ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
|
|
- Brigitta Biró
- 8 évvel ezelőtt
- Látták:
Átírás
1 ÖKONOMETRIA
2 ÖKONOMETRIA Készül a TÁMOP /2/A/KMR pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi Inéze, és a Balassi Kiadó közreműködésével.
3
4 ELTE TáTK Közgazdaságudományi Tanszék ÖKONOMETRIA Készíee: Elek Péer, Bíró Anikó Szakmai felelős: Elek Péer 200. június
5 ÖKONOMETRIA 3. hé Regresszió idősorokban 2. Elek Péer, Bíró Anikó
6 Taralom Sacioner válozók: oszo késleleésű modellek, ADL modellek Hamis regresszió Regresszió nemsacionárius idősorokban Trend és szezonális komponens szűrése Koinegráció és hibakorrekció VAR modellek
7 Oszo késleleésű modellek Felevés: Y, sacionárius Pl. 4 időszaki oszo késleleésű modell: Együhaók: ámenei válozásának haásai Együhaók összege: hosszúávú (vagy eljes) haás e Y
8 Példa: szabadalmak USA éves adaok (Ramanahan) Y: szabadalmak száma (ezer) : R&D kiadások (mrd USD) Szükségesek-e késlelee válozók? Hány időszaki késleleés?
9 Becslés eredménye Dependen Variable: PATENT Mehod: Leas Squares Sample(adjused): Included observaions: 30 afer adjusing endpoins Variable Coefficien Sd. Error -Saisic Prob. C RD RD( ) RD( 2) RD( 3) RD( 4) R-squared 0.964
10 ADL(p,q) modell Auoregresszív oszo késleleésű modell ADL(p,q):, Y: sacionárius q q p p e Y Y Y
11 Aszimpoikus ulajdonságok Felevések E( e Y,..., Y p,,,..., q) 0 Sacionárius válozók Nincs ökélees kollineariás OLS konziszens De: orzíalanság nem eljesül! Pl. E( e Y ) 0
12 Aszimpoikus ulajdonságok, foly. Álalában nem igaz: OLS inkonziszens lenne, ha hibaagok időben korrelálnak OLS inkonziszens, ha hibaag sabil AR() folyama?0 ), ( ), ( 0 ) ( y y u Cov u u Cov y u E u y y 0 ), ( ), ( u y Cov u y Cov e u u
13 Aszimpoikus ulajdonságok, foly. Felevések: homoszkedasziciás, auokorrelálalanság Aszimpoikus normaliás Szokásos eszek használhaók Hibaagok auokorrelációja gyakran rosszul specifikál dinamika kövekezménye! 0 ),...,,,,...,,...,,,,... ( ),...,,,,... ( 2 q s s s p s s q p s q p Y Y Y Y e e E Y Y e Var
14 Miér fonos a nemsacionariás? Hamis regresszió idősorokban Ké fl. vélelen bolyongás = + Y = Y + 2 Regresszió: Y = c + β + u β = 0, mer függelenek, de a -esz szignifikáns! A -saiszikának nincs is haáreloszlása! Ok: u nemsacionárius
15 Regresszió nemsacionárius idősorokkal Nemsacionárius eseben vigyázni kell a paraméerbecslések álalában nem konziszensek nagyon gyakori hiba (ld. hamis regresszió) Bizonságos eljárás: I () idősorok eseén a differenciájukra felírni a regresszió magasabb rendű inegrálság eseén addig képezni a differenciá, amíg sacionáriusak nem lesznek Ezzel nem hibázunk, de: elveszíhejük az információ a hosszú ávú viselkedésről (ld. később: koinegráció)
16 Szezonaliás Kéféle szezonaliás deerminiszikus (dummy válozókkal szűrheő) szochaszikus (szezonális differencia-képzéssel szűrheő) Hasonlóan a rendhez, a kéféle szezonaliás együ is jelen lehe. Gyakorlaban: bonyolulabb szűrési eljárások (pl. TRAMO-SEATS)
17 Koinegráció y és x I()-idősorok Ha léezik olyan β, hogy y βx sacionárius, akkor a ké idősor koinegrál Ekkor β becslése konziszens Tesz: β megbecslése, majd DF-esz a becsül hibaagokra Kriikus érékeke korrigálni kell β becslése mia
18 Példa: 3 és 6 hónapos kamaok, koinegráció arbirázs okokból r 6 és r 3 korrelogramja (felül) r 6 r 3 korrelogramja (alul)
19 Hibakorrekció y és x I() folyamaok Álalában a különbségekre becsülheünk regresszió, pl. y = α 0 + x + u Koinegráció eseén beehejük a hosszú ávú egyensúlyól való elérés is y = α 0 + δ(y βx ) + x + u ahol δ<0. Ez a hibakorrekciós egyenle
