Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc
|
|
- Mária Sipos
- 6 évvel ezelőtt
- Látták:
Átírás
1 Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel írhaó le (ponosabban ezek a legegyszer bb modellek). Kulcsfonosságú megéreni a középiskolás egyenes arányosság fogalmá. O meganuluk, hogyha ké mennyiség egyenesen arányos, akkor hányadosuk állandó. Ez az egyszer megállapíás kell használni az összes szöveges feladaban! A szöveges feladaok megoldásának lépései:. Felírni a zikai arányossági egyenlee. Emlékeze : válozás =derivál.. Kihámozni a szövegb l a kezdei feléel(eke). 3. Lefordíani a maemaika nyelvére a kérdés. Ekkor elviekben van egy Cauchy-feladaunk és egy kérdéses mennyiségünk, pl. x() =? 4. Megoldani a dierenciálegyenlee.. A kezdei feléel segíségével meghaározni a konsans éréké/érékeke. 6. Kiszámolni a kerese éréke, pl. x()-ö. Nézzünk pár példá!. Felada: Egy moorcsónak álló vízben m/s egyenlees sebességgel halad. Ha a moor leállíjuk, 40 s múlva a sebessége m/s lesz. Mekkora lesz a sebessége a leállás uán másodperccel? (Fizikából udjuk, hogy kis sebességekre a súrlódási er a sebességgel egyenesen arányos.) Megoldás: Els lépésben felírjuk a zikai egyenlee. Mivel a sebesség a kérdés, legyen a hajó id pon-beli sebessége v(). Tudjuk a zárójeles megjegyzés mia, hogy a súrlódási er a sebességgel egyenesen arányos. A esre csupán a súrlódási er fog hani, emia
2 ma() = F összes = F súrl Mivel a súrlódási er egyenesen arányos a sebességgel, ezér: F súrl v() = k ahol k egy konsans, állandó. Beírva az el z : ma() v() = k Leoszhaunk m-el és összevonhajuk a másik konsanssal. Továbbá felszorzunk v()- vel, így: a() = kv() Fonos megjegyezni, hogy ez a k már egy másik k, de mosanól az egyszer ség kedvéér ugyanúgy fogjuk jelölni ke. Tudjuk, hogy a() = v (), ezér v () = kv() Az egyenle már meg is van. Mos ké kezdei feléelünk is van, mégpedig v(0) = és v(40) = (majd ki fog derülni, hogy mindke re szükség lesz). A felada kérdése: v() =? Oldjuk meg az egyenlee! f(v()) = v() és g() = k A ké inegrál: v() dv() = ln(v()) + c k d = k + c Összesíve: ln(v()) = k + c v() = ce k
3 Tudjuk: v(0) =, ezér azaz c =. Továbbá v(40) =, ezér v(0) = ce k 0 = c = v(40) = e k 40 = ehá k = ln ( ) 40. Így a megoldásgörbe: v() = exp ( ln ( ) ) 40 A kérdésre a válasz: v() = exp ( ln ( ) ) ( 40 = exp ln ( ) ) 0 = ( ) 0 4, 776 Tehá ezek alapján a moorcsónak sebessége másodperc múlva körülbelül 4,78 m s. (Ez nem is meglep, hiszen másodperc ala elég kevese csökken egy gyorsan haladó moorcsónak.). Felada: A esek kih lési sebessége egyenesen arányos a es és a környeze közi h mérsékle-különbséggel. Egy 00 Celsius fokos ese 0 fokos helyre viszünk; 0 perc múlva a es 40 fokos. Hány fokra h l le 0 perc ala? (Tfh. a környeze h mérséklee id ben állandó.) Megoldás: A felada szövege szerin a h mérsékle-különbség arányos a leh lés sebességével, azaz a h mérsékleének válozásával. Jelöljük U()-vel a ké es h mérsékle-különbségé! Erre az egyenle (hiszen a h mérsékleválozás és a különbség válozása ugyanaz a környeze állandósága mia): Árendezve: U () U() = k U () = ku() 3
