2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011"

Átírás

1 8 VEMIMAM44A előadásjegyzet, /. Fourier-elmélet.. Komplex trigonometrikus Fourier-sorok Tekintsük az [, ], C Hilbert-teret, ahol a skaláris szorzat definíciója f, g ftgt dt. Tekintsük a [, ] intervallumon definiált t e ikt komplex értékű függvények rendszerét: S def { } e ikt : k, ±, ±,... Megmutatjuk, hogy S ortogonális rendszer [, ], C-ben... Állítás. A. képlettel definiált S függvényrendszer ortogonális rendszer az [, ], C Hilbert-térben. Bizonyítás: egyen k l, és tekintsük következő skaláris szorzatokat:. e ikt, e ilt ik l e ikt e ilt dt [e ik lt] t t e ikt e ilt dt e ik lt dt [ ] e ik l ik l. Tehát S egy ortogonális rendszert alkot [, ], C-ben. Számítsuk ki S elemeinek normáit: / / / e ikt e ikt, e ikt e ikt e dt ikt e ikt e dt ikt dt,. ha k Z. Ezért definiáljuk az S C def { } e ikt : k, ±, ±,....3 függvényrendszert. Ez már ortonormált rendszer lesz [, ], C-ben, sőt belátható, hogy maximális is:.. Tétel. A.3 képlettel definiált S C halmazrendszer maximális ortonormált rendszer az [, ], C Hilbert-térben. Alkalmazható tehát az S C függvényrendszerre az.67. Tétel, azaz például az [, ], C tér elemeit az S C rendszerre vonatkozó Fourier-sorba fejthetjük, és a Fourier-sor konvergál az normában az adott függvényhez. Az.67. Tétel jelölését használva: f f, e ikt e ikt. k Z

2 . Fourier-elmélet 9 Ennek megfelelően az f [, ], C komplex trigonometrikus Fourier-során az ft k végtelen sort értjük, ahol a c k Fourier-együtthatók képlete c k f, e ikt c k e ikt.4 Azt mondjuk, hogy a t [, ] pontban az f Fourier-sora konvergens, ha az s n t n k n c k e ikt, n,,..., fte ikt dt..5 szimmetrikus részletösszegek sorozata konvergens, n esetén. Azt mondjuk, hogy az f függvény Fourier-sora normában vagy négyzetintegrálban konvergál az f függvényhez, ha f s n ft s n t dt, ha n. Világos az eddigiek alapján, hogy a négyzetintegrálban való konvergenciából nem következik a pontonkénti konvergencia. A definícióból, a skaláris szorzat linearitásából és a konvergens sorok tulajdonságaiból rögtön következik, hogy a Fourier-sor számítása lineáris művelet az alábbi értelemben:.3. Állítás. egyen f, f [, ], C, α C. Ekkor. az f + f függvény Fourier-sora az f és f függvények Fourier-sorainak összege,. az αf függvény Fourier-sora az f függvény Fourier-sorának α-szorosa. Az S C halmazrendszer maximalitásából és az.67. Tételből rögtön következik az alábbi eredmény..4. Tétel. egyen S C a.3 képlettel definiált halmazrendszer. Ekkor a következő állítások teljesülnek.. Ha valamely f [, ], C függvényre c k fte ikt dt, k, ±, ±,... azaz az f függvény Fourier-együtthatói nullák, más szóval az f merôleges az S C halmazra f S C, akkor ft, m.m. t [, ]-re.. Az f függvény Fourier-sora négyzetesen konvergál az f függvényhez, azaz n ft c k e ikt dt, ha n. 3. Teljesül a Parseval-azonosság, azaz k n f ft dt k c k lim n n k n c k.

