Több laboratórium összehasonlítása, körmérés

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Több laboratórium összehasonlítása, körmérés"

Átírás

1 Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests, E. H. Steiner: Planning and Analysis of Results of Colorative Tests Laboratóriumok összehasonlítása A cél: a módszerek megbízhatóságának értékelése a rendszeres hibák nagyságának számszerűsítése (a résztvevő oratóriumok alkalmasságának vizsgálata) Megfelelő időpontja: amikor a módszer már kialakult ruggedness test után Módja: minden résztvevő or minden mintát egyszer vagy többször analizál Laboratóriumok összehasonlítása

2 Két fő módszer: Youden páronként ill. véletlen blokk ismétlés nélkül Steiner több ismétléssel Értékelés Youden-plot rang-módszer (Friedman) kiugró értékek vizsgálata/kiszűrése véletlen blokk/anova (Youden) teljes terv kereszt-osztályozással/anova (Steiner) Laboratóriumok összehasonlítása Valódi érték (valódi koncentráció) nagyon tiszta standard két vagy több analitikai módszer konvergenciája Az ismétlés hátrányai a minta ismerős lesz censoring Statisztikai problémák σ e oron belüli ingadozás nem konstans másodlagos fontosságú Laboratóriumok összehasonlítása 4

3 Minták azonos minták homogenitás esetleg analízisre előkészítve A teljes tervből (Steiner) becsülhető σ A orok közötti különbség σ AB or*minta kölcsönhatás σ e oron belüli ingadozás A véletlen blokkos tervből (Youden) becsülhető σ A orok közötti különbség σ + AB σ e Laboratóriumok összehasonlítása Youden módszere Minden résztvevő oratórium két (egymáshoz közeli) mintát mér (x és y), egyszer. y # # # # # # # # #4 # # # # # # # #4 #0 # Youden-plot # x Laboratóriumok összehasonlítása

4 # # # # # # µ =.0 µ =. y # # # # # # # # #4 #0 # # #4 orok között σ A =.0 # oron belül σ e = 0. x Az egyes orok jó ismételhetőséggel követik a saját verziójuk szerinti eljárást, de a orok között nagy különbségek vannak. Mi a baj az eljárással (leírással)? Laboratóriumok összehasonlítása y # #4 # #0 # #4 # # # # # # # # # # # # µ =.0 µ =. orok között σ A =.0 # # oron belül σ e =.0 x Laboratóriumok összehasonlítása

5 µ =.0 µ =. y orok között σ A = 0. oron belül x σ e = 0. Laboratóriumok összehasonlítása y x Laboratóriumok összehasonlítása

6 . példa Youden p. minta vízoldhatatlan N-tartalma Youdenp.sta 4 Coll Sample_ Sample_ 4 Sample_ Sample_4 Sample_ Laboratóriumok összehasonlítása Rang-próba (Friedman ANOVA) Sample_ Sample_ Sample_ Sample_4 Sample_ Variable Friedman ANOVA and Kendall Coeff. of Concordance (Youdenp_transposed.sta) ANOVA Chi Sqr. (N =, df = ) =.4 p =.0 Coeff. of Concordance =.4 Aver. rank r =.0 Average Sum of Mean Std.Dev. Rank Ranks , or gyanús (4>4) Laboratóriumok összehasonlítása

7 Laboratóriumok összehasonlítása orok közötti σ A σ e ( σ + ) AB σ e orokon belüli Components of Variance (Youdenp_stacked.sta) Effect Value Coll.4.44 Effect Intercept Coll Sample Univariate Tests of Significance for Value (Youdenp_stacked.sta) Effect SS Degr. of MS Den.Syn. Den.Syn. F p (F/R) Freedom df MS Fixed Random Fixed Laboratóriumok összehasonlítása 4

8 . példa Youden p. 4 minta Al-tartalma Youdenp4.sta Variable 4 Friedman ANOVA and Kendall Coeff. of Concordance (Youdenp4_transposed.sta) ANOVA Chi Sqr. (N =, df = ) =. p =.00 Coeff. of Concordance =.0 Aver. rank r =. Average Sum of Mean Std.Dev. Rank Ranks , és. or gyanús (4>4, 4>4) Laboratóriumok összehasonlítása Youdenp4.sta v*c.0. #. Limestone_ # # # #4 # # # #... # Limestone_ Laboratóriumok összehasonlítása

