Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos
|
|
- Ádám Hegedüs
- 7 évvel ezelőtt
- Látták:
Átírás
1 Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos
2 ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás vizsgálata és transzformációja Adatállomány: otp.gdt Minta (training): (T=2717)
3 Trend van a folyamatban! Az idősori folyamat a szinten: OTP napi átlagárfolyam
4 Stacionaritási vizsgálat: Korrelogram Megállapítások: 1. A folyamat a szinten nem stacioner (a korrelogram nem cseng le zéróhoz kevés számú késleltetést követően) 2. Az ACF, PACF és Q-statisztika értékek értelmezhetetlenek! Lag ACF PACF Q-stat [p-value] *** *** [0.000] *** *** [0.000] *** [0.000] *** [0.000] *** [0.000] *** [0.000] *** [0.000] *** [0.000] *** [0.000] *** ** [0.000] *** [0.000] *** * [0.000] *** [0.000] *** [0.000] *** [0.000]
5 Stacionaritás vizsgálat: ADF egységgyök-teszt p 2 * t 1 2 t 1 k t k t k= 1 Trend Y =α+β t+β t +φ Y + δ Y + WN t, Y=AtlAr p max = int(12 (2716 /100) ^ 0.25) = 27 Test down from maximum lag order using modified Akaike criterion Augmented Dickey-Fuller regression OLS, using observations : (T = 2689) Dependent variable: d_atlar coefficient std. error t-ratio p-value const AtlAr_ d_atlar_ *** d_atlar_ *** d_atlar_ ** d_atlar_ time timesq ** H0: Coeff(AtlAR_1)= φ* = 0 H1: Coeff(AtlAR_1)<0
6 Folyamat: elsőrendű differencia ( AtlAr) AtlAr(t) AtlAr(t-1) d_atlar AtlAr(t) AtlAr(t-1) NA NA d_atlar - zéró körül szóródik - varianciája nem állandó, az idővel növekszik A folyamat vélhetően nem stacioner
7 Elsőrendű differencia: korrelogram, ADF teszt max int(12 (2715/100) ^ 0.25) 27 p = = Test down from maximum lag order using modified Akaike criterion Augmented Dickey-Fuller regression OLS, using observations : (T = 2707) Dependent variable: d_d_atlar coeff std. error t-ratio p-value const d_atlar_ *** d_d_atlar_ d_d_atlar_ d_d_atlar_ *** d_d_atlar_ *** d_d_atlar_ d_d_atlar_ *** d_d_atlar_ d_d_atlar_ *** time 7.05E E E E-01 timesq 3.54E E E E-01 Lag ACF PACF *** *** *** *** *** *** *** *** ** *** * *** *** * *** *** * ** ** ** Megállapítások: Az elsőrendű differencia stacionaritása nem egyértelmű. Bár az ADF teszt nem jelez egységgyököt, a lassan lecsengő ACF és PACF függvény, valamint a változékony variancia a stacionaritás ellen szól.