3 VEMIMAM44A előadásjegyzet, / Bizonyítás nélkül tekintsük az alábbi fontos eredményt..5. Tétel Riesz Fisher-tétel. Tetszôleges olyan γ k C, k, ±, ±,..., konstansokhoz, amelyekre γ k < k teljesül, létezik olyan f [, ], C függvény, hogy γ k fte ikt dt c k azaz γ, γ ±, γ ±,... az f függvény Fourier-együtthatói, és négyzetintegrálban konvergál f-hez. k γ k e ikt A Riesz Fisher-tételt alkalmazva kapjuk, hogy ha egy f [, ], C függvényhez hozzárendeljük a Fourier-együtthatóinak c k k Z két irányban végtelen sorozatát, akkor egy lineáris izomorfiát kapunk a [, ], C és a négyzetesen összegezhető két irányban végtelen sorozatok Banach-tere között. Ha ebben a térben egy c k k Z sorozat normáját a c k k c k / képlettel értelmezzük, akkor a fenti lineáris izomorfia izometria is lesz a Parseval-formula miatt..6. Megjegyzés. Ha f és g két szerint periodikus függvény, akkor ftgt dt ftgt dt, ezért az S C függvényrendszer az [, π], C Hilbert-téren is maximális ortonormált, továbbá az S C -re vonatkozó Fourier-sor az [, π], C Hilbert-téren is.4 alakú lesz, ahol a c k Fourier-együtthatókat a c k fte ikt dt képlettel számoljuk ki..7. Megjegyzés. Az előbbi meggondolást általánosíthatjuk. Ha f és g két szerint periodikus függvény, akkor az ft f t b a és gt g t b a összetett függvények b a szerint periodikus függvények lesznek, és b a ft gt dt b a f t t g dt b a b a b a b b a a b a fxgx dx b a fxgx dx, speciálisan, f [a,b],c b a f [,],C.

4 . Fourier-elmélet Ezért az S C halmaz elemeit a b a az [a, b] intervallomon értelmezett t ik b a e S [a,b] def együtthatóval megszorozva és új változót bevezetve tekintsük b a t függvényekből álló { } ik e b a t : k, ±, ±,... b a függvényrendszert. Ez maximális ortonormált rendszer lesz az [a, b], C Hilbert-téren. Egy f [a, b], C függvény Fourier-során ezért az ik f c k e b a t k végtelen sort értjük, ahol a c k Fourier-együtthatók képlete c k b a b a ik fte b a t dt, k, ±, ±,.... A.4. Tétel értelemszerűen kiterjeszthető [a, b], C-re... Valós trigonometrikus Fourier-sorok Tekintsük az [, π], R Hilbert-teret. egyen S def {, cos x,x,cos x,x,cos 3x,3x,...,cos kx,kx,...} a [, π]-n értelmezett függvények halmaza. Megmutatjuk, hogy az S halmaz ortogonális rendszer [, π], R-ben..8. Állítás. Az S függvényhalmaz ortogonális rendszer az [, π], R Hilbert-térben. Bizonyítás: Az állítás direkt módon is könnyen belátható, de most mi az S ortogonalitását az előző szakaszban bevezetett S függvényhalmaz ortogonalitását felhasználva indokoljuk. egyen k N. A cos kx eikx + e ikx és kx eikx e ikx i Euler-képletek értelmében kx és cos kx lineáris kombinációja az e ikx és e ikx függvényeknek. Ez persze fordítva is teljesül, az e ikx és e ikx függvények is felírhatók kx és cos kx lineáris kombinációjaként. Ezért az.58. Állítás szerint, ha egy függvény ortogonális az eikx és e ikx függvényekre, akkor ortogonális a kx és cos kx függvényekre is. Ezért a.6. Megjegyzést alkalmazva kapjuk, kx és cos kx is ortogonális bármely e ilx függvényre, ahol l k. De ekkor a fentiekből következik, hogy kx és cos kx ortogonális bármely lx és cos lx függvényre, valamint a konstans függvényre is. Most már csak azt kell belátni, hogy kx és cos kx egymásra is ortogonális. A.. Állítás és. alapján kapjuk e ikx + e ikx cos kx,kx, eikx e ikx i e ikx, e ikx e ikx, e ikx + e ikx, e ikx e ikx, e ikx 4ī + 4ī Ezzel a bizonyítás teljes..