4 A kezdei feléeleink: kezdeben a különbség 90 fok, ezér U(0) = 90. Továbbá az is udjuk, hogy a es 0 perc múlva 40 fokos, azaz a különbség U(0) = 30. A kérdéses mennyiség így T (0) = 0 + U(0) =? Az el z egyenlee viszon már megoldouk ebben a pdf-ben, ezér csak a megoldás írom le: Alkalmazva a ké kezdei feléel: U() = ce k azaz c = 90, ovábbá U(0) = ce k 0 = c = 90 U(0) = 90e k 0 = 30 ( ( ) ) 0 azaz k = ln. Ezek alapján a kérdésre a válasz: 3 ( ( ( ) ) ) ( ) 0 U(0) = 90 exp ln 0 = 90, Tehá így a es h mérséklee 0 perc múlva körülbelül 6 fok (hiszen hozzá kelle adni a környeze h mérsékleé is). 3. Szorgalmi felada: (4 pon) Valaki egy egyenes uca A ponjából indul az auójával és egyenleesen gyorsulva 0 másodperc ala ér az uca B ponjába, ahol sebessége m/s. Megállapíhaó-e ezekb l az adaokból az A és B ponok ávolsága? Ha nem, miér nem? Ha igen, milyen messze vannak egymásól? A feladao a feni módszerrel oldjuk meg (azaz legyen benne dierenciálegyenle)! 4
5 . Homogén fokszámú egyenleek Mos a homogén más jelen, min az elején. Egy x () = f(, x()) egyenle homogén fokszámú, ha a jobb oldalán álló függvényre igaz, hogy f(λ, λx()) = f(, x()) bármilyen λ eseén. ( ) Ekkor könny beláni, hogy ilyenkor x() az f függvény úgy alakíhaó, hogy f(, x()) = g alakban írhaó (azaz a jobb oldalon csak ezek a hányadosok szerepelnek). Tehá ez a ípus onnan könnyen felismerhe, ha árendezés uán a jobb oldalon x() kifejezések állnak. Ebben az eseben ha bevezejük az u() = x() új függvény, akkor széválaszhaó kapunk, ami pedig már meg udnunk oldani. Ennek oka: ha árendezem u() deníciójá: Deriváljuk mindké oldal szerin! x() = u() x () = u () + u() Árendezve, és x () helyébe beírva az eredei egyenle jobb oldalá: u () + u() = g(u()) u g(u()) u() () = ami pedig már valóban egy széválaszhaó egyenle. Ez a képlee meg is lehe anulni, de (szerinem) egyszer bb, ha csak beírjuk az u()- az egyenlebe, és azzal rögön kijön a széválaszhaó.. Felada: Oldjuk meg az alábbi dierenciálegyenlee! x () = x() +
6 Megoldás: Bonsuk szé a öre! x () = x() Ebb l lászik, hogy valóban homogén fokszámú. Vezessük be az új válozó! A jobb oldalon u() + lesz, ellenben a bal oldalhoz még kicsi dolgozni kell: + u() = x() x() = u() x () = u () + u() Tehá ez kell a bal oldalra beírni (egyébkén mindig ez kell majd, ez érdemes megjegyezni, vagy le is lehe vezeni). Beírva: u () + u() = u() + u () = u () = Ez széválaszhaó, s, a legegyszer bb ípus még a harmadik gyakorla elejér l, ami sima inegrálással meg lehe oldani. u() = ln() + c Ezzel még nem vagyunk készen, hiszen x() vol a kérdés. deníciójá könnyen meghaározhaó: Ez azonban beírva u() x() = ln() + c x() = ln() + c Készen is vagyunk.. Felada: Oldjuk meg a kövekez egyenlee! x () = x() + x() Megoldás: Árendezve (azaz leoszva -vel, és bevíve a gyökjel alá): x () = x() 6 + x()