8 Folyamat: másodrendű-differencia ( AtlAr) d_atlar(t) d_atlar(t-1) d_d_atlar NA NA NA NA NA Augmented Dickey-Fuller test for d_d_atlar including one lag of (1-L)d_d_AtlAr (max was 27, criterion modified AIC) sample size 2713 unit-root null hypothesis: a = 1 with constant and quadratic trend model: (1-L)y = b0 + b1*t + b2*t^2 + +(a-1)*y(-1) e 1st-order autocorrelation coeff. for e: estimated value of (a - 1): test statistic: tau_ctt(1) = asymptotic p-value 0 Lag ACF PACF Q-stat [p-value] *** *** [0.000] *** *** [0.000] *** *** [0.000] *** [0.000] *** *** [0.000] *** *** [0.000] *** *** [0.000] *** *** [0.000] *** [0.000] * *** [0.000] ** *** [0.000] ** [0.000] ** *** [0.000] *** ** [0.000] *** *** [0.000]
9 Folyamat: log-differencia ( lny t ) ADF test for ld_atlar including one lag of (1-L)ld_AtlAr (max was 27, criterion modified AIC) sample size 2714 unit-root null hypothesis: a = 1 with constant and quadratic trend model: (1-L)y = b0 + b1*t + b2*t^2 + +(a-1)*y(-1) e 1st-order autocorrelation coeff. for e: estimated value of (a - 1): test statistic: tau_c(1) = asymptotic p-value 0 Augmented Dickey-Fuller regression OLS, using observations : (T = 2714) Dependent variable: d_ld_atlar coefficient std. Error t-ratio p-value const *** ld_atlar_ *** d_ld_atlar_ *** time 4.555e e ** timesq e e H0: Coeff(ld_AtlAR_1)=0 H1: Coeff(ld_AtlAR_1)<0
10 Az OTP log-hozam korrelogramja LAG ACF PACF Q-stat. [p-value] *** *** [0.000] *** *** [0.000] ** [0.000] [0.000] [0.000] [0.000] * [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] Feladat: Határozza meg a H0: AC(1)=AC(2)=0 null-hipotézishez tartozó Ljung-Box teszt értékét! ( ) K r k Q = n n + 2 = 2716( ) + = Chi2 k= 1 n k DF = 2
11 ESETTANULMÁNY 2. Feladat: Eur/USD árfolyam (Y=EUR_USD) stacionaritás vizsgálata és transzformációja Adatállomány: EUR_USD.gdt Minta: (T=2302)
12 Trend van a folyamatban! A folyamat a szinten
13 Stacionaritási vizsgálat Lag ACF PACF Q-stat [p-value] *** *** [0.000] *** [0.000] *** * [0.000] *** [0.000] *** [0.000] *** [0.000] *** [0.000] *** [0.000] Augmented Dickey-Fuller regression OLS, using observations : (T = 2291) Dependent variable: d_eur_usd Coeff. std.e. t-ratio p-value const * EUR_USD_ d_eur_usd_ d_eur_usd_ d_eur_usd_ d_eur_usd_ d_eur_usd_ d_eur_usd_ d_eur_usd_ d_eur_usd_ d_eur_usd_ d_eur_usd_ * time 1.1E E timesq 1.8E E Megállapítás: Az EUR/USD árfolyam a szinten nem stacioner!
14 Folyamat: elsőrendű-differencia ( EUR_USD) Augmented Dickey-Fuller test for d_eur_usd including 24 lags of (1-L)d_EUR_USD (max was 26, criterion modified AIC) sample size 2276 unit-root null hypothesis: a = 1 test with constant model: (1-L)y = b0 + (a-1)*y(-1) e 1st-order autocorrelation coeff. for e: lagged differences: F(24, 2250) = [0.9456] estimated value of (a - 1): test statistic: tau_c(1) = asymptotic p-value 1.59e-014 Megállapítás: Mind a folyamat lefutása, mind az ADF(24) teszt alapján az árfolyam elsőrendű differenciája stacioner!
15 Az elsőrendű differencia fehér zaj! Az EUR/USD árfolyam elsőrendű differenciája fehér zaj! 1. A diff(eur/usd) tiszta véltetlen, nem modellezhető! 2. Az EUR/USD véletlen bolyongás! A Drift (D) paraméter becslése a diff(eur/usd)-re illesztett OLS üres modellel: Model 1: OLS, using observations : (T = 2301) Dependent variable: d_eur_usd Coefficient Std. Error t-ratio p-value Const Az intercept nem szignifikáns, ezért a Drift paraméter zéró!
Idősoros elemzés minta
Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban
RészletesebbenIdősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.
Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,
RészletesebbenÖkonometria gyakorló feladatok - idősorok elemzése
Ökonometria gyakorló feladatok - idősorok elemzése 2019. május 7. 1. Egy gazdálkodó szervezetben az átlagos készletérték alakulása negyedéves periódusokban mérve a következő: évek negyedévek 1 2 3 4 2007
RészletesebbenBevezetés az ökonometriába
Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizenegyedik előadas Tartalom Stacionaritás kérdései 1 Stacionaritás kérdései 2 3 (Nem)stacionaritás
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október
RészletesebbenIdősorok elemzése november 14. Spektrálelemzés, DF és ADF tesztek. Idősorok elemzése
Spektrálelemzés, DF és ADF tesztek 2017. november 14. SPEKTRÁL-ELEMZÉS Példa - BKV villamosenergia-terhelési görbéje Figure: BKV villamosenergia-terhelési görbéje, negyedóránkénti mérések (2 hét adatai,
RészletesebbenDiagnosztika és előrejelzés
2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának
RészletesebbenStatisztika II. feladatok
Statisztika II. feladatok 1. Egy női ruhákat és kiegészítőket forgalmazó üzletlánc 118 egységénél felmérést végzett arról, milyen tényezők befolyásolják a havi összbevételüket (EUR). a) Pótolja ki a táblázatok
RészletesebbenEsettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2
Esettanulmány A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre Tartalomjegyzék 1. Bevezetés... 2 2. A lineáris modell alkalmazhatóságának feltételei... 2 3. A feltételek teljesülésének
RészletesebbenGAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenAutoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta
Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
RészletesebbenAutoregresszív és mozgóátlag folyamatok
Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
RészletesebbenEsetelemzés az SPSS használatával
Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét
RészletesebbenCorrelation & Linear Regression in SPSS
Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation
RészletesebbenA Lee-Carter módszer magyarországi
A Lee-Carter módszer magyarországi alkalmazása Baran Sándor, Gáll József, Ispány Márton, Pap Gyula Alkalmazott Matematika és Valószínűségszámítás Tanszék, Debreceni Egyetem, Informatikai Kar 1 Feladatok:
RészletesebbenCorrelation & Linear Regression in SPSS
Correlation & Linear Regression in SPSS Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise 1 - Correlation File / Open
RészletesebbenMagyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI
Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése Rezsabek Tamás GSZDI Anyag és módszer Központi Statisztikai Hivatalának adatai
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.
Correlation & Linear Regression in SPSS Petra Petrovics PhD Student Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise
RészletesebbenSTATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
Részletesebben1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.
1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )
RészletesebbenEsetelemzések az SPSS használatával
Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e
RészletesebbenSTATISZTIKA PRÓBAZH 2005
STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk
RészletesebbenÖkonometria gyakorló feladatok Többváltozós regresszió
Ökonometria gyakorló feladatok Többváltozós regresszió 2019. március 1. 1. Az UCSD egyetem felvételi irodája egy 427 hallgatóból álló véletlen mintát vett, és kiszámolta az egyetemi átlagpontszámukat (COLGPA),
RészletesebbenStatistical Inference
Petra Petrovics Statistical Inference 1 st lecture Descriptive Statistics Inferential - it is concerned only with collecting and describing data Population - it is used when tentative conclusions about
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests
Nonparametric Tests Petra Petrovics Hypothesis Testing Parametric Tests Mean of a population Population proportion Population Standard Deviation Nonparametric Tests Test for Independence Analysis of Variance
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004ályázai rojek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
RészletesebbenA modellezés sajátosságai anomáliákkal terhelt idősorok esetén
A modellezés sajátosságai anomáliákkal terhelt idősorok esetén MÓDSZERTANI DILEMMÁK A STATISZTIKÁBAN 4 ÉVE ALAKULT A JÖVŐKUTATÁSI BIZOTTSÁG SJTB Tudományos ülés, 216. november 18. 1 Idősor-modellezés alapkérdései
Részletesebben7-8-9. előadás Idősorok elemzése
Idősorok elemzése 7-8-9. előadás 2015. október 19-26. és november 2. Idősor fogalma sokasági szemlélet: elméleti idősor - valószínűségi változók egy indexelt {Y t, t T } családja, avagy időtől függő véletlen
RészletesebbenLogisztikus regresszió október 27.
Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai
RészletesebbenTöbb laboratórium összehasonlítása, körmérés
Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,
RészletesebbenFogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
RészletesebbenStatisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi
RészletesebbenKabos Sándor. Térben autokorrelált adatrendszerek
Kabos Sándor Térben autokorrelált adatrendszerek elemzése Összefoglalás az előadás példákon szemlélteti a térben autokorrelált adatok blokkosításának és összefüggésvizsgálatának jellemző tulajdonságait.