9 Effect Intercept Coll Code Univariate Tests of Significance for Value (Youdenp4_stacked.sta) Effect SS Degr. of MS Den.Syn. Den.Syn. F p (F/R) Freedom df MS Fixed Random Fixed Components of Variance (Youdenp4_stacked.sta) Effect Value Coll Effect Coll Restricted Maximum Likelihood Estimates (Youdenp4_stacked.sta) Variable: Value -*Log(Likelihood)=.44 Variance Standard df z Prob. Alpha Lower Upper Sum Percent RSD (%) Value Value z.0000%.0000% Laboratóriumok összehasonlítása.0 Residual vs. Predicted Values Dependent variable: Value Raw Residuals Normal Prob. Plot; Raw Residuals -.0 Dependent variable: Value Predicted Values Expected Normal Value Laboratóriumok összehasonlítása Residual

10 . példa Steiner p. minta orban sample sample sample Laboratóriumok összehasonlítása 4 sum sum 4 sum Laboratóriumok összehasonlítása 0

11 Variable 4 Friedman ANOVA and Kendall Coeff. of Concordance (-Way Tables of Descriptive Statistics (Steinerpm.sta)) ANOVA Chi Sqr. (N =, df = ) =. p =. Coeff. of Concordance =.0 Aver. rank r =.0 Average Sum of Mean Std.Dev. Rank Ranks , a 4. or gyanús (>) Laboratóriumok összehasonlítása. minta. minta. minta max 4... max max-min xmax xmax = 0.0 = 0.4 x x max min + = 0.0 min min xmin x = 0. = 0.0 = 0.0 x xmin max Dixon-próba a 4. or nélkül min max - -min mérésre (orra) a kritikus érték (α=0.0) 0.4. or. mintája (4.) kiugró, a mérési jegyzőkönyv alapján. helyett. a jó érték Laboratóriumok összehasonlítása

12 Varianciaanalízis a 4. orral együtt Effect Intercept Code *Code Univariate Tests of Significance for Value (Steinerpm_corr_stacked.sta) Effect SS Degr. of MS Den.Syn. Den.Syn. F p (F/R) Freedom df MS Fixed Random Fixed Random Effect *Code Components of Variance (Steinerpm_corr_stacked.sta) Value Laboratóriumok összehasonlítása Varianciaanalízis a 4. or nélkül Effect Intercept Code *Code Univariate Tests of Significance for Value (Steinerpm_corr_stacked.sta) Exclude condition: =4 Effect SS Degr. of MS Den.Syn. Den.Syn. F p (F/R) Freedom df MS Fixed Random Fixed Random Effect *Code Components of Variance (Steinerpm_corr_stacked.sta) Exclude condition: =4 Value Laboratóriumok összehasonlítása 4

13 0. Residual vs. Predicted Values Dependent variable: Value Exclude condition: = Raw Residuals Predicted Values Sheet Value Code 4 sample Laboratóriumok összehasonlítása.0 Normal Prob. Plot; Raw Residuals Dependent variable: Value Exclude condition: =4 Expected Normal Value Residual Laboratóriumok összehasonlítása

14 lnsd Scatterplot of lnsd against lnmean Breakdown Table of Descriptive Statistics (Steinerpm_corr_stacked.sta) v*0c lnsd = *x lnmean α Laboratóriumok összehasonlítása α λ=-α transzformáció - / y. -0. / y 0 ln y y 0 (nincs transzformáció) λ Laboratóriumok összehasonlítása

15 Effect Intercept Code *Code Univariate Tests of Significance for lnvalue (Steinerpm_corr_stacked.sta) Exclude condition: =4 Effect SS Degr. of MS Den.Syn. Den.Syn. F p (F/R) Freedom df MS Fixed Random Fixed Random Effect *Code Components of Variance (Steinerpm_corr_stacked.sta) Exclude condition: =4 lnvalue Laboratóriumok összehasonlítása

KISTERV2_ANOVA_

KISTERV2_ANOVA_ Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

BIOMETRIA_ANOVA_2 1 1

BIOMETRIA_ANOVA_2 1 1 Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

Motivációs diasor Ha megéri, nem baj, hogy nehéz!

