HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és"

Átírás

1 Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé. Ábrázolja mindké függvény Az y = 5 képleel megado függvénykapcsolao inveráljuk. Az f függvény a -hez az y - rendeli, az f inverz függvény pedig fordíva, y -hoz rendeli -. Ez indokolja, hogy a y képleben első lépéskén felcseréljük a válozóka: = 5. A második lépésben y - y kifejezzük: 5 =, y = log5. Az inverz függvény ehá f ( ) = log5. A számolás során figyelni kell arra, hogy mindig ekvivalens áalakíásoka hajsunk végre, visszafordíhaó lépéseke együnk. Mos a -vel való beszorzás, az 5-alapú logarimus visszafordíhaók -vel való oszássá, 5-ik haványra emeléssé. Ha azonban négyzere is emelnénk mindké oldal, az már nem felélenül lenne visszafordíhaó, ekvivalens áalakíás, hiszen mind a négyzegyök, mind a -szer a négyzegyök visszacsinálja a négyzere emelés. Ilyenkor min a gyakorlaon megoldo példában is az f függvény érelmezési arományának vizsgálaa adha ámpono. lg Az ábrázoláshoz először érékáblázao készíünk (felhasználva, hogy log 5 =, ha ez a lg5 képlee nem ismeri, vagy csak emlékszik valami hasonlóra, akkor sürgősen isméelje á a logarimusról a középiskolában anulaka): y = 5 y = log (A logarimus nullára és negaív számokra nincs érelmezve!) y = 5 y = log 5

2 Az ábrázolás segí az érelmezési aromány és az érékkészle megállapíásában, de azér ehhez sokszor ovábbi megfonolások is kellenek. Mos D f = R, hiszen minden valós számra érelmezve van 5, = R + = { y y > 0}, hiszen R f 5 mindig poziív és minden poziív szám felírhaó valamilyen melle 5 alakban. Az inverz függvénynél udjuk, hogy + az érelmezési aromány és az érékkészle felcserélődik, ezér D = R = R és R = D f f = R. HF. Számísa ki a kövekező haárérékeke: a) lim 0 b) lim c) lim d) e) f) lim lim lim 3 a) A képleel megado függvény nincs érelmezve a 0 egy környezeében, azaz valamilyen δ > 0 melle a ] δ, δ[ inervallumban, ui. negaív számból nem udunk négyzegyökö vonni a valós számok körében. Ezér ez a haárérék nincs érelmezve! A 0 jobboldali haárérék viszon érelmezve van, lim = =. I kihasználuk, hogy az 0 0 f ( ) = függvény jobbról folyonos a 0-ban és így a jobboldali haáréréke o f (0). b) Az függvény folyonos az helyen, ezér lim = =. c) Tudjuk az előadás alapján, hogy eseén és persze is igaz (ez uóbbi auológia). Ezér a keő szorzaa is ar a végelenbe, vagyis lim = +. f f

3 d, e) Ez valójában az függvény, csak el van olva jobbra -vel. Ezér az előadásból az -ről anulak alkalmazhaók: eseén 0 és így +, eseén 0 és így. Érdemes az y = függvény ábrázolni: f) lim = =, hiszen az 3 3 függvény folyonos 3-ban. SZ. Akhilleusz és a eknős verseny fu. Akhilleusz sebessége 0 m/s, a eknősé 0. m/s, a eknős előnye 0 m. Zénon paradoona szerin Akhilleusz soha nem érhei uol a eknős, mer mire Akhilleusz ledolgozza a eknős pillananyi előnyé, addigra a eknős egy kicsi mindig ovábbju. Modellezzük végelen sor összegével a problémá és oldjuk fel a paradoon. Oldjuk meg a feladao álalánosan, legyen Akhilleusz sebessége V, a eknősé v, a eknős h előnye h. Persze felesszük, hogy V > v. Akhilleusz a h ua 0 = idő ala eszi meg, ez V 0v ala a eknős előnye h = 0v -re válozik. Ez a ávo Akhilleusz = idő ala eszi meg. V Ez ala a eknős előnye = v -re válozik, melye Akhilleusz v v h v = = 0 = h idő ala fu le. Láhaó, hogy a eknős n-edik előnyé V V V V Akhilleusz n n h v = idő ala dolgozza le. A eknős uoléréséhez összesen V V h h v h v h v n + K = K+ + K időre van szüksége. Ez V V V V V V V h h egy mérani sor összege, a anul formula szerin a szükséges idő =. Ez véges V v V v V érék, Akhilleusz ehá uoléri a eknős. A feladaban megado számérékek 0 behelyeesíésével az uoléréshez szükséges idő.00s n