5 VEMIMAM44A előadásjegyzet, / Számítsuk ki S elemeinek normáját. egyen k. Ekkor e ikx + e ikx cos kx, eikx + e ikx / e ikx, e ikx + e ikx, e ikx + e ikx, e ikx + e ikx, e ikx / Hasolóan kapjuk, hogy π. e ikx e ikx kx, eikx e ikx / π, i i valamint a konstans függvény normája Kaptuk tehát a következő eredményt: / dx. /.9. Állítás. Az S R def {, cos x, x cos x,, x cos kx,..., kx },... π π π π π π.6 függvényrendszer ortonormált rendszer az [, π], R Hilbert-térben. Az.67. Tétel szerint az [, π], R tér elemeit az S R rendszerre vonatkozó Fourier-sorba fejthetjük, és a Fourier-sor konvergál az normában az adott függvényhez. Az.67. Tétel jelölését használva: fx fx, + cos kx cos kx fx, + π π fx, kx π kx π. Ennek megfelelően az f [, π], R valós trigonometrikus Fourier-során az fx a + a k cos kx + b k kx.7 végtelen sort értjük, ahol az a, a,...,b, b,... Fourier-együtthatók képlete a k π b k π fxcos kx dx k,,...,n,....8 fx kx dx k,,...,n....9 Az.67. Tételből rögtön következik a.4. Tétel valós Fourier-sorokra vonatkozó alakja... Tétel. egyen S R a.6 képlettel definiált halmazrendszer. Ekkor

6 . Fourier-elmélet 3. Ha valamely f [, π], R függvényre és a k π b k π ftcos kx dx, k,,... ft kx dx, k,,..., azaz az f függvény összes Fourier-együtthatója nulla, más szóval az f merôleges az S R halmazra, akkor fx, m.m. x [, π]-re.. Az f függvény Fourier-sora négyzetintegrálban konvergál az f függvényhez, azaz fx a n a k cos kx + b k kx dx, n. 3. Parseval-azonosság: a + a k + b k π f xdx. A Riesz Fisher-tétel valós Fourier-sorokra vonatkozó alakja:.. Tétel Riesz-Fischer tétel. Tetszôlegesen elôírt a, a k, b k k valós számokhoz, amelyekre a + a k + b k <, van olyan f [, π], R függvény, hogy a, a,...,a k,...,b,...,b k,... az f függvénynek az S R rendszerre vonatkozó Fourier-együtthatói. A.7. Megjegyzésnek megfelelően egy tetszőleges [, ] halmazon értelmezett valós függvénynek értelmezhetjük a Fourier-sorát... Megjegyzés. Tekintsük a [, ] intervallumon értelmezett { πx πx x x def cos S R,, cos,,,,..., cos kπx, } kπx,... függvényrendszert. Ez maximális ortonormált rendszer lesz az [, ], R Hilbert-térben. Egy f [, ], R függvény Fourier-során az fx a + a k cos kπx + b k kπx végtelen sort értjük, ahol az a k, b k Fourier-együtthatók képlete a k b k f x cos kπx f x kπx dx, k,,..., dx, k,,..... Most megmutatjuk, hogy valós függvényekre a komplex trigonometrikus Fourier-sor egybeesik a valós trigonometrikus Fourier-sorral.