Motivációs diasor Ha megéri, nem baj, hogy nehéz! Motivációs diasor Ha megéri, nem baj, hogy nehéz! Biometria - Bevezetés 1 Sertések gyógytáppal való kezelése Csoportok: Függő változó: testtömeg (DBW) Kezelt (Trial) Kezeletlen (Control) Kísérleti elrendezés:

Részletesebben

PhEur Two-dose multiple assay with completely randomised design An assay of corticotrophin by subcutaneous injection in rats

PhEur Two-dose multiple assay with completely randomised design An assay of corticotrophin by subcutaneous injection in rats PhEur... Two-dose multiple assay with completely randomised design An assay of corticotrophin by subcutaneous injection in rats 00 80 60 0 0 00 80 60 0 0 catterplot of multiple variables against dose PhEur_.sta

Részletesebben

4. példa: részfaktorterv+fold-over, centrumponttal

4. példa: részfaktorterv+fold-over, centrumponttal 4. példa: 7-4 részfaktorterv+fold-over, centrumponttal A kísérletek célja egy speciális anyag optimális előállítási körülményeinek meghatározása volt. A célfüggvény a kihozatal %, melynek maximális értékét

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

Minőségjavító kísérlettervezés

Minőségjavító kísérlettervezés . példa J.J. Pignatiello, J.S. Ramberg: J. Quality Technology, 17 198-06 (1985) kézbentartható -1 1 A: high heat temperature ( 0 F) 1840 1880 B: heating time (s) 3 5 C: transfer time (s) 10 1 D: hold down

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

WIL-ZONE TANÁCSADÓ IRODA

WIL-ZONE TANÁCSADÓ IRODA WIL-ZONE TANÁCSADÓ IRODA Berényi Vilmos vegyész, analitikai kémiai szakmérnök akkreditált minőségügyi rendszermenedzser regisztrált vezető felülvizsgáló Telefon és fax: 06-33-319-117 E-mail: info@wil-zone.hu

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

Critical mix. 15. példa. 2 égh. anyag. 1 oxigén. 3 ég-e. 2 van nincs 0 3 nincs van 0 4 van van 1. 1 nincs nincs 0

Critical mix. 15. példa. 2 égh. anyag. 1 oxigén. 3 ég-e. 2 van nincs 0 3 nincs van 0 4 van van 1. 1 nincs nincs 0 Critical mix 5. példa oxigén égh. anyag ég-e nincs nincs van nincs nincs van van van van égh. anyag nincs Effect Estimates; **(-) design DV: ég-e Factor Effect Coeff. Mean/Interc. ()oxigén ()égh. anyag

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

TAGUCHI ÉS SHAININ. Taguchi módszere a minőség kísérletes javítására

TAGUCHI ÉS SHAININ. Taguchi módszere a minőség kísérletes javítására Minőségjavító kísérlettervezés TAGUCHI ÉS SHAININ 1 Taguchi módszere a minőség kísérletes javítására 1. példa Ina Tile: sok a selejt a kemence különböző pontjain a hőmérséklet nem azonos A kemence áttervezése

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

Minőség-képességi index (Process capability)

Minőség-képességi index (Process capability) Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286

Részletesebben

Statisztika, próbák Mérési hiba

Statisztika, próbák Mérési hiba Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

You created this PDF from an application that is not licensed to print to novapdf printer (

You created this PDF from an application that is not licensed to print to novapdf printer ( 4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 Run: Run: Run: Run: 4 Run: 5 Run: 6 4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5

Részletesebben

Feltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2

Feltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2 Kabos: Ordinális változók Hipotézisvizsgálat-1 Minta: X 1, X 2,..., X N EVM (=egyszerű véletlen minta) X-re Feltesszük, hogy a mintaelemek között nincs két azonos. Rendezett minta: X (1), X (2),..., X

Részletesebben

Statisztika II. feladatok

Statisztika II. feladatok Statisztika II. feladatok 1. Egy női ruhákat és kiegészítőket forgalmazó üzletlánc 118 egységénél felmérést végzett arról, milyen tényezők befolyásolják a havi összbevételüket (EUR). a) Pótolja ki a táblázatok

Részletesebben

Normál eloszlás. Gyakori statisztikák

Normál eloszlás. Gyakori statisztikák Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,