7 A jobb oldalon csak a öres alakok vannak, ezér valóban homogén fokszámú lesz. Az el z feladahoz hasonlóan megin az u() = x() új válozó vezejük be, aminek a deriválásával kifejezhe megin x (): x() = u() x () = u () + u() Ez beírva a bal oldalba, és a jobba pedig behelyeesíve u()-: u () + u() = u() + u() Kivonjuk az u() ago mindké oldalból és leoszok -vel: u () = u() Ez pedig már egy sima széválaszhaó egyenle. A ké kiszámíandó inegrál: u() du() = arcsin(u()) + c d = ln() + c (A ZH-ban nem fogom kérni, hogy udjáok az arcsin deriváljá fejb l.) Egyenl vé éve ke: arcsin(u()) = ln() + c u() = sin(ln() + c) Mos viszon nem ez, hanem az x() vol a kérdés, ami pedig: x() = u() = sin(ln() + c) 3. Felada: Oldjuk meg az alábbi dierenciálegyenlee! Megoldás: Árendezve: ( ) x() x () = x() + cos 7
8 x () = x() ( ) x() + cos Megin csak a haványok vannak a jobb oldalon, ezér homogén fokszámú lesz az egyenle. Az el z ekhez hasonlóan behelyeesíve bal oldalra a már jól ismer u () + u() kifejezés, jobb oldalra pedig az u() függvényeke kapjuk: Kivonva u()- és leoszva -vel: u () + u() = u() + cos (u()) u () = cos (u()) Ez már egy széválaszhaó. A ké inegrál: Ezeke egyenl vé éve: du() = an(u()) + c cos (u()) d = ln() + c Ebb l a megoldás: an(u()) = ln() + c u() = arcan(ln() + c) x() = arcan(ln() + c) 4. Felada: Oldjuk meg az alábbi egyenlee! Megoldás: Árendezve: x () = x() + x() x () = x() + x() Láhaó, hogy ez is homogén fokszámú, így a bal oldalba beírva a deriválos ago, a jobb oldalba pedig az u()-ke: 8
9 u () + u() = u() + u() Ez megin széválaszhaó, a ké inegrál: Beírva ke: u() u () = u() du() = arccos(u()) + c d = ln() + c Így a megoldás: arccos(u()) = ln() + c u() = cos(ln() + c) x() = cos(ln() + c). Felada: Oldjuk meg az alábbi egyenlee: Megoldás: Árendezve: x () = + x() + x() x () = + x() + x() Láhaó, hogy ez is homogén fokszámú! Beírva a bal oldalba a szokásos kifejezés, jobb oldalba pedig az u()-ke: Árendezve: u () + u() = + u() + u() Ez széválaszhaó - a ké inegrál: u () = + u() 9
10 du() = arcan(u()) + c + u() d = ln() + c A ké kifejezés egyenl vé éve: arcan(u()) = ln() + c u() = an(ln() + c) Így a megoldás: x() = an(ln() + c) Szorgalmi ( pon) : Oldjuk meg a kövekez egyenlee! x () = cos(x() ) Trükk: a homogén fokszámúakhoz hasonlóan vezessünk be egy új válozó az u() = x() szabállyal! 0
5. Differenciálegyenlet rendszerek
5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:
.1. A sinx és cosx racionális függvényeinek integrálásáa. = R sinx,cosx dx. x x 2. 1 dt
. Trigonomeriai fügvények inegrálása Egy J függvény ípusáól függ. R x inegrál kiszámíása az R x racionális.. A sinx és cosx racionális függvényeinek inegrálásáa negrál J R sinxcosx Helyeesíés () R A és
Fizika A2E, 11. feladatsor
Fizika AE, 11. feladasor Vida György József vidagyorgy@gmail.com 1. felada: Állandó, =,1 A er sség áram öl egy a = 5 cm él, d = 4 mm ávolságban lév, négyze alakú lapokból álló síkkondenzáor. a Haározzuk
1. Előadás: Készletezési modellek, I-II.
. Előadás: Készleezési modellek, I-II. Készleeke rendszerin azér arunk hogy, valamely szükséglee, igény kielégísünk. A szóban forgó anyag, cikk iráni igény, keresle a készle fogyásá idézi elő. Gondoskodnunk
MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből
HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és
Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.
Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
Makroökonómiai modellépítés monetáris politika
Makroökonómiai modellépíés moneáris poliika Szabó-Bakos Eszer 200. ½oszi félév Téelezzük fel, hogy az álalunk vizsgál gazdaságban a reprezenaív fogyaszó hasznossági függvénye az X U = ln C +! v M+ L +
REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja
REKCIÓKINETIK LPFOGLMK Reakiókineika élja. Reakiók idbeli lefuásának, idbeliségének vizsgálaa: miér gyors egy reakió, és miér lassú egy másik?. Hogyan függ a reakiók sebessége a hmérséklel? 3. Reakiók
Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)
Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja
A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer
Kinemaikai egyensúly éele: Téel: zár kinemaikai lánc relaív szögsebesség-vekorrendszere egyensúlyi. Mechanizmusok sebességállapoa a kinemaikai egyensúly éelével is meghaározhaó. sebességállapo ismer, ha
Matematika A3 HÁZI FELADAT megoldások Vektoranalízis
Maemaika A HÁZI FELADAT megoldáok Vekoranalízi Nem mindenhol íram le a konkré megoldá. Ahol az jelenee volna, hogy félig én oldom meg a feladao a hallgaóág helye, o cak igen rövid megjegyzé alálnak A zh-ban
L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.
L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.
3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás)
Maemaika A3 gyakorla Energeika és Mecharonika BSc szakok, 6/7 avasz 3. feladasor: Görbe ívhossza, görbemeni inegrál megoldás. Mi az r 3 3 i + 6 5 5 j + 9 k görbe ívhossza a [, ] inervallumon? A megado
6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok
6. szemináriumi Gyakorló feladaok. Tőkekínála. Tőkekeresle. Várhaó vs váralan esemény őkepiaci haása. feladaok A feladaok megoldása során ahol lehe, írjon MATLAB scripe!!! Figyelem, a MATLAB a gondolkodás
A diszkrimináns, paraméteres feladatok a gyökök számával kapcsolatosan
MÁSODFOKÚ MINDEN A egoldókéle alkalazása Oldd eg a kövekező egyenleeke!... 9 A diszkriináns, araéeres feladaok a gyökök száával kacsolaosan. Az valós araéer ely érékei eseén van a 0 egyenlenek ké egyenlő
4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.
4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel
6 ANYAGMOZGATÓ BERENDEZÉSEK
Taralomjegyzék 0. BEVEZETÉS... 7. ANYAGMOZGATÓGÉPEK ÁLTALÁNOS MOZGÁSEGYENLETEI... 9.. Ado mozgásállapo megvalósíásához szükséges energia... 0.. Mozgásállapo meghaározása ado energiaforrás alapján... 5.
A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.
. Ideális olyadék FOLYDÉKOK ÉS GÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan
Schmitt-trigger tanulmányozása
Schmirigger anulmányozása 1. Bevezeés Analóg makroszkopikus világunkban minden fizikai mennyiség folyonos érékkészleű. Csak néhánya emlíve ilyenek a hossz, idő, sebesség, az elekromos mennyiségek (feszülség,
Differenciálegyenletek a mindennapokban
Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 15 Pénz, pénz,
11. Sorozatok. I. Nulladik ZH-ban láttuk:
11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket
Differenciálegyenletek megoldása próbafüggvény-módszerrel
Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós
Fourier-sorok konvergenciájáról
Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees
Dinamikus optimalizálás és a Leontief-modell
MÛHELY Közgazdasági Szemle, LVI. évf., 29. január (84 92. o.) DOBOS IMRE Dinamikus opimalizálás és a Leonief-modell A anulmány a variációszámíás gazdasági alkalmazásaiból ismere hárma. Mind három alkalmazás
A lecke célja: A tananyag felhasználója megismerje az anyagi pont mozgásának jellemzőit.