7 4 VEMIMAM44A előadásjegyzet, /.3. Állítás. egyen f [, π], R. Ekkor f-nek az S C és az S R rendszerekre vonatkozó Fourier-sora megegyezik. Bizonyítás: egyen f [, π], R valós függvény, és legyenek a c k, a k és b k konstansok a.5,.8 és.9 képletekkel definiálva. Ekkor az f komplex Fourier-sora fx k c k e ikx c + c k e ikx + Másrészt az Euler-azonosság alapján és így c k fue iku du k c k e ikx c + c k e ikx + c k e ikx. fucos ku du i fu ku du c k fue iku du fucos ku du + i fu ku du c k, Ezt felhasználva fx k c k e ikx c k e ikx c k e ikx, k,,.... c k e ikx c + c k e ikx + c k e ikx c + Re c k e ikx. Ugyanakkor Re c k e ikx [ π Re π fucos ku du π a k cos kx + b k kx, fucos ku du i cos kx + π fu ku du fu ku du ] cos kx + i kx kx továbbá Ezért fx k c a fxdx. c k e ikx a + a k cos kx + b k kx. Azt mondjuk, hogy az f függvény Fourier-sora tiszta szinuszos sor, ha csak szinuszos tagokat tartalmaz, azaz a k minden k,,,...-re. Ha pedig f Fourier-sora csak koszinuszos tagokat tartalmaz, azaz b k minden k,,...-re, akkor azt mondjuk, hogy a Fourier-sor tiszta koszinuszos sor..4. Állítás. egyen f [, ], R.. Ha f páratlan függvény, akkor a Fourier-sora tiszta szinuszos sor.. Ha f páros függvény, akkor a Fourier-sora tiszta koszinuszos sor.

8 . Fourier-elmélet 5 Bizonyítás:. Tegyük fel, hogy f páratlan. Ekkor az fxcos kπx a k. Ha f páros, akkor az fx kπx b k fxcos kπx dx, k,,,.... függvény lesz páratlan, ezért függvény is páratlan, ezért fx kπx dx, k,, Példa. Tekintsük a szerint periodikus f : R R függvényt, amelyre f x x, ha π x < π. Fejtsük f-et Fourier-sorba! Vegyük észre, hogy f páratlan függvény, így csak a szinuszos tagok együtthatóit kell kiszámolni: Parciális integrálással kapjuk xkx dx [ x [ x b k π ] cos kx π k cos kx k xkx dx. + cos kx dx k [ ] kx π ] π + k k cos kπ + cos kπ + k k k kπ k kπ k cos kπ. Tehát és így b k k cos kπ k k, k,,..., fx x x + 3x 4x Példa. Tekintsük most a szerint periodikus f : R R függvényt, amelyre f x x, ha x <. Az előző példához hasonló módon végigszámítható, hogy b k x kπx dx kπ k, k,,..., így fx π πx x + 3πx 3 4πx 4 +.

9 6 VEMIMAM44A előadásjegyzet, / Ezt az eredményt megkaphatjuk úgy is, hogy definiáljuk a gt f π t, t R függvényt. Ekkor g szerint periodikus és gt πt, ha t [, π, így az előző példából is megkapható a sorfejtés..7. Példa. egyen f : R R olyan α szerint periodikus függvény, amelyre fx x, α < x < α, ahol α olyan valós szám, amelyre α > és α kπ, k,,.... Mivel f páratlan függvény, a Fourier-sora csak szinuszos tagokat tartalmaz, amelyek együtthatói b k b k α és b k α α α α α α α x kπx α dx kπ kπ cos α x cos α + x dx [ kπ α x α kπ α kπ α + x kπ α + kπ α kπ + α α kπ α kπ α + α α kπ cos α cos kπ α kπ α k α kπ α k α α k α kπ α + kπ α + + kπ α kπ α kπ α + kπ k α α kπ. Tehát az f függvény Fourier-sora: fx α ] xα x α k k α kπ kx. kπ cos α + coskπ α kπ α + Vizsgáljuk azt az esetet, amikor α π. Ekkor k -re a Hospital-szabályt alkalmazva kapjuk egyébként pedig lim b α cos α α lim α π α π α π lim, α π α lim b kα, k, 3,.... α π Tehát a Fourier-sor együtthatói tartanak a periodikus x függvény Fourier-sorának együtthatóihoz.

