Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Logistic regression. Quantitative Statistical Methods. Dr.
|
|
- Natália Jónás
- 6 évvel ezelőtt
- Látták:
Átírás
1 Logistic regression Quantitative Statistical Methods Dr. Szilágyi Roland
2 Dependent (y) Quantit ative Qualitative Gazdaságtudományi Kar Connection Analysis Qualitative Independent variable() Quantitative crosstabs Discriminant-analysis, Logistic regression ANOVA Correlation-, regression analysis
3 Logistic regression The Logistic regression is a multivariate method that helps to predict the classification of cases into groups on the basis of independent variables. So those independent variables () are identified in the analysis, which cause significant difference in the dependent variables categories. binary (the dependent variable has two categories) Multinomial
4 Logistic regression in practice Market research Modelling (by or no) Segmentation reliability Enterprise analysis (default, non default) etc.
5 Stages of Analysis General Purpose Assumptions Estimaton of Function Coefficients Interpretation of Results Validity Tests
6 General purposes To create logistic regresion function, which is the best split of the categories of dependent variables as linear combination of independent variables. To determine whether there is a significant difference among groups according to independent variables. To determine which independent variables eplain the most the differences among groups. Based on the eperience obtained by a known classification, we can predict the group membership of new cases analyzing their independent variables. To measure the accuracy of classification
7 The Assumptions for Logistic regression. Measure of variables The dependent variable should be categorized by m (at least 2) tet values (e.g.: -good student, 2-bad student; or - prominent student, 2-average, 3-bad student). Independent variables could be measured on whatever scale.
8 The Assumptions for Logistic regression 2. Independence Not only the eplanatory variables, but also all cases must be independent. Therefore, panel, longitudinal research, or pre-test data cannot be used for logistic regression analysis.
9 The Assumptions for Logistic regression 3. Sample size It is a general rule, that the larger is the sample size, the more significant is the model. The ratio of number of data to the number of variables is also important. The results can be more generalized if we have at least 60 observations.
10 The Assumptions for Logistic regression 4. Multivariate normal distribution In case of normal distribution, the estimation of parameters are easier, because the parameters can be defined according to the density or distribution function. It can be tested by histograms of frequency distributions or hypothesis testing.
11 The Assumptions for Logistic regression 5. Multicollinearity Independent variables should be correlated to the dependent variable, however there must be no correlation between the independent variables, because it can bias the results of analysis.
12 Binary Logistic Regression The logistic function is useful because it can take any input linear combination of independent variables (X i ), whereas the output always takes values between zero and one and hence is interpretable as a probability. The logistic function is defined as follows: F ( ) 0... p Note that F () is interpreted as the probability of the dependent variable equaling a "success" or "case" rather than a failure or non-case. P( Y X ) e 0 e i... p p p
13 Binary Logistic Regression We can now define the inverse of the logistic function, the logit (log odds): p p F F Y... ln 0 ) ( ) ( p p odds e... 0 after eponentiating
14 Binary Logistic Regression The odds of the dependent variable equaling a case (given some linear combination i of the predictors) is equivalent to the eponential function of the linear regression epression odds P P
15 Binary Logistic Regression p p p p e e P P P odds
16 Maimum Likelihood Method The maimum likelihood method finds a set of coefficients (β), called the maimum likelihood estimates, at which the log-likelihood function attains its local maimum: L n 0 e e i 0... p p... p p ma Forrás: Hajdu Ottó: Többváltozós statisztikai számítások; KSH, Budapest, 2003.
17 Tests of Model Fit The Binary Logistic Regression procedure reports the Hosmer-Lemeshow goodness-of-fit statistic. It helps you to determine whether the model adequately describes the data Ho: model fits H: model don t fit The Hosmer Lemeshow test specifically identifies subgroups deciles of fitted risk values. Models for which epected and observed event rates in subgroups are similar (khi square) are called fitted (well calibrated).
18 Testinf of parameters (β) H H 0 : i 0 : 0 i Wald i = bi s(b i ) 2
19 Choosing the Right Model Based on residual sum of squares (linear regression) Based on Likelihood ratio (compare the Likelihood of the model with the Likelihood of a baseline (minimal) model) Proportion of good predictions.