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.
RészletesebbenAlapfogalmak. Trendelemzés Szezonalitás Modellek. Matematikai statisztika Gazdaságinformatikus MSc október 29. 1/49
Matematikai statisztika Gazdaságinformatikus MSc 8. előadás 2018. október 29. 1/49 alapfogalmak Elméleti idősor - valószínűségi változók egy indexelt {X t, t T } családja, avagy időtől függő véletlen mennyiség.
RészletesebbenVáltozó munkaerőpiac? Munkaerő-piaci előrejelzés Észak-Magyarországon* 1
DR. LIPTÁK KATALIN Változó munkaerőpiac? Munkaerő-piaci előrejelzés Észak-Magyarországon* 1 A tanulmányban bemutatom Észak-Magyarország munkaerő-piaci folyamatait. Választásom azért esett Észak-Magyarországra,
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
RészletesebbenBIOMETRIA_ANOVA_2 1 1
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
RészletesebbenKISTERV2_ANOVA_
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
RészletesebbenLOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála
LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)
RészletesebbenSztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
RészletesebbenKét diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
RészletesebbenÖkonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék
Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége
RészletesebbenPiaci hatékonyság a 2008-as gazdasági világválság kapcsán
Piaci hatékonyság a 2008-as gazdasági világválság kapcsán 31 Bakosi Balázs Szűcs Ákos Piaci hatékonyság a 2008-as gazdasági világválság kapcsán Minden befektető számára központi kérdés az árfolyamok előre
RészletesebbenMinőségjavító kísérlettervezés
. példa J.J. Pignatiello, J.S. Ramberg: J. Quality Technology, 17 198-06 (1985) kézbentartható -1 1 A: high heat temperature ( 0 F) 1840 1880 B: heating time (s) 3 5 C: transfer time (s) 10 1 D: hold down
RészletesebbenA sztochasztikus idősorelemzés alapjai
A sztochasztikus idősorelemzés alapjai Ferenci Tamás BCE, Statisztika Tanszék tamas.ferenci@medstat.hu 2013. november 29. 2 Tartalomjegyzék 1. Az idősorelemzés fogalma, megközelítései 5 1.1. Az idősor
RészletesebbenÖkonometria gyakorló feladatok 1.
Ökonometria gyakorló feladatok 1. 018. szeptember 6. 1. Egy vállalatnál megvizsgálták 0 üzletkötő éves teljesítményét és prémiumát. A megfigyelt eredményeket, és a belőlük számolt regressziós részeredményeket
RészletesebbenKorreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés
RészletesebbenGyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió
Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió 1. A fizetés (Y, órabér dollárban) és iskolázottság (X, elvégzett iskolai év) közti kapcsolatot vizsgáljuk az Y t α + β X 2 t +
RészletesebbenStatisztikai szoftverek esszé
Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.
Hypothesis Testing Petra Petrovics PhD Student Inference from the Sample to the Population Estimation Hypothesis Testing Estimation: how can we determine the value of an unknown parameter of a population
RészletesebbenEgységgyöktesztek alkalmazása szezonalitást is tartalmazó idõsorok esetében energiatõzsde-adatok példáján
Egységgyöktesztek alkalmazása szezonalitást is tartalmazó idõsorok esetében energiatõzsde-adatok példáján Mák Fruzsina, a Budapesti Corvinus Egyetem tanársegédje E-mail: mak.fruzsina@unicorvinus.hu A szezonalitás
RészletesebbenRegresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
RészletesebbenÖkonometria BSc Gyakorló feladatok a kétváltozós regresszióhoz
Ökonometria BSc Gyakorló feladatok a kétváltozós regresszióhoz 1 Egy vállalatnál megvizsgálták 20 üzletkötő éves teljesítményét és prémiumát A megfigyelt eredményeket, és a belőlük számolt regressziós
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.