4 SZ. Mi a leheséges legbővebb érelmezési arománya az f ( ) = képleel megado függvénynek? Van-e a függvénynek haáréréke, ha, ha és ha? Ha igen, mik ezek a haárérékek? (Javasla: készísen érékáblázao a haárérékhelyek irányában.) Érelmezési aromány: Megvizsgáljuk, hogy a képle milyen eseekben érelmezheő. Több feléelnek kell egyszerre eljesülnie.. A nevező nem lehe nulla. Az = 0 egyenle megoldása = 3, a 3-a ehá ki kell zárni az érelmezési arományból.. A másik nevező se lehe nulla, így az -e is ki kell zárni az érelmezési arományból. 3. A gyökjel ala nem állha negaív szám, eszerin 0 kell, hogy eljesüljön. Vigyáza, i mos nem szorozhajuk meg minden ovábbi nélkül mindké oldal -gyel, mer ha ez negaív, akkor az egyenlőlenség iránya megfordul! Ezér ké esee vizsgálunk: ha >, akkor -gyel beszorozva 0, vagyis 3 adódik. Ha, akkor -gyel beszorozva 0, vagyis 3 adódik. Az első eseben ehá > és 3, azaz 3 a feléel, a másodikban és 3, azaz. Az. és a. pon szerin az -e és a 3-a ki kell zárnunk, így végül az érelmezési aromány D f = { < vagy > 3}. Ábrázolás: Készíheünk előe érékáblázao, de az R-ben a curve(/sqr(-/(-)), -0, 0) paranccsal az alábbi ábrá nyerhejük, amiről az érékek aránylag jól leolvashaók: /sqr( - /( - ))

5 Lászik, hogy és 3 közö a függvény nincs érelmezve, leolvashaó, hogy nagy -ekre a függvény kb., ugyanúgy nagyon negaív érékekre is kb., míg -hez balról közeledve kb. 0. Ezek a sejések igazak is, ui. ha +, akkor 0 és így a nevező -hez ar, ezér az egész kifejezés ar az -hez. Ugyanígy, ha, akkor 0, a nevező mos is - hez ar, így az egész kifejezés ar -hez. Ha, akkor, ezér a nevező + - hez ar, az egész kifejezés így ar a 0-hoz.

6 SZ3. Legyen h ( ) = ha Q, ahol Q a racionális számok halmaza. ha Q a) Igazolja, hogy h folyonos az 0 = 0 helyen. b) Igazolja, hogy h nem folyonos egyelen 0-ól különböző 0 helyen sem. Ez a függvény ehá példa olyan függvényre, amelyik csak egyelen ponban folyonos. Érékábláza: π e.73 h () π e A függvény a 0-ól ávolodva nagyon ugrál, nem űnik folyonosnak. A 0 közelében viszon kis abszolú érékű számok az érékei, ezér o úgy gondolhajuk, hogy 0 a haáréréke, ami éppen a 0-ban a függvény éréke, vagyis az várhajuk, hogy a függvény folyonos. a) Legyen ε > 0 eszőleges. A folyonosság definíciójának végén h( ) 0 ) < ε szerepel. Mos 0 = 0, h( 0) = 0, így ez h( ) < ε -ra egyszerűsödik. Vegyük észre, hogy h( ), ehá a feléel < ε. Ez kellene áalakíani 0 < δ alakúra. Mos 0 = 0, ezér ez < δ. Láhaó, hogy δ : = ε megfelel. Részleesen, ε > 0 -hoz alálunk δ > 0 -, nevezeesen δ : = ε -, hogy ha 0 < δ, akkor h ( ) 0) < ε, ezzel a 0-ban való folyonosságo igazoluk. b) Tegyük fel, hogy 0 0. Megmuajuk, hogy h nem folyonos 0 -ban. A folyonosság az jelenené, hogy ε > 0 -hoz δ > 0 úgy, hogy ha 0 < δ, akkor h ( ) 0 ) < ε. Tagadjuk ez az állíás: ε > 0, hogy δ > 0 melle van olyan, hogy h ( ) 0 ) ε. Ez fogjuk bizonyíani. < δ és 0 Legyen ε : = 0, δ > 0 pedig eszőleges. Az ] 0 δ, 0 + δ[ inervallumban mind racionális, mind irracionális számok előfordulnak. Válasszunk ki ebből az inervallumból egy irracionális számo, ha racionális, ha pedig irracionális, akkor egy racionális számo. 0 0 Legyen ez a szám. Ha -e 0 -hoz elég közel válaszjuk ki, akkor 0 és előjele meg fog egyezni. Ez elérheő, hiszen bármely számhoz eszőlegesen közel alálhaó racionális és irracionális szám is. Ekkor viszon h () és h ) előjele ellenées lesz, és így ( ε ( ) 0 ) ε, h 0 h( ) ) = h( ) + h( ) = + =. Az kapuk, hogy < δ és h ami bizonyíja, hogy nem folyonos -ban. 0