20 Pseudo R 2 Co and Snell's R 2 is based on the log likelihood for the model compared to the log likelihood for a baseline model. However, with categorical outcomes, it has a theoretical maimum value of less than, even for a "perfect" model. Nagelkerke's R 2 is an adjusted version of the Co & Snell R-square that adjusts the scale of the statistic to cover the full range from 0 to.
21 Eample If you are a loan officer at a bank, then you want to be able to identify characteristics that are indicative of people who are likely to default on loans, and use those characteristics to identify good and bad credit risks. Variables Age in years Level of education Years with current employer Years at current address Household income in thousands Debt to income ratio (00) Credit card debt in thousands Other debt in thousands Previously defaulted
22 Outputs Step 0 Observed Previously defaulted Classification Table a,b Predicted Selected Cases c Unselected Cases d,e Previously Previously defaulted Percenta defaulted Percenta ge ge No Yes Correct No Yes Correct No , ,0 Yes 24 0,0 59 0,0 Overall Percentage 75,2 70,6 a. Constant is included in the model. b. The cut value is,500 Source: Help- IBM SPSS Statistics
23 Hosmer and Lemeshow Test Step Chi-square df Sig. 3,292 8,95 2,866 8,57 3 9,447 8, ,027 8,855 Source: Help- IBM SPSS Statistics
24 Model Summary -2 Log Co & Snell R Nagelkerke R Step likelihood Square Square 498,02 a,6, ,30 b,20, ,553 b,257, ,72 c,28,47 Source : Help- IBM SPSS Statistics
25 Classification Table a Step Step 2 Step 3 Step 4 Observed Previously defaulted Predicted Selected Cases b Unselected Cases c,d Previously defaulted Previously defaulted Percentage Percentage No Yes Correct No Yes Correct No , ,5 Yes , ,7 Overall Percentage 77,2 75, Previously defaulted No , ,8 Yes , ,0 Overall Percentage 79,2 79, Previously defaulted No , , Yes , ,5 Overall Percentage 80,2 82,6 Previously defaulted No , ,5 Yes , ,2 Overall Percentage 82,0 80,6
26 Classification table (Confusion matri) (observed) no (0) yes () (predicted) no (0) yes () true negative (TN) False positive (FP) Type I False negative (FN) Type II True positive (TP) negative predictive positive predictive value value (precision) TN/(TN+FN) TP/(FP+TP) specificity TN/(TN+FP) sensitivity TP/(FN+TP) accuracy (TP+TN)/ (TN+FP+FN+TP)
27 Variables in the Equation 95% C.I.for EXP(B) B S.E. Wald df Sig. Ep(B) Lower Upper Step a Debt to income ratio (00),2,07 52,676,000,29,092,66 Constant -2,476,230 6,3,000,084 5 Step 2 b Years with current employer -,40,023 38,58,000,869,83,909 Debt to income ratio (00),34,08 54,659,000,43,03,85 Constant -,62,259 39,038,000,98 Step 3 c Years with current employer -,244,033 54,676,000,783,734,836 Debt to income ratio (00),069,022 9,809,002,072,026,9 Credit card debt in thousands,506,0 25,27,000,658,36 2,02 Constant -,058,280 4,249,000,347 Step 4 d Years with current employer -,247,034 5,826,000,78,73,836 Years at current address -,089,023 5,09,000,95,875,957 Debt to income ratio (00),072,023 0,040,002,074,028,23 Credit card debt in thousands,602, 29,606,000,826,470 2,269 Constant -,605,30 4,034,045,546
28 Meaning of coefficients The meaning of a logistic regression coefficient is not as straightforward as that of a linear regression coefficient. While B is convenient for testing the usefulness of predictors, Ep(B) is easier to interpret. Ep(B) represents the ratiochange in the odds of the event of interest for a one-unit change in the predictor (X i ) Ceteris Paribus (all other things being equal). Source : Help- IBM SPSS Statistics
29 Source : Help- IBM SPSS Statistics Gazdaságtudományi Kar
30 Thank you for your attention!
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis
Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim
RészletesebbenLogisztikus regresszió
Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla
RészletesebbenCorrelation & Linear Regression in SPSS
Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation
RészletesebbenLogisztikus regresszió
Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests
Nonparametric Tests Petra Petrovics Hypothesis Testing Parametric Tests Mean of a population Population proportion Population Standard Deviation Nonparametric Tests Test for Independence Analysis of Variance
RészletesebbenCorrelation & Linear Regression in SPSS
Correlation & Linear Regression in SPSS Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise 1 - Correlation File / Open
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.