Nonparametric Tests Petra Petrovics PhD Student Hypothesis Testing Parametric Tests Mean o a population Population proportion Population Standard Deviation Nonparametric Tests Test or Independence Analysis
RészletesebbenA modellben az X és Y változó szerepe nem egyenrangú: Y (x n )
Kabos: Adatelemzés Regresszió-1 Regresszió (az adatelemzésben): Y (x n ) = l(x n ) + ε n, n = 1, 2,.., N, ahol ε 1,.., ε N független N(0, σ 2 ) eloszlású valószínűségi változók, és σ ismeretlen paraméter,
RészletesebbenA klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben
Hatásvizsgálói konzultációs workshop Országos Meteorológiai Szolgálat A klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben Kemény Gábor, Fogarasi József, Molnár
RészletesebbenWIL-ZONE TANÁCSADÓ IRODA
WIL-ZONE TANÁCSADÓ IRODA Berényi Vilmos vegyész, analitikai kémiai szakmérnök akkreditált minőségügyi rendszermenedzser regisztrált vezető felülvizsgáló Telefon és fax: 06-33-319-117 E-mail: info@wil-zone.hu
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression
Correlation & Regression Types of dependence association between nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation describes the strength of a relationship,
RészletesebbenA többváltozós lineáris regresszió 1.
2018. szeptember 17. Lakásár adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó változók segítségével Legegyszerűbb eset - kétváltozós
RészletesebbenPhEur Two-dose multiple assay with completely randomised design An assay of corticotrophin by subcutaneous injection in rats
PhEur... Two-dose multiple assay with completely randomised design An assay of corticotrophin by subcutaneous injection in rats 00 80 60 0 0 00 80 60 0 0 catterplot of multiple variables against dose PhEur_.sta
RészletesebbenAz R statisztikai programozási környezet: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig
: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig Ferenci Tamás ferenci.tamas@nik.uni-obuda.hu 2017. február 23. Tartalom Az R mint programozási nyelv A könyvtárakról
RészletesebbenKorreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Részletesebben: az i -ik esélyhányados, i = 2, 3,..I
Kabos: Adatelemzés Ordinális logisztikus regresszió-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j +
RészletesebbenA biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis
Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim
RészletesebbenLineáris regresszió vizsgálata resampling eljárással
Lineáris regresszió vizsgálata resampling eljárással Dolgozatomban az European Social Survey (ESS) harmadik hullámának adatait fogom felhasználni, melyben a teljes nemzetközi lekérdezés feldolgozásra került,
RészletesebbenGAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén, az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi
RészletesebbenÁltalánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
RészletesebbenBevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
RészletesebbenA biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézis Állítás a populációról (vagy annak paraméteréről) Példák H1: p=0.5 (a pénzérme
RészletesebbenDescriptive Statistics
Descriptive Statistics Petra Petrovics DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs - descriptive
RészletesebbenDIFFERENCIAEGYENLETEK
DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden
RészletesebbenEmlékkonferencia Farkas Ferenc tiszteletére Tudomány napi konferencia, november 15. MAGYAR TUDOMÁNYOS AKADÉMIA
Emlékkonferencia Farkas Ferenc tiszteletére Tudomány napi konferencia, 2016. november 15. MAGYAR TUDOMÁNYOS AKADÉMIA MAGYAR TUDOMÁNYOS AKADÉMIA Gazdaság-és Jogtudományok Osztálya Gazdálkodástudományi Bizottság
RészletesebbenNormál eloszlás. Gyakori statisztikák
Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,
RészletesebbenÖkonometria. Modellspecifikáció. Ferenci Tamás 1 Hatodik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék
Modellspecifikáció Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hatodik fejezet Tartalom 1 III. esettanulmány Háztartási Költségvetési Felvétel (HKF) 2 Specifikációs
RészletesebbenVálasztási modellek 3
Választási modellek 3 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
RészletesebbenA DOE (design of experiment) mint a hat szigma folyamat eszköze
A DOE (design of experiment) mint a hat szigma folyamat eszköze 2.5 Z [mils] 0.5 0-0.5 2.4.27 0.40-0.47 Y [in] - -.34-2.22 -.32 X [in] -0.42 0.48.38 2.28-2.2, feketeöves GE Consumer & Industrial A DOE
RészletesebbenEgyenlőtlenségi mérőszámok alkalmazása az adatbányászatban. Hajdu Ottó BCE: Statisztika Tanszék BME: Pénzügyek tanszék Budapest, 2011
Egyenlőtlenségi mérőszámok alkalmazása az adatbányászatban Hajdu Ottó BCE: Statisztika Tanszék BME: Pénzügyek tanszék Budapest, 2011 Adatbányászati feladatok 1. Ismert mintákon, példákon való tanulás (extracting
RészletesebbenBevezetés az ökonometriába
Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizedik előadas Tartalom 1 Alapfogalmak, determinisztikus és sztochasztikus megközelítés
RészletesebbenTovábblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,
Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések
RészletesebbenStatisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák
Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém
Részletesebbeny ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti.
Elmélet let BIOMETRIA 7. Előad adás Variancia-anal Lineáris modellek A magyarázat a függf ggő változó teljes heterogenitásának nak két k t részre r bontását t jelenti. A teljes heterogenitás s egyik része
RészletesebbenNem. Cumulative Percent 1,00 férfi ,9 25,9 25,9 2,00 nı ,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Total ,0 100,0
Függelék II. Demográfia Nem Frequency Percent Percent Cumulative Percent 1,00 férfi 727 25,9 25,9 25,9 2,00 nı 2053 73,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Korcsoport Frequency Percent Percent
RészletesebbenModel Identification and Predictive Control of a Laboratory Binary Distillation Column
Model Identification and Predictive Control of a Laboratory Binary Distillation Column Ján Drgoňa, Martin Klaučo, Richard Valo, Jakub Bendžala, and Miroslav Fikar Slovak University of Technology in Bratislava,
RészletesebbenFIZIKAI KÉMIA II. házi dolgozat. Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat)
FIZIKAI KÉMIA II. házi dolgozat Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat) Készítette: () Kémia BSc 2008 évf. 2010 1 A numerikus mechanizmusvizsgálat feladatának megfogalmazása
RészletesebbenStatisztika, próbák Mérési hiba
Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:
RészletesebbenGyőrBike a győri közösségi bérkerékpár rendszer első éve
GyőrBike a győri közösségi bérkerékpár rendszer első éve Magyar Urbanisztikai Társaság Győr-Moson-Sopron megyei csoportja MTA KRTK RKI Nyugat-magyarországi Tudományos Osztály Smart City rendezvénysorozat
RészletesebbenStatistical Dependence
Statistical Dependence Petra Petrovics Statistical Dependence Deinition: Statistical dependence exists when the value o some variable is dependent upon or aected by the value o some other variable. Independent
RészletesebbenElorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció)
lorjlzés (prdikció vagy xrapoláció) Adapólás (inrpoláció) kompozíciós vagy drminiszikus modllk. A rndfüggvény A ciklikus haás A szzonális haás A zaj (hibaag) 3-3 4 5 6 7 8 9 Az idõsor 3 - - - 3 4 5 6 7
RészletesebbenBiostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként
RészletesebbenMéri-e a tõkepiacok nyitottságát a beruházás és a megtakarítás idõben változó kapcsolata?
Tanulmányok Méri-e a tõkepiacok nyitottságát a beruházás és a megtakarítás idõben változó kapcsolata? Varga Balázs, az OTP Alapkezelő Zrt. kvantitatív elemzője és a Budapesti Corvinus Egyetem PhD-hallgatója
Részletesebbeny ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
RészletesebbenAdatelemzés kommunikációs dosszié ADATELEMZÉS. ANYAGMÉRNŐK NAPPALI MSc KÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
ADATELEMZÉS ANYAGMÉRNŐK NAPPALI MSc KÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014. Tartalom jegyzék 1. Tantárgyleírás, tárgyjegyző, óraszám,
RészletesebbenElemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet
Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény
RészletesebbenDiszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Logistic regression. Quantitative Statistical Methods. Dr.
Logistic regression Quantitative Statistical Methods Dr. Szilágyi Roland Dependent (y) Quantit ative Qualitative Gazdaságtudományi Kar Connection Analysis Qualitative Independent variable() Quantitative
Részletesebben