Részletesebben

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ANOVA ( ) 2. χ σ. α ( ) 2. y y y p p y y = + + = + + p p r. Fisher-Cochran-tétel

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ANOVA ( ) 2. χ σ. α ( ) 2. y y y p p y y = + + = + + p p r. Fisher-Cochran-tétel NOV ( ) ( ) ( ) ( ) ( ) ( ) a Y Y Y Y µ µ µ + + + ( ) ( ) ( ) ( ) + + Y µ µ µ ( ) ( ) ( ) + + µ χ e ( ) ( ) r + + Fher-Cochran-tétel mnd NOV ( ) e χ : H ( ) e S χ ( ) e r ν χ ( ) e S χ ( ) e r r ν χ F

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

[Biomatematika 2] Orvosi biometria. Visegrády Balázs [Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés

Részletesebben

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás

Részletesebben

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation

Részletesebben

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése Rezsabek Tamás GSZDI Anyag és módszer Központi Statisztikai Hivatalának adatai

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression Correlation & Regression Types of dependence association between nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation describes the strength of a relationship,

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

Statistical Inference

Statistical Inference Petra Petrovics Statistical Inference 1 st lecture Descriptive Statistics Inferential - it is concerned only with collecting and describing data Population - it is used when tentative conclusions about

Részletesebben

Statistical Dependence

Statistical Dependence Statistical Dependence Petra Petrovics Statistical Dependence Deinition: Statistical dependence exists when the value o some variable is dependent upon or aected by the value o some other variable. Independent

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Minőségjavító kísérlettervezés TAGUCHI ÉS SHAININ

Minőségjavító kísérlettervezés TAGUCHI ÉS SHAININ Minőségjavító kísérlettervezés TAGUCHI ÉS SHAININ 1 Taguchi módszere a minőség kísérletes javítására 1. példa Ina Tile: sok a selejt a kemence különböző pontjain a hőmérséklet nem azonos A kemence áttervezése

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests Nonparametric Tests Petra Petrovics Hypothesis Testing Parametric Tests Mean of a population Population proportion Population Standard Deviation Nonparametric Tests Test for Independence Analysis of Variance

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

Shainin-kísérlettervezés

Shainin-kísérlettervezés Shainin-kísérlettervezés Sokváltozós Alkatrész- Páronkénti diagram keresés összehasonlítás Változók keresése Teljes faktoros tervek B/C összehasonlítás Kétváltozós ábrázolás Shainin 56 Krónikus gyártási

Részletesebben

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként

Részletesebben

Logisztikus regresszió október 27.

Logisztikus regresszió október 27. Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai

Részletesebben

A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében

A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében Kiegészítő elemzés A rádió és televízió műsorszórás használatára a 14 éves

Részletesebben

ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18)

ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18) ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18) Előadó: Lakat Károly, L.K. Quality Bt. 2017 szeptember 27 EOQ MNB Szakbizottsági ülés Minitab 18 újdonságai Session ablak megújítása

Részletesebben

MSA - mérőrendszer elemzés (MSA - measurement systems analysis)

MSA - mérőrendszer elemzés (MSA - measurement systems analysis) Mi értünk mérőrendszer alatt? MSA - mérőrendszer elemzés (MSA - measurement systems analysis) Ahhoz, hogy valamilyen termék, folyamatparamétert értékelni, összehasonlítani tudjunk pl.: elvárt értékkel,

Részletesebben

2 p típusú teljes faktoros kísérleti tervek. Kísérlettervezés. Mit akarunk megtudni? mátrix-terv. a változók egyenkénti változtatása. x 3 x 2.

2 p típusú teljes faktoros kísérleti tervek. Kísérlettervezés. Mit akarunk megtudni? mátrix-terv. a változók egyenkénti változtatása. x 3 x 2. Kísérlettervezés Mit akarunk megtudni? 8 6 4 Y = β + β x + β x +... + β p x p p típusú teljes faktoros kísérleti tervek 4. 7 5 8 x 3 x 3. 6 3. x 3 x 4 x. x a) b) a változók egyenkénti változtatása mátrix-terv

Részletesebben

4. példa: részfaktorterv+fold-over, centrumponttal

4. példa: részfaktorterv+fold-over, centrumponttal 4. példa: 7-4 részfaktorterv+fold-over, centrumponttal A kísérletek célja egy speciális anyag optimális előállítási körülményeinek meghatározása volt. A célfüggvény a kihozatal %, melynek maimális értékét