Fourier-sorok konvergenciájáról

Fourier-sorok konvergenciájáról Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

1. Előadás: Készletezési modellek, I-II.

1. Előadás: Készletezési modellek, I-II. . Előadás: Készleezési modellek, I-II. Készleeke rendszerin azér arunk hogy, valamely szükséglee, igény kielégísünk. A szóban forgó anyag, cikk iráni igény, keresle a készle fogyásá idézi elő. Gondoskodnunk

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:

Részletesebben

Tiszta és kevert stratégiák

Tiszta és kevert stratégiák sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai

Részletesebben

Síkalapok vizsgálata - az EC-7 bevezetése

Síkalapok vizsgálata - az EC-7 bevezetése Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM

Részletesebben

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás)

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás) Maemaika A3 gyakorla Energeika és Mecharonika BSc szakok, 6/7 avasz 3. feladasor: Görbe ívhossza, görbemeni inegrál megoldás. Mi az r 3 3 i + 6 5 5 j + 9 k görbe ívhossza a [, ] inervallumon? A megado

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek

Részletesebben

A diszkrimináns, paraméteres feladatok a gyökök számával kapcsolatosan

A diszkrimináns, paraméteres feladatok a gyökök számával kapcsolatosan MÁSODFOKÚ MINDEN A egoldókéle alkalazása Oldd eg a kövekező egyenleeke!... 9 A diszkriináns, araéeres feladaok a gyökök száával kacsolaosan. Az valós araéer ely érékei eseén van a 0 egyenlenek ké egyenlő

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin 080 ÉETTSÉGI VISGA 009. május. EEKTONIKAI AAPISMEETEK EMET SINTŰ ÍÁSBEI ÉETTSÉGI VISGA JAVÍTÁSI-ÉTÉKEÉSI ÚTMTATÓ OKTATÁSI ÉS KTÁIS MINISTÉIM Egyszerű, rövid feladaok

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

Előszó. 1. Rendszertechnikai alapfogalmak.

Előszó. 1. Rendszertechnikai alapfogalmak. Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,

Részletesebben

Matematika A3 HÁZI FELADAT megoldások Vektoranalízis

Matematika A3 HÁZI FELADAT megoldások Vektoranalízis Maemaika A HÁZI FELADAT megoldáok Vekoranalízi Nem mindenhol íram le a konkré megoldá. Ahol az jelenee volna, hogy félig én oldom meg a feladao a hallgaóág helye, o cak igen rövid megjegyzé alálnak A zh-ban

Részletesebben

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer

A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer Kinemaikai egyensúly éele: Téel: zár kinemaikai lánc relaív szögsebesség-vekorrendszere egyensúlyi. Mechanizmusok sebességállapoa a kinemaikai egyensúly éelével is meghaározhaó. sebességállapo ismer, ha

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó 0 ÉETTSÉGI VIZSG 0. május 3. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSBEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ NEMZETI EŐFOÁS MINISZTÉIM Elekronikai

Részletesebben

Statisztika II. előadás és gyakorlat 1. rész

Statisztika II. előadás és gyakorlat 1. rész Saiszika II. Saiszika II. előadás és gyakorla 1. rész T.Nagy Judi Ajánlo irodalom: Ilyésné Molnár Emese Lovasné Avaó Judi: Saiszika II. Feladagyűjemény, Perfek, 2006. Korpás Ailáné (szerk.): Álalános Saiszika

Részletesebben

A kúpszeletekről - V.