1 modul: Kinemaika Kineika 11 lecke: Anagi pon mogása A lecke célja: A ananag felhasnálója megismerje a anagi pon mogásának jellemői Köveelmének: Ön akkor sajáíoa el megfelelően a ananago ha: meg udja
Romvári Petra. biztosítási kötelezettségek fair értékelése, id - és piackonzisztens aktuáriusi értékelések
Budapesi Corvinus Egyeem Eövös Loránd Tudományegyeem Romvári Pera bizosíási köelezeségek fair érékelése, id - és piackonziszens akuáriusi érékelések MSc szakdolgoza Témaveze : Araó Miklós Eövös Loránd
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
Síkalapok vizsgálata - az EC-7 bevezetése
Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül
GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK
BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb
Kockázati folyamatok
Kockázai folyamaok Sz cs Gábor Szegedi Tudományegyeem Bolyai Inéze, Szochaszika Tanszék Uolsó frissíés: 219. szepember 17. Taralomjegyzék 1. Az exponenciális eloszlás 2 2. A Wald-azonosság 4 3. Felújíási
V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam
01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat
Távközlı hálózatok és szolgáltatások
Távközlı hálózaok és szolgálaások Forgalmi köveelmények, hálózaméreezés Csopaki Gyula Némeh Kriszián BME TMIT 22. nov. 2. A árgy felépíése. Bevezeés 2. I hálózaok elérése ávközlı és kábel-tv hálózaokon
Fizika A2E, 7. feladatsor megoldások
Fizika A2E, 7. feladasor ida György József vidagyorgy@gmail.com Uolsó módosíás: 25. március 3., 5:45. felada: A = 3 6 m 2 kereszmesze rézvezeékben = A áram folyik. Mekkora az elekronok drifsebessége? Téelezzük
Feladatok matematikából 3. rész
Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!
Határozatlan integrál
Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás
(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
Eötvös Loránd Tudományegyetem Természettudományi Kar. Neogrády-Kiss Márton. Számelméleti függvények vizsgálata differenciál- és integrálegyenletekkel
Eövös Loránd Tudományegyeem Természeudományi Kar Neogrády-Kiss Máron Számelmélei függvények vizsgálaa differenciál- és inegrálegyenleekkel Szakdolgoza Témaveze : Simon L. Péer Alkalmazo Analízis és Számíásmaemaikai
Elsőrendű reakció sebességi állandójának meghatározása
Fizikai kémia gyakorla 1 Elsőrendű reakció... 2 Elsőrendű reakció sebességi állandójának meghaározása 1. Elmélei áekinés A reakciókineikai vizsgálaok célja egy ado reakció mechanizmusának felderíésre,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.
. Határozatlan integrál megoldások.. 5. 7 5 5. t + t 5t. 8 = 7 8 = 8 5 8 5 6. e + 5 ln + tg + 7. = 8. + 5 = 5 ln + 5 9. = + 5 + 5 5 + 5 + 5 = /5 = 5 6 6/5 + 5 5 = + ln = 5 + 5 = + ln + 0.. a +a arctg a.
Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V)
Jelformálás ) Haározza meg a erhelelen feszülségoszó ki kimenı feszülségé! Adaok: =3,3 kω, =8,6 kω, e =V. (Eredmény: 7,3 V) e ki ) Haározza meg a feszülségoszó ki kimenı feszülségé, ha a mérımőszer elsı
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
Matematika A3 1. ZH+megoldás
Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő
Primitív függvény, határozatlan integrál
Primiív füvény, haározalan inerál Primiív füvény, haározalan inerál Az ebben a részben szereplő füvények mindeyike leyen ey I eszőlees, poziív hosszúsáú inervallumon érelmeze valós érékű füvény (I R).