Részletesebben

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Petra Petrovics DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs - descriptive

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

Eloszlás-független módszerek 13. elıadás ( lecke)

Eloszlás-független módszerek 13. elıadás ( lecke) Eloszlás-független módszerek 13. elıadás (25-26. lecke) Rangszámokon alapuló korrelációs együttható A t-próbák és a VA eloszlásmentes megfelelıi 25. lecke A Spearman-féle rangkorrelációs együttható A Kendall-féle

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

SPSS ÉS STATISZTIKAI ALAPOK II.

SPSS ÉS STATISZTIKAI ALAPOK II. SPSS ÉS STATISZTIKAI ALAPOK II. Bevezetés A második negyedéves anyag alapvetően olyan statisztikai elemzéseket tartalmaz, amelyek átlagok összehasonlítására alkalmasak. Tipikus kérdések: 1) Intelligensebbek-e

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

MARKETINGKUTATÁS II. Oktatási segédanyag. Budapest, 2004. február

MARKETINGKUTATÁS II. Oktatási segédanyag. Budapest, 2004. február MARKETINGKUTATÁS II. Oktatási segédanyag Budapest, 2004. február Tartalomjegyzék ELŐSZÓ... 2 1 AZ SPSS-RŐL ÁLTALÁBAN... 3 1.1 DATA EDITOR... 3 1.2 VIEWER... 4 1.3 CHART EDITOR... 4 2 ADATBEVITEL... 5 2.1

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

Az R statisztikai programozási környezet: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig

Az R statisztikai programozási környezet: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig : az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig Ferenci Tamás ferenci.tamas@nik.uni-obuda.hu 2017. február 23. Tartalom Az R mint programozási nyelv A könyvtárakról

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics. Nonparametric Tests Petra Petrovics PhD Student Hypothesis Testing Parametric Tests Mean o a population Population proportion Population Standard Deviation Nonparametric Tests Test or Independence Analysis

Részletesebben

Módszertani eljárások az időtényező vezetési, szervezeti folyamatokban betöltött szerepének vizsgálatához

Módszertani eljárások az időtényező vezetési, szervezeti folyamatokban betöltött szerepének vizsgálatához Módszertani eljárások az időtényező vezetési, szervezeti folyamatokban betöltött szerepének vizsgálatához Bácsné Bába Éva Debreceni Egyetem Agrártudományi Centrum, Agrárgazdasági és Vidékfejlesztési Kar,

Részletesebben

Nem. Cumulative Percent 1,00 férfi ,9 25,9 25,9 2,00 nı ,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Total ,0 100,0

Nem. Cumulative Percent 1,00 férfi ,9 25,9 25,9 2,00 nı ,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Total ,0 100,0 Függelék II. Demográfia Nem Frequency Percent Percent Cumulative Percent 1,00 férfi 727 25,9 25,9 25,9 2,00 nı 2053 73,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Korcsoport Frequency Percent Percent

Részletesebben

1. melléklet A ciklodextrin hatásának jellemzése mikroorganizmusok szaporodására Murányi Attila

1. melléklet A ciklodextrin hatásának jellemzése mikroorganizmusok szaporodására Murányi Attila 1. melléklet A ciklodextrin hatásának jellemzése mikroorganizmusok szaporodására Murányi Attila Bevezetés... 1 A kutatás hipotézise... 2 A kutatás célja... 2 Az alkalmazott mikroorganizmusok... 3 Kísérleti

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI MA. T.P.Lenke

A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI MA. T.P.Lenke A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI MA T.P.Lenke 2013.10.25. 2 Szignifikáns különbség Annak bizonyítása, hogy a vizsgálat során megfigyelt különbség egy általunk meghatározott valószínűségi szinten

Részletesebben

Biológiai anyagok hatásának értékelése, ha közvetlen fizikai vagy kémiai analízis nem alkalmazható.