A kúpszeletekről - V. A kúpszeleekről - V. A kúpszeleekről szóló munkánk III. részének 10. ábrájá kiegészíve láhajuk az 1. ábrán. Mos ez alapján dolgozva állíunk fel összefüggéseke a kúpszeleek Dandelin - gömbös / körös vizsgálaának

Részletesebben

Fizika A2E, 11. feladatsor

Fizika A2E, 11. feladatsor Fizika AE, 11. feladasor Vida György József vidagyorgy@gmail.com 1. felada: Állandó, =,1 A er sség áram öl egy a = 5 cm él, d = 4 mm ávolságban lév, négyze alakú lapokból álló síkkondenzáor. a Haározzuk

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin 05 ÉETTSÉGI VIZSGA 005. május 0. ELEKTONIKAI ALAPISMEETEK EMELT SZINTŰ ÉETTSÉGI VIZSGA Az írásbeli vizsga időarama: 0 perc JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ OKTATÁSI MINISZTÉIM

Részletesebben

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel

Részletesebben

Aggregált termeléstervezés

Aggregált termeléstervezés Aggregál ermeléservezés Az aggregál ermeléservezés feladaa az opimális ermékszerkeze valamin a gyáráshoz felhasználhaó erőforrások opimális szinjének meghaározása. Termékek aggregálása. Erőforrások aggregálása.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin 5 ÉETTSÉGI VIZSG 06. május 8. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ EMEI EŐFOÁSOK MINISZTÉIM Egyszerű, rövid feladaok Maximális

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin 3 ÉETTSÉGI VIZSGA 0. okór 5. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMBEI EŐFOÁSOK MINISZTÉIMA Egyszerű, rövid feladaok

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel

3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel Válakozó (hibásan váló-) menniségeknek nevezzük azoka a jeleke, melek időbeli lefolásuk közben polariás (előjele) válanak, legalább egszer. A legalább eg nullámenei (polariásválás) kriériumnak megfelelnek

Részletesebben

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,

Részletesebben

Túlgerjesztés elleni védelmi funkció

Túlgerjesztés elleni védelmi funkció Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

.1. A sinx és cosx racionális függvényeinek integrálásáa. = R sinx,cosx dx. x x 2. 1 dt

.1. A sinx és cosx racionális függvényeinek integrálásáa. = R sinx,cosx dx. x x 2. 1 dt . Trigonomeriai fügvények inegrálása Egy J függvény ípusáól függ. R x inegrál kiszámíása az R x racionális.. A sinx és cosx racionális függvényeinek inegrálásáa negrál J R sinxcosx Helyeesíés () R A és

Részletesebben

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia. 4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel

Részletesebben

Bor Pál Fizikaverseny. 2015/2016-os tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny. 2015/2016-os tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor ál Fizikaverseny 2015/201-os anév DÖNTŐ 201. április 1. 8. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a ovábbi lapokon is fel kell írnod a neved! skola:... Felkészíő anár neve:...

Részletesebben

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim. Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek

5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek 5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérsékle, hőmérők A hőmérsékle a esek egyik állapohaározója. A hőmérsékle a es olyan sajáossága, ami meghaározza, hogy a es ermikus egyensúlyban van-e más esekkel. Ezen alapszik

Részletesebben

Hullámtan. Hullám Valamilyen közeg kis tartományában keltett, a közegben tovaterjedő zavar.

Hullámtan. Hullám Valamilyen közeg kis tartományában keltett, a közegben tovaterjedő zavar. Hulláan A hullá fogala. A hulláok oszályozása. Kísérleek Kis súlyokkal összeköö ingsor elején kele rezgés áerjed a öbbi ingára is [0:6] Kifeszíe guiköélen kele zavar végig fu a köélen [0:08] Kifeszíe rugón

Részletesebben

6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok

6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok 6. szemináriumi Gyakorló feladaok. Tőkekínála. Tőkekeresle. Várhaó vs váralan esemény őkepiaci haása. feladaok A feladaok megoldása során ahol lehe, írjon MATLAB scripe!!! Figyelem, a MATLAB a gondolkodás

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A sztochasztikus idősorelemzés alapjai

A sztochasztikus idősorelemzés alapjai A szochaszikus idősorelemzés alapjai Ferenci Tamás BCE, Saiszika Tanszék amas.ferenci@medsa.hu 2011. december 19. Taralomjegyzék 1. Az idősorelemzés fogalma, megközelíései 2 1.1. Az idősor fogalma...................................