10 . Fourier-elmélet 7.3. Valós Fourier-sorok pontonkénti konvergenciája.8. Definíció. Azt mondjuk, hogy az f : R R valós függvény szakaszonként folytonosan differenciálható, ha bármely korlátos [a, b] intervallumon véges sok szakadási pontja van, bármely x szakadási pontjában léteznek az fx + lim x x + fx, fx lim x x fx egyoldali függvényhatárértékek és az f fx fx + x + lim, f fx fx x lim x x + x x x x x x egyoldali deriváltak, továbbá bármely két szakadási pontja közötti nyílt intervallumon folytonosan differenciálható. Bizonyítás nélkül tekintsük a következő eredményt, amely a Fourier-sorok pontonkénti konvergenciájára vonatkozik..9. Tétel. egyen f : R R szakaszonként folytonosan differenciálható szerint periodikus függvény. Ekkor bármely x R pontban az f függvény S R, rendszerre vonatkozó. Fouriersora konvergál az fx+ + fx határértékhez. Speciálisan, ha f folytonos az x pontban, akkor a Fourier-sora x-ben konvergál az fx függvényértékhez. Ha egy f [, π], R függvény Fourier-sorának pontonkénti konvergenciáját vizsgáljuk, akkor először periodikusan kiterjesztjük f-et R-re, és a kiterjesztett függvényre alkalmazzuk a tételt. Megjegyezzük, hogy a periodikus kiterjesztés csak akkor lehetséges, ha f fπ. Egyébként vagy az f vagy az fπ függvényértéket használjuk a periodikus kiterjesztéshez, azaz a kiterjeszett függvény egy pontben nem egyezik meg az eredeti függvénnyel. Viszont a két függvény Fourier-együtthatói, és így a Fourier-sora is megegyezik... Példa. Tekintsük újra a.5. Példában kiszámított Fourier-sort. Az előbbi tételt alkalmazva kapjuk, hogy a Fourier-sor pontonként konvergens, és x 3x x + 4x { x, < x < π, + 3 4, x és x π. A Fourier-sor n-edik részletösszegét jelölje f n x def x x + 3x 4x + nnx. 3 4 n A következő ábrán az f, f 4 és f 6 közelítő összegek grafikonja látható. Ebből is érzékelhető a Fourier-sor konvergenciája.

11 8 VEMIMAM44A előadásjegyzet, / 3 f f 4 f Az f x, f 4 x és f 6 x részletösszegek grafikonja. A Fourier-sorok egyik legfontosabb alkalmazási területe a parciális differenciálegyenletek elméletében található, ahol bizonyos feladatokat a megoldások Fourier-sorba fejtésével oldunk meg. Az egyik kulcs kérdés a módszer alkalmazásánál, mikor lehet differenciálni a Fouriersort, ill. a végtelen összeg deriváltját tagonkénti differenciálással kiszámolni. Erre ad választ a következő tétel, amit szintén bizonyítás nélkül közlünk... Tétel. egyen f : [, π] R folytonos, szakaszonként folytonosan differenciálható, továbbá f fπ. Ekkor az f függvény Fourier-sora abszolút és egyenletesen konvergál a [, π] intervallumon az f függvényhez, azaz fx a + a k cos kx + b k kx, ahol a k, b k a.8 és.9 képletekkel definiált Fourier-együtthatók. Továbbá, f Fourier-sorát f Fourier-sorának tagonkénti differenciálásával megkaphatjuk, azaz f x ka k kx + kb k cos kx. Minden olyan x pontban, ahol f x létezik, az előző reláció egyenlőséggel helyettesíthető. A.9. és.. Tételeket nyilvánvaló módon terjeszthetjük ki arra az esetre, amikor az f függvény a [, ] szimmetrikus intervallumon definiált..4. Tiszta koszinuszos és szinuszos Fourier-sorok Ebben a szakaszban azzal a kérdéssel foglalkozunk, hogyan lehet Fourier-sorba fejteni egy [, ] alakú intervallumon definiált függvényt. Egy természetes ötlet erre az, hogy kiterjesztjük a függvényt a [, ] intervallumra, és a kiterjesztett függvénynek számítjuk ki a Fourier-sorát. Ekkor a.9. Tételben megadott feltételek teljesülése esetében a Fourier-sor konvergál a kiterjeszett függvényhez, ill. [, ]-re leszűkítve a Fourier-sor értelmezési tartományát, az eredeti függvényhez. Két speciális esetet vizsgálunk: páros ill. páratlan függvényként terjesztjük ki a függvényt. Tekintsük először a páros kiterjesztés esetét. egyen f : [, ] R adott, és legyen { f x, x [, fx fx, x [, ].