Biológiai anyagok hatásának értékelése, ha közvetlen fizikai vagy kémiai analízis nem alkalmazható. Boassa Bológa anagok hatásának értékelése, ha közvetlen fzka vag kéma analízs nem alkalmazható. Alapja standard készítménnel való összehasonlítás: a vzsgált anag mlen mennsége ad uganakkora hatást, mnt

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics. Hypothesis Testing Petra Petrovics PhD Student Inference from the Sample to the Population Estimation Hypothesis Testing Estimation: how can we determine the value of an unknown parameter of a population

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla

Részletesebben

A mintavétel bizonytalansága

A mintavétel bizonytalansága A mintavétel bizonytalansága Farkas Zsuzsa, Prof. Dr. Ambrus Árpád FarkasZs@nebih.gov.hu, AmbrusArp@nebih.gov.hu NÉBIH ÉKI A termék megfelelőség ellenőrzése - A mintavétel és az analitikai vizsgálati eredmények

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics. Correlation & Linear Regression in SPSS Petra Petrovics PhD Student Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise

Részletesebben

Reiczigel Jenő, 2006 1

Reiczigel Jenő, 2006 1 Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézis Állítás a populációról (vagy annak paraméteréről) Példák H1: p=0.5 (a pénzérme

Részletesebben

Egyenlőtlenségi mérőszámok alkalmazása az adatbányászatban. Hajdu Ottó BCE: Statisztika Tanszék BME: Pénzügyek tanszék Budapest, 2011

Egyenlőtlenségi mérőszámok alkalmazása az adatbányászatban. Hajdu Ottó BCE: Statisztika Tanszék BME: Pénzügyek tanszék Budapest, 2011 Egyenlőtlenségi mérőszámok alkalmazása az adatbányászatban Hajdu Ottó BCE: Statisztika Tanszék BME: Pénzügyek tanszék Budapest, 2011 Adatbányászati feladatok 1. Ismert mintákon, példákon való tanulás (extracting

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Fkt Faktoranalízis líi Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására szolgál. A kiinduló változók számát úgynevezett faktorváltozókba

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Statisztikai folyamatszabályozás Minitab szoftverrel

Statisztikai folyamatszabályozás Minitab szoftverrel Statisztikai folyamatszabályozás Minitab szoftverrel A Minitab általános statisztikai szoftvert elsősorban statisztikai feladatok megoldására (oktatásra és minőségfejlesztésre) használják, és másodsorban

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Statisztika II előadáslapok. 2003/4. tanév, II. félév

Statisztika II előadáslapok. 2003/4. tanév, II. félév Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az

Részletesebben

A JOHNSON NEYMAN-MÓDSZER BEMUTATÁSA ÉS ALKALMAZÁSA

A JOHNSON NEYMAN-MÓDSZER BEMUTATÁSA ÉS ALKALMAZÁSA MÓDSZERTANI TANULMÁNYOK A JOHNSON NEYMAN-MÓDSZER BEMUTATÁSA ÉS ALKALMAZÁSA A Johnson Neyman-módszer bemutatását és használatának elméleti és konkrét példákkal történő megismertetését elsősorban azok az

Részletesebben

y ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti.

y ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti. Elmélet let BIOMETRIA 7. Előad adás Variancia-anal Lineáris modellek A magyarázat a függf ggő változó teljes heterogenitásának nak két k t részre r bontását t jelenti. A teljes heterogenitás s egyik része

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka Geokémia gyakorlat 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek Geológus szakirány (BSc) Dr. Lukács Réka MTA-ELTE Vulkanológiai Kutatócsoport e-mail: reka.harangi@gmail.com ALAPFOGALMAK:

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés

Részletesebben

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk Egy faktor zernt NOV Nevével ellentétben nem zóráok, hanem átlagok özehaonlítáára zolgál Több független mntánk van, elemzámuk,...,,, r y,...,, y, y,..., yr;,, r H : r NOV. élda (Box-Hunter-Hunter: Stattc

Részletesebben

Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA

Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat

Részletesebben

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés

Részletesebben

STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1

STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1 STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

p-érték, hipotézistesztelés, és ellentmondásaik

p-érték, hipotézistesztelés, és ellentmondásaik p-érték, hipotézistesztelés, és ellentmondásaik Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. Következtetéselmélet A megfigyelt világ és a tudásunk összekapcsolása Deduktív következtetés: kiindulunk

Részletesebben

STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat

STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése

Részletesebben

Standardizálás, transzformációk

Standardizálás, transzformációk Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles

Részletesebben