20 Hibakorrekció, foly. y = α 0 + δ(y - βx ) + x + u δ<0 Engle-Granger kélépcsős eljárás. lépés: β becslése, koinegráció eszelése Ha koinegrál: 2. lépés: hibakorrekciós modell becslése Engle-Granger: -esz érvényes becsül együhaókra (kélépcsős becslés figyelmen kívül hagyhaó)
21 Hibakorrekció példa Mezőgazdasági és üzemanyag árindex (MNB) előző év azonos időszakhoz viszonyíva Koinegrál idősorok (eszelés!) Dependen Variable: MEZOG Mehod: Leas Squares Variable Coeff Sd. Error -Saisic Prob. C UZEM
22 Hibakorrekció példa, foly. Dependen Variable: D(MEZOG) Mehod: Leas Squares Variable Coeff Sd. Error -Saisic Prob. C D(UZEM) MARAD( )
23 VAR modell AR modell álalánosíása öbb válozóra Márixjelöléssel: Y = A Y A p Y -p + e Bizonyalan oksági irány, példák: Kamaláb árfolyam, infláció árfolyam Helyeesíő ermékek ára Aeoreikus Jó előrejelző képesség
24 Gyakorla Regresszió idősorokban 2.
25 Feladaok: M 4/9, 4/0a Megbeszélendő Trend, szezonaliás szűrése valódi idősorokon, előrejelzés a modellekből Egységgyök-esz magyarországi árszin és inflációs adaokon Kiskereskedelmi forgalom és házarási fogyaszás modellezése, a közük levő kapcsola vizsgálaa
26 ELTE TáTK Közgazdaságudományi Tanszék Köszönjük, hogy használa a ananyagunka! Bármilyen kérdés, megjegyzés örömmel várunk az elecon.hu honlapon felünee címekre
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004ályázai rojek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június
ÖKONOMETRIA Kézül a TÁMOP-4..2-8/2/A/KMR-29-4álázai rojek kereében Taralomfejlezé az ELTE TáTK Közgazdaágdománi Tanzékén az ELTE Közgazdaágdománi Tanzék az MTA Közgazdaágdománi Inéze é a Balai Kiadó közreműködéével
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004ályázai rojk krébn Taralomfjlszés az ELTE TáTK Közgazdaságudományi Tanszékén, az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén, az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén, az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
Instrumentális változók módszerének alkalmazásai Mikroökonometria, 3. hét Bíró Anikó Kereslet becslése: folytonos választás modell
Insrumenális válozók módszerének alkalmazásai Mikroökonomeria, 3. hé Bíró Anikó Keresle becslése: folyonos válaszás modell Folyonos vs. diszkré válaszás: elérő modellek Felevés: homogén jószág Közelíés:
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
A közgazdasági Nobel-díjat a svéd jegybank támogatásával 1969 óta ítélik oda. 1 Az
ROBERT F. ENGLE ÉS CLIVE W. J. GRANGER, A 003. ÉVI KÖZGAZDASÁGI NOBEL-DÍJASOK DARVAS ZSOLT A Svéd Tudományos Akadémia a 003. évi Nobel-díjak odaíélésé ké fő alkoással indokola: Rober F. Engle eseén az
OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június
OKTATÁSGAZDASÁGTAN Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi
OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június
OKTATÁSGAZDASÁGTAN Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi
GAZDASÁGPOLITIKA. Készítette: Pete Péter. Szakmai felelős: Pete Péter. 2011. június
GAZDASÁGPOLITIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGPOLITIKA. Készítette: Pete Péter. Szakmai felelős: Pete Péter június
GAZDASÁGPOLITIKA GAZDASÁGPOLITIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az MTA
GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK
BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli elõrejelezhetetlensége
Az árfolyamsávok empirikus modelljei 507 Közgazdasági Szemle, XLVI. évf., 1999. június (507 59. o.) DARVAS ZSOLT Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli elõrejelezheelensége
Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos
Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás
KELET-KÖZÉP EURÓPAI DEVIZAÁRFOLYAMOK ELİREJELZÉSE HATÁRIDİS ÁRFOLYAMOK SEGÍTSÉGÉVEL. Darvas Zsolt Schepp Zoltán
Közgazdasági- és Regionális Tudományok Inézee Pécsi Tudományegyeem, Közgazdaságudományi Kar KELET-KÖZÉP EURÓPAI DEVIZAÁRFOLYAMOK ELİREJELZÉSE HATÁRIDİS ÁRFOLYAMOK SEGÍTSÉGÉVEL Darvas Zsol Schepp Zolán
STATISZTIKAI IDŐSORELEMZÉS A TŐZSDÉN. Doktori (PhD) értekezés
NYUGAT-MAGYARORSZÁGI EGYETEM Széchenyi Isván Gazdálkodás- és Szervezésudományok Dokori Iskola STATISZTIKAI IDŐSORELEMZÉS A TŐZSDÉN Dokori (PhD) érekezés Készíee: Hoschek Mónika A kiadvány a TÁMOP 4.. B-/--8
ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA
Elorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció)
lorjlzés (prdikció vagy xrapoláció) Adapólás (inrpoláció) kompozíciós vagy drminiszikus modllk. A rndfüggvény A ciklikus haás A szzonális haás A zaj (hibaag) 3-3 4 5 6 7 8 9 Az idõsor 3 - - - 3 4 5 6 7
A gazdasági növekedés mérése
3. lecke A gazdasági növekedés mérése Nominális és reál GDP, érék-, volumen- és árindex. Gazdasági növekedés és üzlei ciklusok. Hogyan mérjük a gazdasági növekedés? dinamikus elemzés: hány százalékkal
MTA DOKTORI ÉRTEKEZÉS
Powered by TCPDF (www.cpdf.org) MTA DOKTORI ÉRTEKEZÉS A MODELLEZÉS SAJÁTOSSÁGAI IDŐSORI ANOMÁLIÁK ESETÉN RAPPAI GÁBOR PÉCS, 2016 Powered by TCPDF (www.cpdf.org) A MODELLEZÉS SAJÁTOSSÁGAI IDŐSORI ANOMÁLIÁK
13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
13 Wiener folyama és az Iô lemma Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 1 Markov folyamaok Memória nélküli szochaszikus folyamaok, a kövekező lépés csak a pillananyi helyzeől
Rövid távú elôrejelzésre használt makorökonometriai modell*
Tanulmányok Rövid ávú elôrejelzésre használ makorökonomeriai modell* Balaoni András, a Századvég Gazdaságkuaó Zr. kuaási igazgaója E-mail: balaoni@szazadveg-eco.hu Mellár Tamás, az MTA dokora, a Pécsi
ÉLETTARTAM KOCKÁZAT A nyugdíjrendszerre nehezedő egyik teher
ÉLETTARTAM KOCKÁZAT A nyudíjrendszerre nehezedő eyik eher Májer Isván - Kovács Erzsébe i.majer@erasmusmc.nl Taralom. Várhaó élearam alakulása 2. A moraliás modellezése a Lee-Carer modell 3. Alkalmazás
MTA DOKTORI ÉRTEKEZÉS TÉZISEI
Powered by TCPDF (www.cpdf.org) MTA DOKTORI ÉRTEKEZÉS TÉZISEI A MODELLEZÉS SAJÁTOSSÁGAI IDŐSORI ANOMÁLIÁK ESETÉN RAPPAI GÁBOR PÉCS, 2016 Mindennek nyilván okozója az elmúl időszakban végbemen draszikus
Statisztika II. előadás és gyakorlat 1. rész
Saiszika II. Saiszika II. előadás és gyakorla 1. rész T.Nagy Judi Ajánlo irodalom: Ilyésné Molnár Emese Lovasné Avaó Judi: Saiszika II. Feladagyűjemény, Perfek, 2006. Korpás Ailáné (szerk.): Álalános Saiszika
REGIONÁLIS GAZDASÁGTAN B
REGIONÁLIS GAZDASÁGTAN B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA
MNB Háttértanulmányok 2003/1. Krekó Judit Vonnák Balázs
MNB Háéranulmányok 2003/1 Krekó Judi Vonnák Balázs MAKROELEMZŐK INFLÁCIÓS VÁRAKOZÁSAI MAGYARORSZÁGON 2003. január Online ISSN: 1587-9356 Krekó Juid: Közgazdasági főoszály, Moneáris elemzési oszály E-mail:
OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia. 2011. június
OKTATÁSGAZDASÁGTAN Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi
A sztochasztikus idősorelemzés alapjai
A szochaszikus idősorelemzés alapjai Ferenci Tamás BCE, Saiszika Tanszék amas.ferenci@medsa.hu 2011. december 19. Taralomjegyzék 1. Az idősorelemzés fogalma, megközelíései 2 1.1. Az idősor fogalma...................................
Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta
Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN
Nyuga-magyarországi Egyeem Közgazdaságudományi Kar Széchenyi Isván Gazdálkodás- és Szervezésudományok Dokori Iskola STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN Dokori (PhD) érekezés ézisei Polgárné Hoschek Mónika
Autoregresszív és mozgóátlag folyamatok
Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
Heckman modell. Szelekciós modellek alkalmazásai.
Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült
5. Differenciálegyenlet rendszerek
5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGPOLITIKA. Készítette: Pete Péter. Szakmai felelős: Pete Péter június
GAZDASÁGPOLITIKA GAZDASÁGPOLITIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az MTA
ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány
STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN
STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN DOKTORI (PhD) ÉRTEKEZÉS Polgárné Hoschek Mónika Nyuga-magyarországi Egyeem Sopron. STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN Érekezés dokori (PhD) fokoza elnyerése érdekében
Előszó. 1. Rendszertechnikai alapfogalmak.
Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,
GAZDASÁGPOLITIKA. Készítette: Pete Péter. Szakmai felelős: Pete Péter. 2011. június
GAZDASÁGPOLITIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi
REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja
REKCIÓKINETIK LPFOGLMK Reakiókineika élja. Reakiók idbeli lefuásának, idbeliségének vizsgálaa: miér gyors egy reakió, és miér lassú egy másik?. Hogyan függ a reakiók sebessége a hmérséklel? 3. Reakiók
Ökonometria gyakorló feladatok - idősorok elemzése
Ökonometria gyakorló feladatok - idősorok elemzése 2019. május 7. 1. Egy gazdálkodó szervezetben az átlagos készletérték alakulása negyedéves periódusokban mérve a következő: évek negyedévek 1 2 3 4 2007
Tartalom. Éghajlati rendszer: a légkör és a vele kölcsönhatásban álló 4 geoszféra együttese. Idıjárás vs. éghajlat
Az éghajlai modellszimulációk bizonyalanságainak felérképezése a Kárpá-medencére Szabó Péer (szabo.p@me.hu) és Szépszó Gabriella Taralom Alapfogalmak és az éghajlai rendszer Numerikus modellezés Az éghajlai
Távközlı hálózatok és szolgáltatások
Távközlı hálózaok és szolgálaások Forgalmi köveelmények, hálózaméreezés Csopaki Gyula Némeh Kriszián BME TMIT 22. nov. 2. A árgy felépíése. Bevezeés 2. I hálózaok elérése ávközlı és kábel-tv hálózaokon
ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter
MAKROÖKONÓMIA MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az
Újraosztó fiskális politika nyitott gazdaságban
Közgazdasági Szemle, LIII. évf., 2006. április (330 348. o.) SZILÁGYI KAALI Újraoszó fiskális poliika nyio gazdaságban A anulmány az expanzív fiskális poliika haásá vizsgálja egy kis, nyio gazdaság készekoros
Erőmű-beruházások értékelése a liberalizált piacon
AZ ENERGIAGAZDÁLKODÁS ALAPJAI 1.3 2.5 Erőmű-beruházások érékelése a liberalizál piacon Tárgyszavak: erőmű-beruházás; piaci ár; kockáza; üzelőanyagár; belső kama. Az elmúl évek kaliforniai apaszalaai az
RÖVID TÁVÚ ELİREJELZİ MODELL MAGYARORSZÁGRA