12 . Fourier-elmélet 9 Ekkor f Fourier-sora a.4. Állítás szerint tiszta koszinuszos sor, így a Fourier-sorában minden b k. Az a k Fourier-együtthatókat az a k fxcos kπx dx fxcos kπx dx + fxcos kπx dx kπx képlettel számíthatjuk ki. Mivel fxcos két páros függvény szorzata, ezért maga is páros függvény, így a fenti két integrál megegyezik, tehát a k fxcos kπx dx, k,,,..... Most tekintsük azt az esetet, hogy páratlan módon terjesztjük ki f-et a [, ] intervallumra, azaz legyen { f x, x [,], fx, x, fx, x [, ]. Ekkor f páratlan periodikus függvény, ezért a Fourier-sora tiszta szinuszos sor lesz, azaz minden a k. A b k együtthatókat az előző esethez hasonló levezetéssel kapjuk: b k fx kπx dx fx kπx dx + fx kπx fx kπx dx dx, k,,..... Az előző levezetésből rögtön következik az alábbi eredmény. Ha a kiterjeszett függvény páros, akkor annak Fourier-sora tiszta koszinuszos sor lesz,.. Állítás. Az és az S cos def {, cos x, cos x, cos 3x,...} S def { x, x, 3x,...} rendszerek egyaránt teljes ortogonális rendszert alkotnak a [, π] intervallumon..3. Példa. Számítsuk ki a [, π] intervallumra megszorított x függvény tiszta koszinuszos sorát, azaz az S cos függvényrendszerre vonatkozó Fourier-sorát! A. képletet és trigonometrikus azonosságokat alkalmazva kapjuk k -re, hogy a k π π π π [ xcos kx dx + kx + kx dx cos + kx + k +k + k k + π k + π cos kx k ] π k k + k + k k.

13 3 VEMIMAM44A előadásjegyzet, / k -re kapjuk a π xcos x dx π x dx π [ cos x A.9. Tétel szerint a Fourier-sor minden pontban konvergál a függvényhez, tehát kapjuk, hogy x + π cosx + cos 4x + cos 6x +, x [, π]. 4 6 Megjegyezzük, hogy a x függvény tiszta szinuszos Fourier-sora természetesen önmaga azaz b és b k minden k > -re. ] π..4. Példa. Számítsuk ki az f : [, 5] R, fx függvény tiszta szinuszos Fourier-sorát! A. képlet szerint b k [ ] 5 kπx 5 5 dx kπx 5 cos 5 cos kπ 5 kπ kπ kπ k, k,,..., 5 ezért 4 π πx 5 + 3πx πx πx 7 5 +, x, 5. x és x 5-re a Fourier-sor összege. Ha x 5/-et helyettesítünk be az előző egyenletbe, akkor kapjuk a π ú.n., Euler-összefüggést. Jelölje f n a Fourier-sor n-edik részletösszegét, azaz f n x n b k kπx 5. A bal oldali ábrán az f 5 x, f 7 x és f 4 x részletösszegek grafikonjai, a jobb oldalin pedig az f 8 x részletösszeg grafikonjának kinagyított része látható.. f 5 f 7 f Az ábra azt igazolja, hogy a részletösszegek n növekedésével egyre jobban közelítik a konstans függvény grafikonját. Viszont ez a határérték nem egyenletes, az intervallum két végpontjához közel a Fourier-sor részletösszegeinek maximuma kb..8 körüli értéket vesz fel. Numerikusan ellenőrizhetjük, hogy ez a maximum n növelésével nem változik, csak azt a részletösszeg függvény egyre közelebb veszi fel az intervallum végpontjához. Hasonló viselkedés figyelhető meg nem folytonos függvények véges Fourier-féle közelítő összegeinél. Ezt a jelenséget Gibbs-jelenségnek hívjuk. Az f függvény tiszta koszinuszos Fourier-sora, azaz a, a k b k minden k,,...-ra.