Correlation & Linear Regression in SPSS Petra Petrovics PhD Student Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.
Nonparametric Tests Petra Petrovics PhD Student Hypothesis Testing Parametric Tests Mean o a population Population proportion Population Standard Deviation Nonparametric Tests Test or Independence Analysis
RészletesebbenStatistical Dependence
Statistical Dependence Petra Petrovics Statistical Dependence Deinition: Statistical dependence exists when the value o some variable is dependent upon or aected by the value o some other variable. Independent
RészletesebbenStatistical Inference
Petra Petrovics Statistical Inference 1 st lecture Descriptive Statistics Inferential - it is concerned only with collecting and describing data Population - it is used when tentative conclusions about
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.
Hypothesis Testing Petra Petrovics PhD Student Inference from the Sample to the Population Estimation Hypothesis Testing Estimation: how can we determine the value of an unknown parameter of a population
RészletesebbenVálasztási modellek 3
Választási modellek 3 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression
Correlation & Regression Types of dependence association between nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation describes the strength of a relationship,
RészletesebbenEsetelemzések az SPSS használatával
Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e
RészletesebbenDescriptive Statistics
Descriptive Statistics Petra Petrovics DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs - descriptive
RészletesebbenKISTERV2_ANOVA_
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
RészletesebbenLOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála
LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)
RészletesebbenBIOMETRIA_ANOVA_2 1 1
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
RészletesebbenStatisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák
Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém
RészletesebbenStatisztika II. feladatok
Statisztika II. feladatok 1. Egy női ruhákat és kiegészítőket forgalmazó üzletlánc 118 egységénél felmérést végzett arról, milyen tényezők befolyásolják a havi összbevételüket (EUR). a) Pótolja ki a táblázatok
RészletesebbenCluster Analysis. Potyó László
Cluster Analysis Potyó László What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis
RészletesebbenOn The Number Of Slim Semimodular Lattices
On The Number Of Slim Semimodular Lattices Gábor Czédli, Tamás Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai Institute, University of Szeged Conference on Universal Algebra and Lattice Theory
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Cluster analysis in SPSS
Cluster analysis in SPSS Cluster Analysis Cluster analysis one of the methods of classification, which aims to show that there are groups, which within-group distance is minimal, since cases are more similar
RészletesebbenMódszertani eljárások az időtényező vezetési, szervezeti folyamatokban betöltött szerepének vizsgálatához
Módszertani eljárások az időtényező vezetési, szervezeti folyamatokban betöltött szerepének vizsgálatához Bácsné Bába Éva Debreceni Egyetem Agrártudományi Centrum, Agrárgazdasági és Vidékfejlesztési Kar,
RészletesebbenBevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
RészletesebbenTHE EFFECTIVENESS OF THE E-LEARNING APPLICATION: IMPACT ASSESSMENT OF THE QUALITY
THE EFFECTIVENESS OF THE E-LEARNING APPLICATION: IMPACT ASSESSMENT OF THE QUALITY P E T E R L E N G Y E L - I S T VÁ N F Ü Z E S I - J Á N O S PA N C S I R A - G E R G E LY R ÁT H O N Y I U N I V E R S
RészletesebbenEsetelemzés az SPSS használatával
Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét
RészletesebbenSupporting Information
Supporting Information Cell-free GFP simulations Cell-free simulations of degfp production were consistent with experimental measurements (Fig. S1). Dual emmission GFP was produced under a P70a promoter
RészletesebbenAngol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel
Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel Timea Farkas Click here if your download doesn"t start
RészletesebbenRegresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
RészletesebbenSTATISZTIKA PRÓBAZH 2005
STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk
RészletesebbenFAMILY STRUCTURES THROUGH THE LIFE CYCLE
FAMILY STRUCTURES THROUGH THE LIFE CYCLE István Harcsa Judit Monostori A magyar társadalom 2012-ben: trendek és perspektívák EU összehasonlításban Budapest, 2012 november 22-23 Introduction Factors which
Részletesebbendiscosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo
discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo Download and install discosnp demo - Peterlongo Pierre 3 Download web page: github.com/gatb/discosnp Chose latest release (2.2.10 today) discosnp
RészletesebbenPhenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm
It is like any other experiment! What is a bioinformatics experiment? You need to know your data/input sources You need to understand your methods and their assumptions You need a plan to get from point
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Introduction to Multiple Correlation
Miskolci Egetem Gazdaságtudománi Ka Üzleti Infomációgazdálkodási és Módszetani Intézet Intoduction to Multiple Coelation Roland Szilági Ph.D. Associate pofesso Miskolci Egetem Gazdaságtudománi Ka Üzleti
RészletesebbenA rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon
A rosszindulatú daganatos halálozás változása és között Eredeti közlemény Gaudi István 1,2, Kásler Miklós 2 1 MTA Számítástechnikai és Automatizálási Kutató Intézete, Budapest 2 Országos Onkológiai Intézet,
RészletesebbenMagyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI
Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése Rezsabek Tamás GSZDI Anyag és módszer Központi Statisztikai Hivatalának adatai
RészletesebbenENROLLMENT FORM / BEIRATKOZÁSI ADATLAP
ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP CHILD S DATA / GYERMEK ADATAI PLEASE FILL IN THIS INFORMATION WITH DATA BASED ON OFFICIAL DOCUMENTS / KÉRJÜK, TÖLTSE KI A HIVATALOS DOKUMENTUMOKBAN SZEREPLŐ ADATOK
RészletesebbenELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI
RészletesebbenConstruction of a cube given with its centre and a sideline
Transformation of a plane of projection Construction of a cube given with its centre and a sideline Exercise. Given the center O and a sideline e of a cube, where e is a vertical line. Construct the projections
RészletesebbenSTUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:
STUDENT LOGBOOK 1 week general practice course for the 6 th year medical students Name of the student: Dates of the practice course: Name of the tutor: Address of the family practice: Tel: Please read
RészletesebbenSupplementary materials to: Whole-mount single molecule FISH method for zebrafish embryo
Supplementary materials to: Whole-mount single molecule FISH method for zebrafish embryo Yuma Oka and Thomas N. Sato Supplementary Figure S1. Whole-mount smfish with and without the methanol pretreatment.
RészletesebbenÉtkezési búzák mikotoxin tartalmának meghatározása prevenciós lehetıségek
Étkezési búzák mikotoxin tartalmának meghatározása prevenciós lehetıségek Téren, J., Gyimes, E., Véha, A. 2009. április 15. PICK KLUB Szeged 1 A magyarországi búzát károsító Fusarium fajok 2 A betakarítás
RészletesebbenSztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
RészletesebbenFORGÁCS ANNA 1 LISÁNYI ENDRÉNÉ BEKE JUDIT 2
FORGÁCS ANNA 1 LISÁNYI ENDRÉNÉ BEKE JUDIT 2 Hátrányos-e az új tagállamok számára a KAP támogatások disztribúciója? Can the CAP fund distribution system be considered unfair to the new Member States? A
RészletesebbenA jövedelem alakulásának vizsgálata az észak-alföldi régióban az 1997-99. évi adatok alapján
A jövedelem alakulásának vizsgálata az észak-alföldi régióban az 1997-99. évi adatok alapján Rózsa Attila Debreceni Egyetem Agrártudományi Centrum, Agrárgazdasági és Vidékfejlesztési Intézet, Számviteli
RészletesebbenSzéchenyi István Egyetem www.sze.hu/~herno
Oldal: 1/6 A feladat során megismerkedünk a C# és a LabVIEW összekapcsolásának egy lehetőségével, pontosabban nagyon egyszerű C#- ban írt kódból fordítunk DLL-t, amit meghívunk LabVIEW-ból. Az eljárás
RészletesebbenA klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben
Hatásvizsgálói konzultációs workshop Országos Meteorológiai Szolgálat A klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben Kemény Gábor, Fogarasi József, Molnár
RészletesebbenSebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK
Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK Despite enormous challenges many developing countries are service exporters Besides traditional activities such as tourism;
RészletesebbenAnimal welfare, etológia és tartástechnológia
Animal welfare, etológia és tartástechnológia Animal welfare, ethology and housing systems Volume 5 Issue 4 Különszám Gödöllı 2009 282 A TÜDİ SÚLYÁNAK ÖSSZEFÜGGÉSE NÉHÁNY TESTMÉRETTEL AUBRAC ÉS CHAROLAIS
RészletesebbenBevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz
Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz Kvantumkapuk, áramkörök 2016. március 3. A kvantummechanika posztulátumai (1-2) 1. Állapotleírás Zárt fizikai rendszer aktuális állapota
RészletesebbenUsing the CW-Net in a user defined IP network
Using the CW-Net in a user defined IP network Data transmission and device control through IP platform CW-Net Basically, CableWorld's CW-Net operates in the 10.123.13.xxx IP address range. User Defined
RészletesebbenAZ ERDÕ NÖVEKEDÉSÉNEK VIZSGÁLATA TÉRINFORMATIKAI ÉS FOTOGRAMMETRIAI MÓDSZEREKKEL KARSZTOS MINTATERÜLETEN
Tájökológiai Lapok 5 (2): 287 293. (2007) 287 AZ ERDÕ NÖVEKEDÉSÉNEK VIZSGÁLATA TÉRINFORMATIKAI ÉS FOTOGRAMMETRIAI MÓDSZEREKKEL KARSZTOS MINTATERÜLETEN ZBORAY Zoltán Honvédelmi Minisztérium Térképészeti
RészletesebbenA riport fordulónapja / Date of report december 31. / 31 December, 2017
CRR Art. 129 Report Kibocsátó / Issuer Erste Jelzálogbank Zrt. A riport fordulónapja / Date of report 2017. december 31. / 31 December, 2017 1. A fedezetek és a forgalomban lévő fedezett kötvényállomány
Részletesebben9.1.1 Az 1919-1999 között megjelent lapcímek település szerinti bontásban, korszakonként
9. MELLÉKLETEK 9.1 Lapstatisztikák 9.1.1 Az 1919-1999 között megjelent lapcímek település szerinti bontásban, korszakonként 42. táblázat 1919. január. 1 1940. augusztus. 30 1940. augusztus 31 1944. december
RészletesebbenFeltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2
Kabos: Ordinális változók Hipotézisvizsgálat-1 Minta: X 1, X 2,..., X N EVM (=egyszerű véletlen minta) X-re Feltesszük, hogy a mintaelemek között nincs két azonos. Rendezett minta: X (1), X (2),..., X
RészletesebbenELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN FOUNDATIONS IN ELECTRONICS
ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN FOUNDATIONS IN ELECTRONICS 2007. május 25. 8:00 KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA STANDARD-LEVEL WRITTEN EXAM Az írásbeli vizsga időtartama:
RészletesebbenKlaszterezés, 2. rész
Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket
RészletesebbenACTA CLIMATOLOGICA ET CHOROLOGICA Universitatis Szegediensis, Tom , 2005,
ACTA CLIMATOLOGICA ET CHOROLOGICA Universitatis Szegediensis, Tom. 38-39, 2005, 59-69. MODELLING THE MAXIMUM DEVELOPMENT OF URBAN HEAT ISLAND WITH THE APPLICATION OF GIS BASED SURFACE PARAMETERS IN SZEGED
RészletesebbenCsima Judit április 9.
Osztályozókról még pár dolog Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. április 9. Csima Judit Osztályozókról még pár dolog 1 / 19 SVM (support vector machine) ez is egy
RészletesebbenQuantitative Statistical Methods
Quantitative Statistical Methods Required Readings: Petra Petrovics: SPSS Tutorial and Exercise Book Quantitative Information Forming Methods Time Series models of business prognostics Proposed Readings:
RészletesebbenUSER MANUAL Guest user
USER MANUAL Guest user 1 Welcome in Kutatótér (Researchroom) Top menu 1. Click on it and the left side menu will pop up 2. With the slider you can make left side menu visible 3. Font side: enlarging font
RészletesebbenTöbb laboratórium összehasonlítása, körmérés
Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,
RészletesebbenThere is/are/were/was/will be
There is/are/were/was/will be Forms - Képzése: [There + to be] [There + létige ragozott alakja] USE - HASZNÁLAT If you simply want to say that something exists or somebody is doing something then you start
RészletesebbenSzámítógéppel irányított rendszerek elmélete. A rendszer- és irányításelmélet legfontosabb részterületei. Hangos Katalin. Budapest
CCS-10 p. 1/1 Számítógéppel irányított rendszerek elmélete A rendszer- és irányításelmélet legfontosabb részterületei Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék Folyamatirányítási
RészletesebbenPDF created with FinePrint pdffactory Pro trial version Adott egy X folytonos változó, ami normális eloszlású.
Á dott egy X folytonos változó, ami normális eloszlású. X ( µ,σ ) dottak ezen kívül az Y,Y,,Y k diszkrét változók (faktorok) total H 0 : X - re nincs hatással Y Q = Q + Q +... + Q + Q + Q3 +... + Q k hiba
RészletesebbenTudományos Ismeretterjesztő Társulat
Sample letter number 5. International Culture Festival PO Box 34467 Harrogate HG 45 67F Sonnenbergstraße 11a CH-6005 Luzern Re: Festival May 19, 2009 Dear Ms Atkinson, We are two students from Switzerland
RészletesebbenCsatlakozás a BME eduroam hálózatához Setting up the BUTE eduroam network
Csatlakozás a BME eduroam hálózatához Setting up the BUTE eduroam network Table of Contents Windows 7... 2 Windows 8... 6 Windows Phone... 11 Android... 12 iphone... 14 Linux (Debian)... 20 Sebők Márton
RészletesebbenWIL-ZONE TANÁCSADÓ IRODA
WIL-ZONE TANÁCSADÓ IRODA Berényi Vilmos vegyész, analitikai kémiai szakmérnök akkreditált minőségügyi rendszermenedzser regisztrált vezető felülvizsgáló Telefon és fax: 06-33-319-117 E-mail: info@wil-zone.hu
RészletesebbenANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY
ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY A feladatsor három részből áll 1. A vizsgáztató társalgást kezdeményez a vizsgázóval. 2. A vizsgázó egy szituációs feladatban vesz részt a
RészletesebbenPhEur Two-dose multiple assay with completely randomised design An assay of corticotrophin by subcutaneous injection in rats
PhEur... Two-dose multiple assay with completely randomised design An assay of corticotrophin by subcutaneous injection in rats 00 80 60 0 0 00 80 60 0 0 catterplot of multiple variables against dose PhEur_.sta
RészletesebbenA JOHNSON NEYMAN-MÓDSZER BEMUTATÁSA ÉS ALKALMAZÁSA
MÓDSZERTANI TANULMÁNYOK A JOHNSON NEYMAN-MÓDSZER BEMUTATÁSA ÉS ALKALMAZÁSA A Johnson Neyman-módszer bemutatását és használatának elméleti és konkrét példákkal történő megismertetését elsősorban azok az
RészletesebbenFOSS4G-CEE Prágra, 2012 május. Márta Gergely Sándor Csaba
FOSS4G-CEE Prágra, 2012 május Márta Gergely Sándor Csaba Reklám helye 2009 óta Intergraph szoftverek felől jöttünk FOSS4G felé megyünk Békés egymás mellett élés több helyen: Geoshop.hu Terkep.torokbalint.hu
RészletesebbenTudományos Ismeretterjesztő Társulat
Sample letter number 3. Russell Ltd. 57b Great Hawthorne Industrial Estate Hull East Yorkshire HU 19 5BV 14 Bebek u. Budapest H-1105 10 December, 2009 Ref.: complaint Dear Sir/Madam, After seeing your
RészletesebbenComputer Architecture
Computer Architecture Locality-aware programming 2016. április 27. Budapest Gábor Horváth associate professor BUTE Department of Telecommunications ghorvath@hit.bme.hu Számítógép Architektúrák Horváth
RészletesebbenTANULÁSI GÖRBÉK AZ ÉPÍTŐIPARBAN
TANULÁSI GÖRBÉK AZ ÉPÍTŐIPARBAN Mályusz Levente ELŐZMÉNYEK 1 Tanulási görbe T.P. Wright 1936; Repülőgép alkatrészeket gyártó vállalatnál végezte kísérleteit Alapelv: Az ismétlődő munkát végző ember a betanulás
RészletesebbenProxer 7 Manager szoftver felhasználói leírás
Proxer 7 Manager szoftver felhasználói leírás A program az induláskor elkezdi keresni az eszközöket. Ha van olyan eszköz, amely virtuális billentyűzetként van beállítva, akkor azokat is kijelzi. Azokkal
RészletesebbenANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT
ANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT A feladatok megoldására 45 perc áll rendelkezésedre, melyből körülbelül 10-15 percet érdemes a fogalmazási feladatra szánnod. Megoldásaid a válaszlapra írd! 1.
RészletesebbenTHS710A, THS720A, THS730A & THS720P TekScope Reference
THS710A, THS720A, THS730A & THS720P TekScope Reference 070-9741-01 Getting Started 1 Connect probes or leads. 2 Choose SCOPE 3 or METER mode. Press AUTORANGE. Copyright Tektronix, Inc. Printed in U.S.A.
RészletesebbenANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY
ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY A feladatsor három részbol áll 1. A vizsgáztató társalgást kezdeményez a vizsgázóval. 2. A vizsgázó egy szituációs feladatban vesz részt a
RészletesebbenEnsemble Kalman Filters Part 1: The basics
Ensemble Kalman Filters Part 1: The basics Peter Jan van Leeuwen Data Assimilation Research Centre DARC University of Reading p.j.vanleeuwen@reading.ac.uk Model: 10 9 unknowns P[u(x1),u(x2),T(x3),.. Observations:
RészletesebbenExpansion of Red Deer and afforestation in Hungary
Expansion of Red Deer and afforestation in Hungary László Szemethy, Róbert Lehoczki, Krisztián Katona, Norbert Bleier, Sándor Csányi www.vmi.szie.hu Background and importance large herbivores are overpopulated
RészletesebbenNÖVENDÉKNYULAK TESTÖSSZETÉTELÉNEK BECSLÉSE TOBEC MÓDSZERREL
12. Nyúltenyésztési Tudományos Nap, Kaposvár NÖVENDÉKNYULAK TESTÖSSZETÉTELÉNEK BECSLÉSE TOBEC MÓDSZERREL MILISITS G., SZENDRŐ ZS., MIHÁLOVICS GY., LÉVAI A., BIRÓ-NÉMETH E., RADNAI I. Kaposvári Egyetem,
Részletesebben1. Gyakorlat: Telepítés: Windows Server 2008 R2 Enterprise, Core, Windows 7
1. Gyakorlat: Telepítés: Windows Server 2008 R2 Enterprise, Core, Windows 7 1.1. Új virtuális gép és Windows Server 2008 R2 Enterprise alap lemez létrehozása 1.2. A differenciális lemezek és a két új virtuális
RészletesebbenA modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató
A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében Dicse Jenő üzletfejlesztési igazgató How to apply modern e-learning to improve the training of firefighters Jenő Dicse Director of
RészletesebbenGyőrBike a győri közösségi bérkerékpár rendszer első éve
GyőrBike a győri közösségi bérkerékpár rendszer első éve Magyar Urbanisztikai Társaság Győr-Moson-Sopron megyei csoportja MTA KRTK RKI Nyugat-magyarországi Tudományos Osztály Smart City rendezvénysorozat
RészletesebbenMARKETINGKUTATÁS II. Oktatási segédanyag. Budapest, 2004. február
MARKETINGKUTATÁS II. Oktatási segédanyag Budapest, 2004. február Tartalomjegyzék ELŐSZÓ... 2 1 AZ SPSS-RŐL ÁLTALÁBAN... 3 1.1 DATA EDITOR... 3 1.2 VIEWER... 4 1.3 CHART EDITOR... 4 2 ADATBEVITEL... 5 2.1
RészletesebbenLocal fluctuations of critical Mandelbrot cascades. Konrad Kolesko
Local fluctuations of critical Mandelbrot cascades Konrad Kolesko joint with D. Buraczewski and P. Dyszewski Warwick, 18-22 May, 2015 Random measures µ µ 1 µ 2 For given random variables X 1, X 2 s.t.