3. Gyakorlat. A soros RLC áramkör tanulmányozása
3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik
8 A teljesítményelektronikai berendezések vezérlése és
8 A eljesíményelekronikai berendezések vezérlése és szabályzása Vezérlés ala a eljesíményelekronikában a vezérel kapcsolók vezérlõjeleinek elõállíásá érjük. Egy berendezés mûködésé egyrész az alkalmazo
Dierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási
Jegyzőkönyv. fajhő méréséről 5
egyzőkönyv a fajhő méréséről 5 Készíee: Tüzes Dániel Mérés ideje: szerda 14 18 óra egyzőkönyv elkészüle: 8 9 4 A mérés célja A felada egy szilárd anyag fém fajhőjének közelíő meghaározása. Ugyan ma már
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Intraspecifikus verseny
Inraspecifikus verseny Források limiálsága evolúciós (finesz) kövekezmény aszimmeria Denziás-függés Park és msai (930-as évek, Chicago) - Tribolium casaneum = denziás-függelen (D-ID) 2 = alulkompenzál
Túlgerjesztés elleni védelmi funkció
Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan
A derivált alkalmazásai
A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls
REAKCIÓKINETIKA ELEMI REAKCIÓK ÖSSZETETT REAKCIÓK. Egyszer modellek
REKIÓKINETIK ELEMI REKIÓK ÖSSZETETT REKIÓK Egyszer moelle Párhuzamos (parallel reaió Egyensúlyra veze reaió Egymás öve (sorozaos onszeuív reaió 4 Sorozaos reaió egyensúlyi lépéssel Moleuláris moelle reaiósebességi
Statisztika II. előadás és gyakorlat 1. rész
Saiszika II. Saiszika II. előadás és gyakorla 1. rész T.Nagy Judi Ajánlo irodalom: Ilyésné Molnár Emese Lovasné Avaó Judi: Saiszika II. Feladagyűjemény, Perfek, 2006. Korpás Ailáné (szerk.): Álalános Saiszika
A hiperbolikus diszkontálás alkalmazása az optimális szabadalmak elméletében
A hiperbolikus diszkonálás alkalmazása az opimális szabadalmak elméleében Nagy Benedek Absrac: Gazdaságpoliikai dönések során gyakora szükséges azonnali kölségek és hosszú időn á realizálódó hasznok, vagy
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
A kúpszeletekről - V.
A kúpszeleekről - V. A kúpszeleekről szóló munkánk III. részének 10. ábrájá kiegészíve láhajuk az 1. ábrán. Mos ez alapján dolgozva állíunk fel összefüggéseke a kúpszeleek Dandelin - gömbös / körös vizsgálaának
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
KIS MATEMATIKA. 1. Bevezető
KIS MATEMATIKA. Bevezeő Fizikus vagyok, és azon belül is elmélei fizikusnak arom magam, mindemelle nagyon fonosnak arom a kísérlei fiziká is, ső magam is kísérleezem a graviáció erüleén. A maemaikával
Fizika 1X, pótzh (2010/11 őszi félév) Teszt
Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást
Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!
Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból
BEMUTATÓ FELADATOK () 1/() Egy mozdony vízszintes 600 m-es pályaszakaszon 150 kn állandó húzóer t fejt ki. A vonat sebessége 36 km/h-ról 54 km/h-ra növekszik. A vonat tömege 1000 Mg. a.) Mekkora a mozgási
t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,
Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
Tiszta és kevert stratégiák
sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,
ismerd meg! A digitális fényképezgép VII. rész
ismerd meg! A digiális ényképezgép VII. rész 3.5.3. Mélységélesség A képérzékel síkjábn kelekez kép szigorún véve cskis beállío ávolságr ekv árgyknál éles. Az ennél közelebb és ávolbb lev árgyk képe z
Segédanyag az A3 tárgy gyakorlatához
Segédanyag az A3 tárgy gyakorlatához Sáfár Orsolya Szeparábilis dierenciálegyenletek A megoldásról általában: A szeparábilis dierenciálegyenlet álatlános alakja: y (x) = f(x)g(y). Ebben az esetben g(y)-al
3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
Felkészítő feladatok a 2. zárthelyire
. Silárdságani alapismereek.. Mohr-féle fesülségsámíás Felkésíő feladaok a. árhelire Talajok mehanikai jellemői Ado: =4 kpa, = kpa és = kpa, ovábbá ===. Sámísk ki a főfesülségeke és adjk meg a fősíkok
Az inga mozgásának matematikai modellezése
Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.
Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18
Szöveges feladatok Életkori feladatok. Feladat. Egy anya 29 éves volt, amikor a a született. év múlva az életkora évvel lesz kevesebb, mint a a akkori életkorának kétszerese. Hány évesek most? Megoldás.
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
Mechanikai munka, energia, teljesítmény (Vázlat)
Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai
Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.
Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t
8. előadás Ultrarövid impulzusok mérése - autokorreláció
Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma
2014.11.18. SZABÁLYOZÁSI ESZKÖZÖK: Gazdasági ösztönzők jellemzői. GAZDASÁGI ÖSZTÖNZŐK (economic instruments) típusai. Környezetterhelési díjak
SZABÁLYOZÁSI ESZKÖZÖK: 10. hé: A Pigou-éelen alapuló környezei szabályozás: gazdasági öszönzők alapelvei és ípusai 1.A ulajdonjogok (a szennyezési jogosulság) allokálása 2.Felelősségi szabályok (káréríés)
Példatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc
Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben
Gingl Zoltán, Szeged, szept. 1
Gngl Zolán, Szeged, 8. 8 szep. 8 szep. z Ohm örvény, Krchhoff örvénye érvényese z alarészeen eső feszülség és áram pllanany érée nem mndg arányos apcsola ovábbra s lneárs 8 szep. 3 d di L d I I Feszülség
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Ezt már csak azért is érdemes megtenni, mert így egy olyan egyenletet kapunk, ami bármilyen harmonikus rezgés esetén használható, csak az 0
7. Rezgések mechanikája (harmonikus rezgőmozgás mozgásegyenle, annak megoldása, periódusidő, frekvencia, csillapío rezgés, alulcsillapío ese megoldása*, kényszerrezgés és rezonancia) Fonos: a dől beűvel
2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
t=o Lot dpcifkoncf-gmdud-e.mg ) dt DAI often [ A vfiunnatnyl REAKCLOISEBESSEIG ( v ) otfjmo VA 'nsg= Act ) LAO I Act Po T so www.
Reakciókineika ALAPFOGALMAK Reakciókineika célja kémiai reakció/folyama sebességének megállapíása a folyama időbeli lefolyásá leíró sebességi egyenle megadása reakció mechanizmusának megadása Reakciósebesség:
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II.
MISKOLCI EGYETEM GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA ELEKTOTECHNIKAI-ELEKTONIKAI TANSZÉK D. KOVÁCS ENŐ ELEKTONIKA II. (MŰVELETI EŐSÍTŐK II. ÉSZ, OPTOELEKTONIKA, TÁPEGYSÉGEK, A/D ÉS D/A KONVETEEK) Villamosmérnö
DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta
BIOFIZIKA I 010. Okóber 0. Bugyi Beáa TRANSZPORTELENSÉGEK Transzpor folyama: egy fizikai mennyiség érbeli eloszlása megválozik Emlékezeő: ermodinamika 0. főéele az egyensúly álalános feléele TERMODINAMIKAI
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
3. Mekkora feszültségre kell feltölteni egy defibrillátor 20 μf kapacitású kondenzátorát, hogy a defibrilláló impulzus energiája 160 J legyen?
Impulzusgeneráorok. a) Mekkora kapaciású kondenzáor alko egy 0 MΩ- os ellenállással s- os időállandójú RC- kör? b) Ezen RC- kör kisüésekor az eredei feszülségnek hány %- a van még meg s múlva?. Egy RC-
Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v.
Középzinű éreégi feladaor Fizika Elő réz 1. Melyik ebeég-idő grafikon alapján kézül el az ado ú-idő grafikon? v v v v A B C D m 2. A gokar gyoruláa álló helyzeből12. Melyik állíá helye? m A) 1 ala12 a
Végeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független