14 . Fourier-elmélet 3.5. Fourier-transzformált és Fourier-integrál egyen f : R C szakaszonként folytonosan differenciálható függvény, amely nem szükségszerűen periodikus. egyen > állandó, g : R C olyan periodikus függvény, amelyre g x fx, < x <. Írjuk fel g komplex Fourier-sorát. A g függvény Fourier-együtthatói és ezért g x n c n g te in π t dt, g te in π t dt e in π x, x R. Mivel g x fx ha < x <, így a.9. Tétel szerint egyen fx+ + fx n fte in π t dt e in π x, λ n nπ. def Ekkor λ n λ n+ λ n π. Ezzel a jelöléssel az előbbi egyenlet az fx+ + fx n alakban írható fel. Ez minden -re teljesül, ezért Definiáljuk az fx+ + fx lim n x,. fte iλnt dt e iλnx λ n, x, fte iλnt dt F : R C, Fλ e iλnx λ n, x R..3 fte iλt dt.4 függvényt, amelyet az f függvény Fourier-transzformáltjának vagy komplex Fourier-integráljának nevezünk. Ezzel a jelöléssel kapjuk a.3 egyenletből, formálisan először a zárójelen belül elvégezve a határátmenetet, hogy fx+ + fx lim n Fλ n e iλnx λ n, x R. A jobb oldali összeg egy improprius integrál Riemann-féle közelítő összege, ahol a {λ n : n Z} osztópontokat használjuk a számegyenes felosztásához, így kapjuk, hogy fx+ + fx Fλe iλx dλ, x R..5 A.4 és.5 képletet együtt a Fourier-féle inverziós formuláknak nevezzük. Hangsúlyozni kell, hogy a fenti levezetés csak formális számolás volt. A képletek precízen is levezethetők a következő feltétel mellett: ft dt <.

15 3 VEMIMAM44A előadásjegyzet, / Azon f : R C ebesgue-mérhető függvények lineáris terét, amelyek abszolút értéke az egész számegyenesen végesen ebesgue-integrálható, azaz amelyekre a fenti egyenlőtlenség teljesül, R, C-vel jelöljük. Ezzel a jelöléssel a következőképpen foglalhatjuk össze az eredményünket..5. Tétel. egyen f R, C szakaszonkén folytonosan differenciálható függvény. Ekkor érvényes az ún. Fourier-féle integrálformula: Fλe iλx dλ fte iλt dt e iλx dλ fx + fx+, x R. Vizsgáljuk meg most azt az esetet, amikor az f valós függvény, azaz f : R R. Ekkor a Fourier-féle integrálformulán a következő átalakításokat végezzük: fte iλt dt e iλx dλ fte iλx t dt fte iλx t dt dλ dλ + fte iλx t dt dλ. Használva az u λ du dλ helyettesítést az első integrálban, kapjuk, hogy fte iλt dt e iλx dλ fte iux t dt ft du + e iλx t + e iλx t dt Mivel e iλx t + e iλx t cos λx t, f valós függvény, ezért fx+ + fx π fte iλx t dt dλ dλ. ftcos λx tdt dλ. Ez a valós Fourier-féle integrálformula. A jobb oldalon álló integrálban a cos függvényt kifejtve kapjuk a következő állítást..6. Következmény. egyen f R, R szakaszonkén folytonosan differenciálható függvény. Ekkor Aλcos λx + Bλ λx dλ fx+ + fx, x R,.6 ahol Aλ ftcos λt dt és Bλ π π ft λt dt..7 A.6 egyenlet bal oldalán álló integrált valós Fourier-integrálnak nevezzük.