RészletesebbenBKI13ATEX0030/1 EK-Típus Vizsgálati Tanúsítvány/ EC-Type Examination Certificate 1. kiegészítés / Amendment 1 MSZ EN 60079-31:2014
(1) EK-TípusVizsgálati Tanúsítvány (2) A potenciálisan robbanásveszélyes környezetben történő alkalmazásra szánt berendezések, védelmi rendszerek 94/9/EK Direktíva / Equipment or Protective Systems Intended
RészletesebbenDOAS változások, összefoglaló
DOAS 3.835.2.0 változások, összefoglaló 1149 Budapest, Egressy út 17-21. Telefon: +36 1 469 4021; fax: +36 1 469 4029 1 / 6 Tartalomjegyzék 1. Start Csomag /Start package...3 1.1. Általános modul / General
RészletesebbenPletykaalapú gépi tanulás teljesen elosztott környezetben
Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Jelasity Márk témavezető Szegedi Tudományegyetem MTA-SZTE Mesterséges Intelligencia Kutatócsopot Motiváció Az adat adatközpontokban
RészletesebbenOut-Look. Display. Analog Bar. Testing Mode. Main Parameter. Battery Indicator. Second Parameter. Testing Frequency
Out-Look Display Analog Bar Testing Mode Battery Indicator 1. LCD Display 2. Power Key 3. Mode Key 4. HOLD Key 5. Function Keys 6. Component socket (5Wire) 7. 2Wire Input Terminals Testing Frequency Main
RészletesebbenAz R statisztikai programozási környezet: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig
: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig Ferenci Tamás ferenci.tamas@nik.uni-obuda.hu 2017. február 23. Tartalom Az R mint programozási nyelv A könyvtárakról
RészletesebbenSOFI State of the Future Index
SOFI State of the Future Index http://www.millenniumproject.org/millennium/sofi.html BARTHA ZOLTÁN, SZITA KLÁRA MTA IX.O. SJTB JTAB ÜLÉS 2015.02.13. Főbb kérdések Mit takar a SOFI Módszertan Eredmények
RészletesebbenMezőgazdasági gépesítési tanulmányok Agricultural Engineering Research MŰANYAG CSOMAGOLÓ- ÉS TAKARÓ FÓLIÁK REOLÓGIAI VIZSGÁLATA
Mezőgazdasági gépesítési tanulmányo Agricultural Engineering Research Kiadó: Dr. Fenyvesi László főigazgató FVM Mezőgazdasági Gépesítési Intézet özleménye Bulletin of the Hungarian Institute of Agricultural
RészletesebbenGeokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka
Geokémia gyakorlat 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek Geológus szakirány (BSc) Dr. Lukács Réka MTA-ELTE Vulkanológiai Kutatócsoport e-mail: reka.harangi@gmail.com ALAPFOGALMAK:
RészletesebbenAz Open Data jogi háttere. Dr. Telek Eszter
Az Open Data jogi háttere Dr. Telek Eszter Egy kis ismétlés Open Data/Open Access/Open Knowledge gyökerei Open Source Software FLOSS (Free Libre Open Source Software) Szoftver esetében egyszerű alapok:
RészletesebbenLDV Project. Szeretettel köszönjük Önöket Egerben a Leonardo Projekt Workshopján. We welcome - with much love - our dear guests!
LDV Project Szeretettel köszönjük Önöket Egerben a Leonardo Projekt Workshopján We welcome - with much love - our dear guests! Akkreditációs eljárás Magyarországon Accreditation in Hungary 1. Tankönyv
RészletesebbenFlowering time. Col C24 Cvi C24xCol C24xCvi ColxCvi
Flowering time Rosette leaf number 50 45 40 35 30 25 20 15 10 5 0 Col C24 Cvi C24xCol C24xCvi ColxCvi Figure S1. Flowering time in three F 1 hybrids and their parental lines as measured by leaf number
RészletesebbenA magyar racka juh tejének beltartalmi változása a laktáció alatt
A magyar racka juh tejének beltartalmi változása a laktáció alatt Nagy László Komlósi István Debreceni Egyetem Agrártudományi Centrum, Mezőgazdaságtudományi Kar, Állattenyésztés- és Takarmányozástani Tanszék,
Részletesebben