Közgazdasági és Regionális Tudományok Inézee Pécsi Tudományegyeem Közgazdaságudományi Kar MŐHELYTANULMÁNYOK RÖVID TÁVÚ ELİREJELZİ MODELL MAGYARORSZÁGRA Balaoni András - Mellár Tamás 2011/3 2011. szepember
8. előadás Ultrarövid impulzusok mérése - autokorreláció
Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,
Néhány betegség statisztikai adatainak idősori elemzése. Doktori (PhD) értekezés. Fazekasné Kis Mária
Néhány beegség saiszikai adaainak idősori elemzése Dokori (PhD) érekezés Fazekasné Kis Mária Debreceni Egyeem Debrecen, 004 Ezen érekezés a Debreceni Egyeem TTK Maemaika- és Számíásudomány Dokori Iskola
Demográfia és fiskális fenntarthatóság DSGE-OLG modellkeretben
Demográfia és fiskális fennarhaóság DSGE-OLG modellkereben Baksa Dániel* és Munkácsi Zsuzsa** 2. szepember 24. Absrac A hagyományos dinamikus szochaszikus álalános egyensúlyi DSGE modellkere jellegéb l
Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.
Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,
REGIONÁLIS GAZDASÁGTAN B
REGIONÁLIS GAZDASÁGTAN B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA
Idősoros elemzés minta
Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban
DIPLOMADOLGOZAT Varga Zoltán 2012
DIPLOMADOLGOZAT Varga Zolán 2012 Szen Isván Egyeem Gazdaság- és Társadalomudományi Kar Markeing Inéze Keresle-előrejelzés a vállalai logiszikában Belső konzulens neve, beoszása: Dr. Komáromi Nándor, egyeemi
1. Feladatkör: nemzeti számvitel. Mikro- és makroökonómia
Mikro- és makroökonómia Felada: hielpénzrendszer működése (egyszerűsíe Rosier-modell) Tekinsünk egy zár isza hielpénz-gazdaságo, ahol minden arozás a kövekező időszakban kell visszaadni és a bank egyálalán
Növekedés és felzárkózás Magyarországon,
Közgazdasági Szemle, LVIII. évf., 20. május (393 4. o.) Kónya Isván Növekedés és felzárkózás Magyarországon, 995 2009 A anulmány célja az, hogy a magyar makrogazdaság elmúl 5 évének legfőbb makrofolyamaai
Időbeli előrejelzések
POLGÁRNÉ HOCHEK MÓNIKA Időbeli előrejelzések A saiszikában az idősor elemzés különböző módszereke alkalmaz az elmúl időszak endenciáinak, összefüggéseinek a felárására és egben ámpono núj a jövő várhaó
STATISZTIKAI SZEMLE A KÖZPONTI STATISZTIKAI HIVATAL FOLYÓIRATA SZERKESZTŐBIZOTTSÁG:
STATISZTIKAI SZEMLE A KÖZPONTI STATISZTIKAI HIVATAL FOLYÓIRATA SZERKESZTŐBIZOTTSÁG: DR. BELYÓ PÁL, ÉLTETŐ ÖDÖN, DR. HARCSA ISTVÁN, DR. HUNYADI LÁSZLÓ (főszerkesző), DR. HÜTTL ANTÓNIA, DR. KŐRÖSI GÁBOR,
Havi elemzés az infláció alakulásáról. 2013. december
Havi elemzés az infláció alakulásáról. december A jegybanktörvény (a Magyar Nemzeti Bankról szóló,. évi CXXXIX. tv.). () az árstabilitás elérését és fenntartását jelöli meg a Magyar Nemzeti Bank elsődleges
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Panel adatok elemzése
Pnel dtok elemzése Mkroökonometr, 4. hét Bíró Ankó A tnnyg Gzdság Versenyhvtl Versenykltúr Központj és dás-ökonóm Alpítvány támogtásávl készült z ELE ák Közgzdságtdomány nszékének közreműködésével Pnel
A vállalati tıkeszerkezet-elméletek tesztelése
XIII. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 2010. május 14-16. A vállalai ıkeszerkeze-elméleek eszelése Szerzı: Beder Róber, Babeş-Bolyai Tudományegyeem, Közgazdaság- és Gazdálkodásudományi
Diagnosztika és előrejelzés
2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának
STATISZTIKAI MÓDSZERTANI FÜZETEK, 43 SZEZONÁLIS KIIGAZÍTÁS
STATISZTIKAI MÓDSZERTANI FÜZETEK, 43 SZEZONÁLIS KIIGAZÍTÁS BUDAPEST, 2005 KÖZPONTI STATISZTIKAI HIVATAL, 2005 ISSN 0324-5985 ISBN 963 215 827 X Készül: a KSH Saiszikai kuaási és okaási főoszályának Minavéeli
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
Mesterséges Intelligencia MI
Meserséges Inelligencia MI Valószínűségi emporális kövekezeés Dobrowiecki Tadeusz Eredics Péer, és mások BME I.E. 437, 463-28-99 dobrowiecki@mi.bme.hu, hp://www.mi.bme.hu/general/saff/ade X - a időpillanaban
Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS
Zsembery Levene VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS PÉNZÜGYI INTÉZET BEFEKTETÉSEK TANSZÉK TÉMAVEZETŐ: DR. SZÁZ JÁNOS Zsembery Levene BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI ÉS ÁLLAMIGAZGATÁSI EGYETEM
ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter
MAKROÖKONÓMIA MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az
Jelzáloghitel-törlesztés forintban és devizában egyszerű modellek
Közgazdasági Szemle, LXii. évf., 215. január (1 26. o.) Király Júlia Simonovis András Jelzáloghiel-örleszés forinban és devizában egyszerű modellek A devizaalapú jelzáloghielek néhány éves népszerűség
ÉLELMISZER-IPARI ALAPISMERETEK
Élelmiszer-ipari alapismereek emel szin 08 ÉRETTSÉGI VIZSGA 00.május 4. ÉLELMISZER-IPARI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Kamat átgyűrűzés Magyarországon
Kama ágyűrűzés Magyarországon Horváh Csilla, Krekó Judi, Naszódi Anna 4. február Összefoglaló Elemzésünkben hiba-korrekciós modellek segíségével vizsgáljuk a piaci hozamok és a banki forin hiel- és beéi
Budapesti Corvinus Egyetem. Tudományos Diákköri Konferencia. A CDD-call opció gyakorlati alkalmazása
Budapesi Corvinus Egyee Tudoányos Diákköri Konferencia A CDD-call opció gyakorlai alkalazása Bella Klaudia Taralojegyzék 1. BEVEZETÉS 3 2. AZ IDŐJÁRÁSI DERIVATÍVÁK GYAKORLATI JELENTŐSÉGE 5 2.1. Konrakusok
2. gyakorlat: Z épület ferdeségmérésének mérése
. gyakorla: Z épüle ferdeségének mérése. gyakorla: Z épüle ferdeségmérésének mérése Felada: Épíésellenőrzési feladakén egy 1 szines épüle függőleges élének érbeli helyzeé kell meghaározni, majd az 1986-ban
Kockázati folyamatok
Kockázai folyamaok Sz cs Gábor Szegedi Tudományegyeem Bolyai Inéze, Szochaszika Tanszék Uolsó frissíés: 219. szepember 17. Taralomjegyzék 1. Az exponenciális eloszlás 2 2. A Wald-azonosság 4 3. Felújíási
Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc
Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel
A többváltozós lineáris regresszió 1.
2018. szeptember 17. Lakásár adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó változók segítségével Legegyszerűbb eset - kétváltozós
Elektronika 2. TFBE1302
Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.
VÁROS- ÉS INGATLANGAZDASÁGTAN
VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék az MTA
Idősorok elemzése november 14. Spektrálelemzés, DF és ADF tesztek. Idősorok elemzése
Spektrálelemzés, DF és ADF tesztek 2017. november 14. SPEKTRÁL-ELEMZÉS Példa - BKV villamosenergia-terhelési görbéje Figure: BKV villamosenergia-terhelési görbéje, negyedóránkénti mérések (2 hét adatai,
Takács Lajos ( ) és Prékopa András ( ) emlékére.
Haladvány Kiadvány 17-06-15 Mely merev kör½u gráfok és hogyan használhaók valószín½uségi becslésekhez? Hujer Mihály hujer.misigmail.com Ajánlás. Takács Lajos (1924 2015) és Prékopa András (1929 2016) emlékére.
OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június
OKTATÁSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék az MTA Közgazdaságtudomány
VÁROS- ÉS INGATLANGAZDASÁGTAN
VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE
Bázel II. hatása a magyar jelzálog hitelintézetekre
A PSZÁF megbízásából Bázel II. haása a magyar jelzálog hielinézeekre A megvalósíáshoz pénzügyi ámogaás a Pénzügyi Szervezeek Állami Felügyelee nyújo, a haályos jogszabályok szerin kiír nyilvános pályázara
Ökonometria gyakorló feladatok 1.
Ökonometria gyakorló feladatok 1. 018. szeptember 6. 1. Egy vállalatnál megvizsgálták 0 üzletkötő éves teljesítményét és prémiumát. A megfigyelt eredményeket, és a belőlük számolt regressziós részeredményeket
A KISTERÜLETI MUNKAÜGYI STATISZTIKA MÓDSZERTANA ÉS ENNEK ALKALMAZÁSA (II.)*
MÓDSZERTANI TANULMÁNYOK A KISTERÜLETI MUNKAÜGYI STATISZTIKA MÓDSZERTANA ÉS ENNEK ALKALMAZÁSA (II.)* A anulmány előző ké fejezeében (Saiszikai Szemle. 000. évi 7. sz. 497 507. old.) rámuaunk arra, hogy
VÁROS- ÉS INGATLANGAZDASÁGTAN
VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az
1. Ismétlés Utóbbi előadások áttekintése IV. esettanulmány Uniós országok munkanélkülisége... 1
Tartalom Tartalomjegyzék 1. Ismétlés 1 1.1. Utóbbi előadások áttekintése.................................. 1 2. IV. esettanulmány 1 2.1. Uniós országok munkanélkülisége................................
Bevezetés a gazdasági növekedés elméletébe
98 98 984 986 988 99 99 994 996 998 4 6 98 98 984 986 988 99 99 994 996 998 4 6 98 98 984 986 988 99 99 994 996 998 4 6 98 98 984 986 988 99 99 994 996 998 4 6 4-5. lece Bevezeés a gazdasági növeedés elméleébe
MNB Háttértanulmányok 2001/1. Jakab M. Zoltán - Vadas Gábor: A HÁZTARTÁSOK FOGYASZTÁSÁNAK ELŐREJELZÉSE ÖKONOMETRIAI MÓDSZEREKKEL
MNB Háéranulmányok 2001/1 Jakab M. Zolán - Vadas Gábor: A HÁZTARTÁSOK FOGYASZTÁSÁNAK ELŐREJELZÉSE ÖKONOMETRIAI MÓDSZEREKKEL 2001 okóber Online ISSN: 1587-9356 Jakab M. Zolán: oszályvezeő helyees, Közgazdasági
Statisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
Közgazdasági idősorok elemzése X-11/12 ARIMA eljárással
Közgazdasági idősorok elemzése X-11/12 ARIMA eljárással 1. Az idősor-elemzés menee Az idősor-elemzés célja, hogy a közgazdasági aralmú idősor hosszú ávú és rövid ávú viselkedésé egyérelmű módon széválassza,
KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor június
KÖZGAZDASÁGTAN II. Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék
Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége
Az inflációs célkövetés, az árszínvonal célkitűzés, valamint hibrid politikájuk alkalmazhatóságának parametrikus elemzése
Budapesi Műszaki- és Gazdaságudományi Egyeem Gazdaság- és Társadalomudományi Kar Üzlei Tudományok Inéze Pénzügyek Tanszék Az inflációs célköveés, az árszínvonal célkiűzés, valamin hibrid poliikájuk alkalmazhaóságának
Bevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.