16 . Fourier-elmélet Példa. Írjuk fel az függvény Fourier-integrálját! A.7 képletek szerint f : R R, fx Aλ ftcos λt dt π 3 cos λt dt + π [ 3 λt ] π λ { 3, x [, ], 5, x, 4],, x < vagy x > 4. 4 [ + 5 λt λ 5 cos λt dt 3 λ + 5 4λ. πλ Megjegyezzük, hogy Aλ folytonosan kiterjeszthető λ -ra is, hiszen létezik a 3 λ lim Aλ lim + 5 4λ λ λ πλ πλ π π határérték. Bλ hasonlóan számítható: Bλ π [ 3 π 3 λt dt + cos λt λ ] 4 [ + 5 ] 4 5 λt dt cos λt λ 8 3 cos λ 5 cos 4λ. πλ Megmutatható, hogy lim λ Bλ. A.6. Következmény szerint 3 λ + 5 4λ cos λx + πλ 8 3 cos λ 5 cos 4λ πλ ] 4 λx dλ, x <, 3/, x, 3, x,,, x, 5, x, 4, 5/, x 4,, x > 4. Az f függvény Fourier-transzformáltjára használjuk az Ffλ Fλ jelölést is. A következő tételben összefoglaljuk a Fourier-transzformált néhány fontosabb tulajdonságát..8. Tétel. egyen f, g R, C és α, β C. Ekkor. Fαf + βg αff + βfg.. Ha f differenciálható és f R, C, akkor Ff λ iλffλ. 3. Ff g Ff Fg, ahol az f és g konvolúciója. f gx ftgx tdt

17 34 VEMIMAM44A előadásjegyzet, /.6. Alkalmazások Tegyük fel, hogy f Fourier-transzformáltja a [, ] intervallumon kívül azonosan nulla, azaz Fλ, λ > Tétel Mintavételi tétel. Tegyük fel, hogy f R, C függvény folytonos és szakaszonként folytonosan differenciálható, amelyre.8 teljesül. Ekkor f-et meghatározzák a pontokban felvett értékei: fx n nπ f, ± π, ±,... x nπ, x nπ, n Z. x nπ Bizonyítás: A Fourier-féle inverziós formulát és a.8 feltételt alkalmazva fx Fλe iλx dλ Fλe iλx dλ, x R..9 Az Fλ függvény a, intervallumon felírható Fourier-sora összegeként: Fλ c n e i nπλ, λ,, n ahol c n nπλ i Fλe dλ. A.9 összefüggést alkalmazva kapjuk, hogy nπ c n f. Ezt visszahelyettesítve F Fourier-sorába kapjuk Fλ Ezért a.9 formula szerint x nπ -re fx n n n nπ f e i nπλ nπ nπλ i f e. nπ nπλ i f e e iλx dλ nπ nπ iλ f e +x dλ n nπ e ix nπ e ix nπ f ix nπ n nπ x nπ f. x nπ n

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

Fourier sorok február 19.

Fourier sorok február 19. Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Fourier-sorok Horv ath G abor 1

Fourier-sorok Horv ath G abor 1 Fourier-sorok Horváth Gábor 1 Tartalomjegyzék 1 Bevezetés Szakdolgozatom során periodikus függvények egyfajta közelítésével fogunk foglalkozni. Amíg a Taylor-sornál a függvényeket hatványsor alakban állítjuk

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén

Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén 1. fejezet Analízis 1.1. Normált-, Banach- és Hilbert-terek. Zártés teljes ortonormált rendszer. Fourier-sor. Riesz-Fischer tétel Hilbert-térben. Szeparábilis Hilbert terek izomorfiája. 1.1.1. Normált-,

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

2014. november 5-7. Dr. Vincze Szilvia

2014. november 5-7. Dr. Vincze Szilvia 24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Elérhető maximális pontszám: 70+30=100 pont

Elérhető maximális pontszám: 70+30=100 pont Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Numerikus integrálás

Numerikus integrálás Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál

Részletesebben

Komplex számok. A komplex számok algebrai alakja

Komplex számok. A komplex számok algebrai alakja Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László

Részletesebben

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

2. Reprezentáció-függvények, Erdős-Fuchs tétel

2. Reprezentáció-függvények, Erdős-Fuchs tétel 2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport Analízis I. zárthelyi dolgozat javítókulcs, Informatika I. 2012. okt. 19. Elméleti kérdések A csoport 1. Hogyan számíthatjuk ki két trigonometrikus alakban megadott komplex szám szorzatát más alakba való

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben