Idősorok elemzése november 14. Spektrálelemzés, DF és ADF tesztek. Idősorok elemzése
|
|
- Ida Bogdánné
- 7 évvel ezelőtt
- Látták:
Átírás
1 Spektrálelemzés, DF és ADF tesztek november 14.
2 SPEKTRÁL-ELEMZÉS
3 Példa - BKV villamosenergia-terhelési görbéje Figure: BKV villamosenergia-terhelési görbéje, negyedóránkénti mérések (2 hét adatai, ezer kw-ban mérve) Az idősor alakja sugallja a napi periodicitás jelenlétét.
4 Példa - Fogyasztói árindexek Figure: Fogyasztói árindexek
5 Spektrál-elemzés A Wold-tételben meghatároztuk annak feltételét, hogy egy adott (c 0,..., c q ) sorozat mikor lehet egy q-adrendű MA folyamat autokovariancia függvénye. Ezt most megpróbáljuk általánosítani tetszőleges stacionárius folyamatra. Tétel 1 (Herglotz tétel). Legyen (c k ) egy valós számsorozat. Ekkor létezik olyan (x t ) stacionárius folyamat, melyre c k = E(x t x t+k ) pontosan akkor, ha c k előáll c k = π π e ikλ F (dλ) alakban, ahol i = 1 és F (dλ) szimmetrikus mérték a [ π, π] intervallumon. A tételben szereplő F mértéket spektrális mértéknek nevezzük.
6 Spektrál-elemzés Az F (dλ) szimmetrikus mérték azt jelenti, hogy minden A [ π, π] mérhető halmazhoz tartozik egy véges F (A) 0 szám, melyre F (A B) = F (A) + F (B), ha A B, F (A) = F ( A). Ekkor az integrált közelítő összegekkel definiáljuk az π π e ikλ F (dλ) = lim n max(δ j ) 0 n e ikλ j F ([λ j 1, λ j ]) j=1 formában, ahol π = λ 0 < λ 1 <... < λ n = π az intervallum felosztása, δ j = λ j λ j 1 pedig a j-dik részintervallum nagysága.
7 Spektrál-elemzés 1. eset: F abszolút folytonos a Lebesgue mértékre. Ekkor tetszőleges A [ π, π] mérhető halmaz esetén létezik egy f (λ) integrálható függvény olyan, melyre F (A) = A f (λ)dλ. Ezt hívjuk spektrális sűrűségfüggvénynek. Ekkor c k = π π e ikλ f (λ)dλ, ami éppen f Fourier-transzformáltja (konstanstól eltekintve). Ha egy idősor autokovarianciái a fenti alakban előállíthatók, akkor azt mondjuk, hogy folytonos spektruma van.
8 Spektrál-elemzés Visszafelé elvégezve a transzformációt adódik, hogy f (λ) = 1 2π k= c k e ikλ, ahonnan a c k = c k és e ikλ = cos(kλ) + i sin(kλ) tulajdonságok alapján f (λ) = 1 ( ) c c k cos(kλ). 2π Példák: k=1 ha (ε t ) fehérzaj, akkor f (λ) = σ2 2π ha (x t ) MA(1) folyamat, akkor f (λ) = 1 2π β 0 + β 1 e iλ 2 ha (x t ) AR(1) folyamat, akkor f (λ) = c 0 2π αe iλ
9 Spektrál-elemzés 2. eset: F csak néhány pontra koncentrált mérték. Legyenek ezek a pontok a λ j [ π, π], λ j = λ j, j N pontok, a σj 2 súlyokkal. Ekkor F (A) = σj 2. λ j A Ekkor azt mondjuk, hogy az idősornak diszkrét spektruma van. Ezt felhasználva a (c k ) sorozatra azt kapjuk, hogy c k = σj 2 e ikλ j = σ σj 2 cos(kλ j ) j= j=1 az F mérték szimmetria tulajdonsága miatt.
10 Spektrál-elemzés Természetesen felmerül a kérdés, hogy van-e olyan folyamat, melynek a fenti alakú diszkrét spektruma van. Tétel 2. Ha idősorunk előáll az x t = A 0 + (A j cos(λ j t) + B j sin(λ j t)) j=1 alakban, ahol (A j, B j ) független, 0 várható értékű és σ j 2 szórású v.v-k, akkor (x t ) autokovariancia függvénye éppen a fenti alakú. Azaz a diszkrét spektrum azt jelenti, hogy idősorunk véletlen periódusok összegeként áll elő.
11 Spektrál-elemzés Egyszerűsítsük tovább a modellt: tegyük, fel hogy m x t = a 0 + (a j cos(λ j t) + b j sin(λ j t)) + e t j=1 alakú, ahol a k, b k, λ k konstansok, (e t ) pedig fehérzaj. Ezek az ún. rejtett periódusú idősorok λ 1,..., λ m rejtett periódusokkal. Legyen a fenti idősor egy véges megfigyelése (x 1,..., x N ), és tegyük fel, hogy m és λ 1,..., λ m ismertek. Feladatunk az ismeretlen (a k, b k ) együtthatók becslése a minta alapján. LS-becslés: min a k,b k ( N ) (x t a k cos(λ k t) b k sin(λ k t)) 2 t=1 k = 1,..., m.
12 Spektrál-elemzés Egyszerű számolással adódik, hogy â j = 2 N x t cos(λ j t) és ˆb j = 2 N x t sin(λ j t) N N t=1 t=1 Probléma: a fenti λ j frekvenciák általában nem ismertek! Definíció 1. Minden λ [ π, π] értékre legyen az I N (λ) = (a(λ)) 2 + (b(λ)) 2 függvény az ún. periodogram függvény, ahol 2 N 2 N a(λ) = x t cos(λt) és b(λ) = x t sin(λt). Azaz N N t=1 t=1 I N (λ) = 2 N x N t e itλ. t=1
13 Spektrál-elemzés Tétel 3. Tetszőleges λ [ π, π] esetén teljesül, hogy N 1 I N (λ) = 2 ĉ k cos(λk), k=0 ahol ĉ k = 1 N N k t=1 x t x t+k. Ha a periodogramot éppen a rejtett periódushoz tartozó pontban számoljuk ki, akkor A(λ k ) = N 2 âk, N és B(λ k ) = 2 ˆb k adódik.
14 Spektrál-elemzés Tétel 4. Tegyük fel, hogy a mintabeli megfigyelések száma végtelen tart. Ekkor a periodogram határértékére lim I N(λ) = N { 0, λ λk k = 1,..., m +, λ = λ k valamilyen k-ra adódik. A fenti konvergencia sztochasztikus értelemben értendő. Numerikus számításoknál a periodogramot a λ = 0, 2π N, 4π N,... ún. Fourier-frekvenciákon értékelik ki. Nagy mintaelemszám esetén a periodogram kiugró értékei nagy valószínűséggel rejtett frekvenciákat jelentenek. Ezek tesztelesére számos próba áll rendelkezésre (pl. Fisher-féle g-próba, Whittle-féle módosított g-próba).
15 Példa - BKV adatok spektruma A numerikus adatok alapján megállapítható, hogy a becsült sűrűségfüggvény a 96-os periódusnál (periódus= 2π/λ k ) veszi fel a maximumát, ami a negyedórás megfigyelések miatt egy napos ciklusnak felel meg (24 4 = 96).
16 Példa - BKV villamosenergia-terhelési görbéje Figure: BKV villamosenergia-terhelési görbéje, negyedóránkénti mérések (2 hét adatai, ezer kw-ban mérve)
17 Példa - fogyasztói árindexek spektruma A maximumot a 42, 5 hosszú perióduson veszi fel, ami kb. 3, 5 éves ciklusnak felel meg.
18 Példa - Fogyasztói árindexek Figure: Fogyasztói árindexek
19 STACIONARITÁSI TESZTEK
20 Stacionaritási tesztek Nem stacionárius folyamatok két alapesete: determinisztikus trendet tartalmazó idősorok (trend-stac.) egységgyök (unit root) folyamatok (differencia-stacionárius) Y S Y D values time
21 Példa Figure: Francia frank napi árfolyama 1986 és 1993 között, 2459 megfigyelés
22 Stacionaritási tesztek Tekintsük az alábbi modellt: ahol u t ARMA folyamat, azaz y t = α + δt + u t, (1 α 1 z... α p z p ) u t = (1 + β 1 z β q z q ) ε t. }{{}}{{} A(Z) B(z) Tegyük fel, hogy B invertálható, és legyen A(z) = (1 λ 1 z)(1 λ 2 z)... (1 λ p z). Ekkor, ha λ 1,..., λ p az egységkörön belül helyezkednek el, akkor u t = B(z) A(z) ε t = Ψ(z)ε t jóldefiniált, és Ψ(z) gyökei az egységkörön kívülre esnek. Azaz y t trend-stacionárius folyamat lesz.
23 Stacionaritási tesztek Tegyük fel, hogy λ 1 = 1. Ekkor azaz A(z)u t = (1 z)(1 λ 2 z)... (1 λ p z)u t = B(z)ε t, (1 z)u t = B(z) (1 λ 2 z)... (1 λ p z) ε t = Ψ (z)ε t, ahol Ψ gyökei az egységkörön kívülre esnek. Ekkor y t y t 1 = (1 z)y t = (1 z)α + δt δ(t 1) + (1 z)u t = = 0 + δ + Ψ (z)ε t ún. egységgyök folyamatot kapunk.
24 Stacionaritási tesztek Tehát ha A(z)-nek van 1 darab egységgyöke, a többi gyök pedig az egységkörön kívül van, akkor egységgyök folyamatunk lesz, ha minden gyöke az egységkörön kívülre esik, akkor trend-stacionárius folyamatunk van. Több egységgyök esetén a fenti gondolatmenetet ismételni kell az egységgyökök multiplicitásának megfelelően. Ezek lesznek az ún. ARIMA(p, d, q) folyamatok, ahol d az egységgyökök számát jelöli. Az ilyen folyamatok d-edrendbeli differenciázása vezet stacionárius folyamathoz.
25 Stacionaritási tesztek Hogyan kell ezeknél a folyamatoknál a trendet eltávolítani? Trend-stacionárius esetben egy egyszerű kivonás (osztás) megoldja a problémát Egységgyök folyamat esetén ez nem jó megoldás (ld. például az eltolásos véletlen bolyongást), mert ekkor a kivonás/osztás nem szünteti meg a reziduumok szórásának időbeli változását. Emiatt használjuk ezekben az esetekben a differenciázást. Trend-stacionárius esetben viszont a differenciázás nem jó megoldás, mert ekkor egységgyök kerülne az MA részbe!
26 Stacionaritási tesztek Tehát minden egyes idősornál alapvetően fontos kérdés, hogy vajon a vizsgált folyamat tartalmaz-e egységgyököt vagy sem. Viszont, az egységgyök tesztek tárgyalása előtt figyelembe kell vennünk az alábbiakat: véges minták állnak csak rendelkezésünkre, így nem lehet megállapítani, hogy a folyamat tényleg a fenti, precízen definiált, általános egységgyök folyamat, vagy pedig egy stacionárius folyamat; csak azt lehet tesztelni, hogy előre meghatározott rendű autoregresszív folyamatok tartalmaznak-e egységgyököt, vagy sem; azaz tesztelésre alkalmas hipotézis akkor fogalmazható meg, ha előre korlátozott rendű autoregresszív folyamatok alkotják a vizsgálat tárgyát.
27 Stacionaritási tesztek Dickey-Fuller teszt: autokorrelálatlan reziduumok esetén alkalmazható csak. A becsült regresszió y t = α + ρy t 1 + δt + ε t alakú, ahol ε t N(0, σ) i.i.d. folyamat. A kérdés az, hogy ρ értéke 1 lesz-e, azaz egységgyök folyamatunk van-e, vagy sem. Tehát H 0 : ρ = 1. α és δ értékének függvényében időtrendet tartalmazó ill. nem tartalmazó, eltolásos vagy eltolás nélküli véletlen bolyongás folyamatokat kapunk H 0 teljesülése esetén.
28 Stacionaritási tesztek Autokorrelált reziduumok esetén: a Phillips-Perron (DF teszt korrigált változata) teszt, valamint a kibővített DF-teszt (ADF) alkalmazható, de most eltolás nélküli vagy eltolásos egységgyök folyamatokat keresünk úgy, hogy y t késleltett értékei is megjelennek a modellben, de ezek már csak stacionárius formában. KPSS teszt: trend-stacionaritás vs. stacionaritás tesztelésére LMC teszt: AR(p) vs. ARIMA(p, 1, 1) tesztelésére
29 Példa Figure: Francia frank napi árfolyama 1986 és 1993 között, 2459 megfigyelés Biztos, hogy nem stacionárius az idősor, hiszen egyértelmű lineáris trendet tartalmaz.
30 Példa A nem-stacionárius viselkedés innen is egyértelműen leolvasható.
31 Példa Kivétel nélkül minden késleltetésen szignifikáns az autokorreláció és alig csökkennek az értékek, azaz idősorunk egyértelműen nem stacionáriusnak tűnik.
32 Példa Lineáris trendet illesztve az adatokra jól látszik, hogy idősorunkat a lineáris trendtől megtisztítva kellene stacionarizálni. De hogyan? Determinisztikus avagy sztochasztikus ez a trend?
33 Példa A fenti kérdés eldöntésére a kibővített Dickey-Fuller (ADF) teszt ad választ.
34 Példa Ha az ereseti idősor csak konstanssal integrált, de a konstans és trend körül stacioner, akkor determinisztikus a trend: Ha az idősor konstans és trend körül sem stacioner, akkor differenciázni kell: Mindkét esetben tartható a nullhipotézis, azaz nem stacioner a folyamat. Ezért differenciázni fogunk!
35 Példa Figure: Az idősor első differenciázottja
36 Példa Most már a korrelogram-on is látszik a stacionaritás, a Ljung-Box Q-statisztikák sem szignifikánsak.
37 Példa Ennek teljesen formális igazolásához újra segítségül hívjuk az ADF-tesztet. A nullhipotéziseket elvetjük, azaz a transzformált idősor már stacionárius, nem tartalmaz egységgyököt.
Diagnosztika és előrejelzés
2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának
Alapfogalmak. Trendelemzés Szezonalitás Modellek. Matematikai statisztika Gazdaságinformatikus MSc október 29. 1/49
Matematikai statisztika Gazdaságinformatikus MSc 8. előadás 2018. október 29. 1/49 alapfogalmak Elméleti idősor - valószínűségi változók egy indexelt {X t, t T } családja, avagy időtől függő véletlen mennyiség.
IDŐSOROK SZTOCHASZTIKUS MODELLJEI
IDŐSOROK SZTOCHASZTIKUS MODELLJEI VÁGÓ ZSUZSANNA (Oktatási segédlet) Budapest Budapesti Közgazdaságtudományi Egyetem Statisztika Tanszék 2 Tartalom 1 Alapfogalmak 5 1.1 Sztochasztikus folyamatok...........................
Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta
Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
Autoregresszív és mozgóátlag folyamatok
Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
7-8-9. előadás Idősorok elemzése
Idősorok elemzése 7-8-9. előadás 2015. október 19-26. és november 2. Idősor fogalma sokasági szemlélet: elméleti idősor - valószínűségi változók egy indexelt {Y t, t T } családja, avagy időtől függő véletlen
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
DIFFERENCIAEGYENLETEK
DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden
Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos
Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás
Hatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,
Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Idősoros elemzés minta
Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban
Bevezetés az ökonometriába
Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizenegyedik előadas Tartalom Stacionaritás kérdései 1 Stacionaritás kérdései 2 3 (Nem)stacionaritás
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.
Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Mátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
Ido sorok oszta lyoza sa
EO TVO S LORA ND TUDOMA NYEGYETEM TERME SZETTUDOMA NYI KAR Ido sorok oszta lyoza sa I rta: Budai Fruzsina Ma ria Alkalmazott matematikus MSc Te mavezeto : Pro hle Tama s Valo szı nu se gelme leti e s Statisztika
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Metrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Fourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Ökonometria gyakorló feladatok - idősorok elemzése
Ökonometria gyakorló feladatok - idősorok elemzése 2019. május 7. 1. Egy gazdálkodó szervezetben az átlagos készletérték alakulása negyedéves periódusokban mérve a következő: évek negyedévek 1 2 3 4 2007
4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
ANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011
8 VEMIMAM44A előadásjegyzet, /. Fourier-elmélet.. Komplex trigonometrikus Fourier-sorok Tekintsük az [, ], C Hilbert-teret, ahol a skaláris szorzat definíciója f, g ftgt dt. Tekintsük a [, ] intervallumon
AZ ENERGIA GAZDASÁGI SZEREPÉNEK MAKROSZINTŰ ÉRTÉKELÉSE KELET- KÖZÉP-EURÓPÁBAN, 1990 ÉS 2009 KÖZÖTT
AZ ENERGIA GAZDASÁGI SZEREPÉNEK MAKROSZINTŰ ÉRTÉKELÉSE KELET- KÖZÉP-EURÓPÁBAN, 199 ÉS 29 KÖZÖTT Sebestyénné Szép Tekla Egyetemi tanársegéd Miskolci Egyetem, Gazdaságtudományi Kar, Világ- és Regionális
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Gyakorló feladatok I.
Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László
Egy fertőző gyermekbetegség alakulásának modellezése és elemzése
Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Tudományos Diákköri Konferencia Dolgozat Írta: Rózemberczki Benedek András Alkalmazott közgazdaságtan alapszak, 3. évfolyam Konzulens: Dr.
5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
Centrális határeloszlás-tétel
13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
MNB Füzetek 1999/4 AZ IDÕSORMODELLEKEN ALAPULÓ INFLÁCIÓS ELÕREJELZÉSEK: Lieli Róbert: április EGYVÁLTOZÓS MÓDSZEREK
MNB Füzetek 999/4 Lieli Róbert: AZ IDÕSORMODELLEKEN ALAPULÓ INFLÁCIÓS ELÕREJELZÉSEK: EGYVÁLTOZÓS MÓDSZEREK 999. április i ISSN 9 9575 ISBN 963 9057 38 x Az MNB megbízásából készítette: Lieli Róbert: a
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.
Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Frakciona l differencia lt folyamatok e s kointegra cio
EO TVO S LORA ND TUDOMA NYEGYETEM TERME SZETTUDOMA NYI KAR Frakciona l differencia lt folyamatok e s kointegra cio I rta: Stark Andra s Alkalmazott matematikus MSc Te mavezeto : Pro hle Tama s Valo szı
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Többváltozós Regresszió-számítás
Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség
Folytonos görbék Hausdorff-metrika Mégegyszer a sztringtérről FRAKTÁLGEOMETRIA. Metrikus terek, Hausdorff-mérték. Czirbusz Sándor
Metrikus terek, Hausdorff-mérték Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 22. Vázlat 1 Folytonos görbék Affin függvények Definíciók A Koch-görbe A Cantor-halmaz
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim
Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha
ANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
A modellezés sajátosságai anomáliákkal terhelt idősorok esetén
A modellezés sajátosságai anomáliákkal terhelt idősorok esetén MÓDSZERTANI DILEMMÁK A STATISZTIKÁBAN 4 ÉVE ALAKULT A JÖVŐKUTATÁSI BIZOTTSÁG SJTB Tudományos ülés, 216. november 18. 1 Idősor-modellezés alapkérdései
CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*
A Miskolci Egyetem Közleménye A sorozat, Bányászat, 66. kötet, (2004) p. 103-108 CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* Dr.h.c.mult. Dr. Kovács Ferenc az
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05