20. Gravitációs modell "A" város "B" város 100 000 lakos 100

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN FOUNDATIONS IN ELECTRONICS

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN FOUNDATIONS IN ELECTRONICS ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN FOUNDATIONS IN ELECTRONICS 2007. május 25. 8:00 KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA STANDARD-LEVEL WRITTEN EXAM Az írásbeli vizsga időtartama:

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése II.

Többváltozós lineáris regressziós modell feltételeinek tesztelése II. Többváltozós lineáris regressziós modell feltételeinek tesztelése II. - A magyarázó változóra vonatkozó feltételek tesztelése - Optimális regressziós modell kialakítása - Kvantitatív statisztikai módszerek

Részletesebben

ANGOL NYELVI SZINTFELMÉRŐ 2008 A CSOPORT

ANGOL NYELVI SZINTFELMÉRŐ 2008 A CSOPORT ANGOL NYELVI SZINTFELMÉRŐ 2008 A CSOPORT A feladatok megoldására 60 perc áll rendelkezésedre, melyből körülbelül 15 percet érdemes a levélírási feladatra szánnod. Sok sikert! 1. Válaszd ki a helyes megoldást.

Részletesebben

WIL-ZONE TANÁCSADÓ IRODA

WIL-ZONE TANÁCSADÓ IRODA WIL-ZONE TANÁCSADÓ IRODA Berényi Vilmos vegyész, analitikai kémiai szakmérnök akkreditált minőségügyi rendszermenedzser regisztrált vezető felülvizsgáló Telefon és fax: 06-33-319-117 E-mail: info@wil-zone.hu

Részletesebben

Alkalmazott statisztika Feladatok

Alkalmazott statisztika Feladatok Alkalmazott statisztika Feladatok A feladatokhoz használt adatokat megtaláljátok itt: www.math.u-szeged.hu/ szakacs/oktatas/alkstat.html 1. óra (szept. 9.) Az óra anyaga: Követelmények ismertetése, az

Részletesebben

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

FAMILY STRUCTURES THROUGH THE LIFE CYCLE FAMILY STRUCTURES THROUGH THE LIFE CYCLE István Harcsa Judit Monostori A magyar társadalom 2012-ben: trendek és perspektívák EU összehasonlításban Budapest, 2012 november 22-23 Introduction Factors which

Részletesebben

ANGOL NYELVI SZINTFELMÉRŐ 2012 A CSOPORT. to into after of about on for in at from

ANGOL NYELVI SZINTFELMÉRŐ 2012 A CSOPORT. to into after of about on for in at from ANGOL NYELVI SZINTFELMÉRŐ 2012 A CSOPORT A feladatok megoldására 45 perc áll rendelkezésedre, melyből körülbelül 10-15 percet érdemes a levélírási feladatra szánnod. Sok sikert! 1. Válaszd ki a helyes

Részletesebben

A klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben

A klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben Hatásvizsgálói konzultációs workshop Országos Meteorológiai Szolgálat A klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben Kemény Gábor, Fogarasi József, Molnár

Részletesebben

ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP

ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP CHILD S DATA / GYERMEK ADATAI PLEASE FILL IN THIS INFORMATION WITH DATA BASED ON OFFICIAL DOCUMENTS / KÉRJÜK, TÖLTSE KI A HIVATALOS DOKUMENTUMOKBAN SZEREPLŐ ADATOK

Részletesebben

FOSS4G-CEE Prágra, 2012 május. Márta Gergely Sándor Csaba

FOSS4G-CEE Prágra, 2012 május. Márta Gergely Sándor Csaba FOSS4G-CEE Prágra, 2012 május Márta Gergely Sándor Csaba Reklám helye 2009 óta Intergraph szoftverek felől jöttünk FOSS4G felé megyünk Békés egymás mellett élés több helyen: Geoshop.hu Terkep.torokbalint.hu

Részletesebben

NÖVENDÉKNYULAK TESTÖSSZETÉTELÉNEK BECSLÉSE TOBEC MÓDSZERREL

NÖVENDÉKNYULAK TESTÖSSZETÉTELÉNEK BECSLÉSE TOBEC MÓDSZERREL 12. Nyúltenyésztési Tudományos Nap, Kaposvár NÖVENDÉKNYULAK TESTÖSSZETÉTELÉNEK BECSLÉSE TOBEC MÓDSZERREL MILISITS G., SZENDRŐ ZS., MIHÁLOVICS GY., LÉVAI A., BIRÓ-NÉMETH E., RADNAI I. Kaposvári Egyetem,

Részletesebben

PDF created with FinePrint pdffactory Pro trial version Adott egy X folytonos változó, ami normális eloszlású.

PDF created with FinePrint pdffactory Pro trial version  Adott egy X folytonos változó, ami normális eloszlású. Á dott egy X folytonos változó, ami normális eloszlású. X ( µ,σ ) dottak ezen kívül az Y,Y,,Y k diszkrét változók (faktorok) total H 0 : X - re nincs hatással Y Q = Q + Q +... + Q + Q + Q3 +... + Q k hiba

Részletesebben

Expansion of Red Deer and afforestation in Hungary

Expansion of Red Deer and afforestation in Hungary Expansion of Red Deer and afforestation in Hungary László Szemethy, Róbert Lehoczki, Krisztián Katona, Norbert Bleier, Sándor Csányi www.vmi.szie.hu Background and importance large herbivores are overpopulated

Részletesebben

Bird species status and trends reporting format for the period (Annex 2)

Bird species status and trends reporting format for the period (Annex 2) 1. Species Information 1.1 Member State Hungary 1.2.2 Natura 2000 code A634-B 1.3 Species name Ardea purpurea purpurea 1.3.1 Sub-specific population East Europe, Black Sea & Mediterranean/Sub-Saharan Africa

Részletesebben

Tudok köszönni tegezve és önözve, és el tudok búcsúzni. I can greet people in formal and informal ways. I can also say goodbye to them.

Tudok köszönni tegezve és önözve, és el tudok búcsúzni. I can greet people in formal and informal ways. I can also say goodbye to them. Mérleg Your checklist Az alábbiakban a MagyarOK 1. tankönyv témáinak listáját találja. A mondatok mellett a kapcsolódó oldalak és gyakorlatok számát is megadtuk, hogy megkönnyítsük az ismétlést. This document

Részletesebben

TAYLOR Gazdálkodás- és szervezéstudományi folyóirat

TAYLOR Gazdálkodás- és szervezéstudományi folyóirat TAYLOR Gazdálkodás- és szervezéstudományi folyóirat A Virtuális Intézet Közép-Európa Kutatására Közleményei 2016/3. szám VIII. évf./3. szám No 24. Szeged 2016 Taylor 2016 No 24 M5.indd 1 2016. 05. 11.

Részletesebben

Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes

Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes A - MurányiE:Layout 1 2/18/16 9:34 AM Page 1 Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes Eszter Murányi University

Részletesebben

EN United in diversity EN A8-0206/419. Amendment

EN United in diversity EN A8-0206/419. Amendment 22.3.2019 A8-0206/419 419 Article 2 paragraph 4 point a point i (i) the identity of the road transport operator; (i) the identity of the road transport operator by means of its intra-community tax identification

Részletesebben

General information for the participants of the GTG Budapest, 2017 meeting

General information for the participants of the GTG Budapest, 2017 meeting General information for the participants of the GTG Budapest, 2017 meeting Currency is Hungarian Forint (HUF). 1 EUR 310 HUF, 1000 HUF 3.20 EUR. Climate is continental, which means cold and dry in February

Részletesebben

Klaszterezés, 2. rész

Klaszterezés, 2. rész Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket

Részletesebben

Étkezési búzák mikotoxin tartalmának meghatározása prevenciós lehetıségek

Étkezési búzák mikotoxin tartalmának meghatározása prevenciós lehetıségek Étkezési búzák mikotoxin tartalmának meghatározása prevenciós lehetıségek Téren, J., Gyimes, E., Véha, A. 2009. április 15. PICK KLUB Szeged 1 A magyarországi búzát károsító Fusarium fajok 2 A betakarítás

Részletesebben

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel Timea Farkas Click here if your download doesn"t start

Részletesebben

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

Professional competence, autonomy and their effects

Professional competence, autonomy and their effects ENIRDELM 2014, Vantaa Professional competence, autonomy and their effects Mária Szabó szabo.maria@ofi.hu www.of.hu The aim and the planned activities at this workshop Aim: To take a European survey on

Részletesebben

TÖBBSZÖRÖS REGRESZIÓS ANALÍZIS I. Többszörös lineáris regresszió. Füst György

TÖBBSZÖRÖS REGRESZIÓS ANALÍZIS I. Többszörös lineáris regresszió. Füst György TÖBBSZÖRÖS REGRESZIÓS ANALÍZIS I. Többszörös lineáris regresszió Füst György Többszörös regresszió I. miért elengedhetetlen a többszörös regressziós számítás? a többszörös regressziós számítások fajtái

Részletesebben

A magyar racka juh tejének beltartalmi változása a laktáció alatt

A magyar racka juh tejének beltartalmi változása a laktáció alatt A magyar racka juh tejének beltartalmi változása a laktáció alatt Nagy László Komlósi István Debreceni Egyetem Agrártudományi Centrum, Mezőgazdaságtudományi Kar, Állattenyésztés- és Takarmányozástani Tanszék,

Részletesebben

Flowering time. Col C24 Cvi C24xCol C24xCvi ColxCvi

Flowering time. Col C24 Cvi C24xCol C24xCvi ColxCvi Flowering time Rosette leaf number 50 45 40 35 30 25 20 15 10 5 0 Col C24 Cvi C24xCol C24xCvi ColxCvi Figure S1. Flowering time in three F 1 hybrids and their parental lines as measured by leaf number

Részletesebben

A pontyhozamokról régi számok tükrében. Kivonat

A pontyhozamokról régi számok tükrében. Kivonat Halászatfejlesztés 33 - Fisheries & Aquaculture Development (2011) 33:19-25 ISBN:978-963-7120-31-2 HAKI 2011 A pontyhozamokról régi számok tükrében Horváth Zoltán 1, ifj. Horváth Zoltán 2, Hancz Csaba

Részletesebben