Részletesebben

Üzemeltetési kézikönyv

Üzemeltetési kézikönyv EHBH04CB EHBH08CB EHBH11CB EHBH16CB EHBX04CB EHBX08CB EHBX11CB EHBX16CB EHVH04S18CB EHVH08S18CB EHVH08S26CB EHVH11S18CB EHVH11S26CB EHVH16S18CB EHVH16S26CB EHVX04S18CB EHVX08S18CB EHVX08S26CB EHVX11S18CB

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim. Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik. 6/1.Vezesse le az eredő ávieli üggvény soros apcsolás eseén a haásvázla elrajzolásával. az i-edi agra, illeve az uolsó agra., melyből iejezheő a sorba apcsol ago eredő ávieli üggvénye: 6/3.Vezesse le az

Részletesebben

Schmitt-trigger tanulmányozása

Schmitt-trigger tanulmányozása Schmirigger anulmányozása 1. Bevezeés Analóg makroszkopikus világunkban minden fizikai mennyiség folyonos érékkészleű. Csak néhánya emlíve ilyenek a hossz, idő, sebesség, az elekromos mennyiségek (feszülség,

Részletesebben

1. feladat Összesen 25 pont

1. feladat Összesen 25 pont É 047-06//E. felada Összesen 5 pon Bepárló készülékben cukoroldao öményíünk. A bepárló páraerében 0,6 bar abszolú nyomás uralkodik. A hidroszaikus nyomás okoza forrponemelkedés nem hanyagolhaó el. A függőleges

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin ÉETTSÉGI VIZSG. május 5. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ NEMZETI EŐFOÁS MINISZTÉIM Eyszerű, rövid feladaok Maximális

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

Kockázati folyamatok

Kockázati folyamatok Kockázai folyamaok Sz cs Gábor Szegedi Tudományegyeem Bolyai Inéze, Szochaszika Tanszék Uolsó frissíés: 219. szepember 17. Taralomjegyzék 1. Az exponenciális eloszlás 2 2. A Wald-azonosság 4 3. Felújíási

Részletesebben

Komplex számok. A komplex számok algebrai alakja

Komplex számok. A komplex számok algebrai alakja Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék

Részletesebben

Dinamikus optimalizálás és a Leontief-modell

Dinamikus optimalizálás és a Leontief-modell MÛHELY Közgazdasági Szemle, LVI. évf., 29. január (84 92. o.) DOBOS IMRE Dinamikus opimalizálás és a Leonief-modell A anulmány a variációszámíás gazdasági alkalmazásaiból ismere hárma. Mind három alkalmazás

Részletesebben

Romvári Petra. biztosítási kötelezettségek fair értékelése, id - és piackonzisztens aktuáriusi értékelések

Romvári Petra. biztosítási kötelezettségek fair értékelése, id - és piackonzisztens aktuáriusi értékelések Budapesi Corvinus Egyeem Eövös Loránd Tudományegyeem Romvári Pera bizosíási köelezeségek fair érékelése, id - és piackonziszens akuáriusi érékelések MSc szakdolgoza Témaveze : Araó Miklós Eövös Loránd

Részletesebben

ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY

ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY ELOSZLÁS, ELOSZLÁSÜGGVÉNY, SŰRŰSÉGÜGGVÉNY AZ ELOSZLÁSÜGGVÉNY Egy célábla sugara cm, a valószínűségi válozó jlns az, hogy milyn ávol lőünk a célábla középponjáól. Tgyük öl, hogy a céláblá bizosan laláljuk.

Részletesebben

BODE-diagram szerkesztés

BODE-diagram szerkesztés BODE-diagram szerkeszés Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmű kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli

Részletesebben

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb

Részletesebben

4. Fejezet BERUHÁZÁSI PROJEKTEK ÉRTÉKELÉSE Beruházási pénzáramok értékelése Infláció hatása a beruházási projektekre

4. Fejezet BERUHÁZÁSI PROJEKTEK ÉRTÉKELÉSE Beruházási pénzáramok értékelése Infláció hatása a beruházási projektekre . Fejeze Pénzáramok (euróban) 0. év. év. év. év. év. év 0 000 9000 900 0 000 000 000 BERUHÁZÁSI PROJEKTEK ÉRTÉKELÉSE... Saikus beruházás gazdaságossági számíások: Neó pénzáramok álaga ARR = Kezdõ pénzáram

Részletesebben

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI.

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. 216. okóber 7., Budapes JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. Alapfogalmak, fizikai réeg mindenki álal ismer fogalmak (hobbiból azér rákérdezheek vizsgán): jel, eljesímény,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉG VZSG 05. okóber. ELEKTONK LPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSG JVÍTÁS-ÉTÉKELÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Elekronikai alapismereek

Részletesebben

13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 13 Wiener folyama és az Iô lemma Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 1 Markov folyamaok Memória nélküli szochaszikus folyamaok, a kövekező lépés csak a pillananyi helyzeől

Részletesebben

Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V)

Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V) Jelformálás ) Haározza meg a erhelelen feszülségoszó ki kimenı feszülségé! Adaok: =3,3 kω, =8,6 kω, e =V. (Eredmény: 7,3 V) e ki ) Haározza meg a feszülségoszó ki kimenı feszülségé, ha a mérımőszer elsı

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmaó 063 ÉETTSÉGI VIZSG 006. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM

Részletesebben

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Villamosipar és elekronika ismereek emel szin Javíási-érékelési úmuaó 7 ÉETTSÉGI VIZSGA 07. okóber 0. VILLAMOSIPA ÉS ELEKTONIKA ISMEETEK EMELT SZINTŰ ÍÁSBELI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMUTATÓ EMBEI EŐFOÁSOK

Részletesebben

Intraspecifikus verseny

Intraspecifikus verseny Inraspecifikus verseny Források limiálsága evolúciós (finesz) kövekezmény aszimmeria Denziás-függés Park és msai (930-as évek, Chicago) - Tribolium casaneum = denziás-függelen (D-ID) 2 = alulkompenzál

Részletesebben

Optikai mérési módszerek

Optikai mérési módszerek Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " Opikai mérési módszerek Máron Zsuzsanna 1,,3,4,5,7 3457 Tóh György 8,9,1,11,1 Pálfalvi László 6 TÁMOP-4.1.1.C-1/1/KONV-1-5

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

7.1 ábra Stabilizált tápegység elvi felépítése

7.1 ábra Stabilizált tápegység elvi felépítése 7. Tápegységek A ápegységek az elekronikus rendezések megfelelő működéséhez szükséges elekromos energiá bizosíják. Felépíésüke és jellemzőike a áplálandó rendezés igényei haározzák meg. A legöbb elekronikus

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar. Neogrády-Kiss Márton. Számelméleti függvények vizsgálata differenciál- és integrálegyenletekkel

Eötvös Loránd Tudományegyetem Természettudományi Kar. Neogrády-Kiss Márton. Számelméleti függvények vizsgálata differenciál- és integrálegyenletekkel Eövös Loránd Tudományegyeem Természeudományi Kar Neogrády-Kiss Máron Számelmélei függvények vizsgálaa differenciál- és inegrálegyenleekkel Szakdolgoza Témaveze : Simon L. Péer Alkalmazo Analízis és Számíásmaemaikai

Részletesebben

GYAKORLÓ FELADATOK 5. Beruházások

GYAKORLÓ FELADATOK 5. Beruházások 1. felada Egymás kölcsööse kizáró beruházások közöi válaszás. Ké külöböző ípusú gépe szerezheük be egyazo művele elvégzésére. A ké egymás kölcsööse kizáró projek pézáramlásai ($) a kövekező ábláza muaja:

Részletesebben

8. előadás Ultrarövid impulzusok mérése - autokorreláció

8. előadás Ultrarövid impulzusok mérése - autokorreláció Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

XVII. SZILÁRD LEÓ NUKLEÁRIS TANULMÁNYI VERSENY Beszámoló, II. rész

XVII. SZILÁRD LEÓ NUKLEÁRIS TANULMÁNYI VERSENY Beszámoló, II. rész osan megszûn Ez alapján közelíôleg egy évben kimondoan csak a avaszi óraáállíásnak köszönheôen álagosan 43 GWh érékkel csökken az országos villamosenergia-fogyaszás Hasonlóképpen számolunk mind az 5 évben

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

3. EGYENÁRAMÚ MÉRÉSEK

3. EGYENÁRAMÚ MÉRÉSEK 3. EGYENÁAMÚ MÉÉSEK Az egyenáramú hálózaszámíáshoz szükséges alapismereek az Egyenáramú hálózaszámíás c. részben vannak összefoglalva. A gyakorlaban gyakran van szükség az áramerősség vagy feszülség szabályzására

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben