BODE-diagram szerkesztés
|
|
- Csongor Szekeres
- 6 évvel ezelőtt
- Látták:
Átírás
1 BODE-diagram szerkeszés Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmű kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli függvénnyel egyérelműen jellemezheő. Még jelenleg is széles körben alkalmazzák a szabályozók ervezése során a frekvencia-arománybeli módszereke. Bár a jellemző diagramoka manapság már szine kizárólag számíógéppel rajzolaják meg, mégis elengedheelen a diagramok szerkeszési lépéseinek ismeree. frekvencia-ávieli függvény ábrázolására különféle módszerek erjedek el: BODE, NYQUIST, sb. diagramok. Ezek közül a BODE-diagramok szerkeszésé muajuk be. Egy komplex számo (függvény) abszolú érékével és fázisszögével jellemezheünk. Ezér j( ) kézenfekvő a komplex G(j ) G(j) e frekvencia-ávieli függvény abszolú éréké és fázisszögé külön diagramokban, a körfrekvencia függvényében ábrázolni: ( ) G(j) G(j) ( ) Ennek megfelelően ké diagram szolgál a G(j) frekvencia ávieli függvény eljes információaralmának ábrázolására: 1. Logarimikus lépékű ampliúdó nagyíás vs. körfrekvencia diagram: logg(j) f (log) z ampliúdó-nagyíási függvény (a kimenő jel és a gerjesző jel ampliúdójának arányá) logarimikus lépékben (decibelben) ábrázoljuk a gerjesző jel logarimikus lépékben mér körfrekvenciájának függvényében. Megjegyzés: az ampliúdó-arány decibelben () mérve megállapodás szerin = az ampliúdó-arány logarimusának hússzorosával: log. Szigorúan véve csak ké azonos dimenziójú mennyiség arányának kifejezésére alkalmas. Például ha a kimenőjel ampliúdója 7V, a gerjesző jel ampliúdója pedig 1V, akkor az ampliúdónagyíás 7 log 3 1. Fázisolás-körfrekvencia diagram: g(log) fokokban mér fázisolás ábrázoljuk a gerjesző jel logarimikus lépékben mér körfrekvenciájának függvényében. Megjegyzés: a vízszines engelyen mér ké körfrekvencia (vagy bármely más fizikai mennyiség) ízszeres arányá dekádnak nevezzük, vagyis Körfrekvencia arány dekád = log. 1
2 1 Például 1 1/s és 1 1/s aránya = dekád, mivel log. 1 z ampliúdó nagyíás logarimikus ábrázolása azér előnyös, mivel ) egy összee (öbb ényezőből álló) ávieli függvény eredő BODE-diagramja az egyes ényezők BODE-diagramjainak egyszerű összeadásával nyerheő. ( szorzás művelee a logarimus arományban összeadássá módosul - Lásd középiskolai maemaika) ) logarimikus lépék nagy, öbb nagyságrende áfogó arományok ábrázolásá eszi leheővé mind a vízszines, mind a függőleges engelyen. Jellegzees ényezők és azok függvényei G(j) frekvencia-ávieli függvény álalában öbb ényező szorzaakén állíhaó elő, melyek közül a leggyakoribb három a kövekező alakú: 1) ) 3) K (j n (j ) (j 1) ) 1, n=, ±1,±, sb. Dj 1 1 Nézzük az egyes ípusok ulajdonságai és jellemző diagramjai. 1. ípusú ényező G(jω)= K (j) n Mivel n csak egész szám lehe, ezér a kifejezés vagy iszán valós (n= páros), vagy iszán képzees (n=páralan). Ennek megfelelően ( ) K n n (j) K ( ) Mindké oldal logarimusá véve és -szal szorozva log logk n log Ez a kifejezés egy egyenes egyenlee az -logω koordináarendszerben: nlog logk y m x z egyenes meredeksége (n) /dekád, vagyis lehe /dekád (vízszines), ± /dekád, ±4 /dekád, sb. z egyenes ábrázolásához célszerű először az egyenes egy kiünee ponjá ábrázolni, célszerűen az ω=1 rad/s abszcisszájú pono, mivel ennek oordináája az logk összefüggéssel egyszerűen számíhaó. fázisolás illeően a kövekező megállapíás ehejük: Ha n=, akkor G(jω)=K, valós szám fázisolása φ= b
3 4 Ha n=1, akkor G(jω)=jK ω, iszán képzees szám, aminek fázisolása φ=9 Ha n=, akkor G(jω)=-K ω, negaív valós szám (ellenfázis), fázisolása φ=18 Ha n=3, akkor G(j)=-jK 3, negaív képzees szám, fázisolása =7..sb. Álalánosíva: eszőleges n kievőre a fázisolás φ=n9 Példa Legyen G(j ) 1(j ). Rajzoljuk meg az ampliúdó nagyíási függvény, valamin a fázisolás! z egyenes egy ponja P(1 rad/s, 6 ), ugyanis ω=1 rad/s körfrekvencián az erősíés =log1=6. kifejezés kievője n=+, ennek megfelelően az egyenes meredeksége + =+4 /dekád. fázisolás φ=n*9 =*9 =18. z ampliúdó nagyíási függvény a felső ábrán láhaó, alaa a fázisolás ábrázoluk a gerjeszés körfrekvenciájának függvényében m= 4 / dekád P(1;6) dekád, lg 9, lg. ípusú ényező G(j ) (j 1) 1, árolós, elsőrendű ag. z ampliúdó-nagyíás ( ) ( ) 1 1
4 BODE-diagramok szerkeszése fáradságos munkával jár, ezér szokás azoka érinőikkel közelíeni, nem csökkenve jelenősen a diagramok információaralmá. a) Kis ( ) gerjesző frekvenciákra a gyök alai mennyiség első agja az 1 melle elhanyagolhaó, így ( ) 1 Logarimálás uán a bal oldali (kisfrekvenciás) aszimpoa egyenlee: log log1 (Vízszines koordináaengely egyenlee) b) Nagy ( ) gerjesző frekvenciákra az 1 elhanyagolhaó a másik ag melle, így ( ) Logarimálás és -szal való szorzás uán a jobboldali aszimpoa egyenlee: log log log (± /dekád meredekségű ferde egyenes egyenlee) m x b Érinők meszésponja z aszimpoák megrajzolásá megkönnyíi azok meszésponjának ismeree. ké aszimpoa meszésponja a kövekező egyenlerendszerből kaphaó: log log 1 Innen ω=ω adódik. Mos már fonos jelenés ulajdoníhaunk a kifejezésben ω -vel jelöl mennyiségnek. z ω jelenése: örésponi körfrekvencia. Ennél a körfrekvenciánál válozik az érinők meredeksége. mennyiben a kievő n=1, a jobboldali aszimpoa meredeksége + /dekád érékkel válozik a baloldali aszimpoa meredekségéhez képes (felüláeresző jelleg). mennyiben a kievő n= -1, a jobboldali aszimpoa meredeksége - /dekád érékkel válozik a baloldali aszimpoa meredekségéhez képes (aluláeresző jelleg). Közelíés hibája Mos nézzük meg, hogy mekkora maximális hibá köveünk el, ha az ampliúdó nagyíási függvény az érinőivel helyeesíjük! z ampliúdó nagyíás ponos éréke a örésponi körfrekvencián ( 1 1 ) ( ) 1 Decibelben mérve ( ) log,5 1log 3
5 kisfrekvenciás erősíéshez képes ( ) a örésponban énylegesen ± 3 erősíés van (az előjel a kievő előjelével egyezik meg), ezér az érinőkkel való közelíés hibája a örésponban ± 3. fázisolás kis frekvencián (ω<<ω ) φ=, mivel G(jω) 1, valós szám. nagyfrekvenciás fázisolás (ω>>ω ) φ= ± 9, mivel G(jω) (jω/ω ) ±1, képzees szám. Példa 1 Haározzuk meg a G(j ) frekvencia-ávieli függvény (aluláeresző j 1 jellegű ag) aszimpoái! Először hozzuk ismer (kanonikus) alakra a kifejezés: m /dekád 1 G(j) 1( j1) j1 1 j 1[1( 1)] 1 1 (j 1) 5 1 z áalakío formulából kiolvashajuk a örésponi körfrekvencia éréké: ω =5 1/s. kifejezés kievője n= -1, ezér a jobboldali érinő meredeksége (-1)* /dekád, az egyenes lefelé lej. z ábrán jól lászik a ényleges (kék) görbe és az érinőkkel helyeesíe (piros) görbe maximális elérése a örésponban (3 ). z érinők a örésponól ávol nagyon jól közelíik a görbé. fázisgörbé érinőivel helyeesíve 9 fokos fázisugrás a örésponi frekvencián kövekezik be. valóságban a fázisválozás nem élesen, hanem folyamaosan örénik (kék görbe). örésponól ávol a közelíés jó.
6 , lg m= / dekád dekád - 3 m= - /dekád -, lg ípusú ényező G(jω)= (j ) Dj 1, másodrendű ag. a) Kis frekvencián (ω<<ω )az ampliúdó nagyíási függvény (ω) 1, vagyis (ω). b) Nagy frekvencián (ω>>ω és ω>>dω ) az ampliúdó nagyíási függvény vagyis ( ) 4log 4log. z érinők meszésponja mos is. legnagyobb elérés a örésponi frekvencián van, éréke a kövekező: ( ) (1 ) (D ) 1 D 1. ( ), 1 fázisolás nagy frekvencián, mivel G(j ) ( ) nagy negaív valós szám, a kövekező összefüggéssel számíhaó: arcg n18
7 Példa Rajzoljuk meg a (j) (j) BODE-diagramjai! G 5 frekvencia-ávieli függvény érinőkkel közelíe 3(j) 5 lakísuk á a kifejezés kanonikus alakra: D n G(j) (j) 5 5 j 3 j 1 3(j) 5 j j 5 5 z áalakío kifejezésből az alábbi információkaz olvashajuk ki: örésponi körfrekvencia ω =5 rad/s. csillapíás D=,3 örésponi erősíés-elérés (D) -1 =1,66, decibelben +4,4. kievő n=-1, a jobboldali érinő n= -4 /dekád meredekségű. fázisolás a örésponi körfrekvenciánál n9=-18 fokkal válozik , lg m= / dekád 5 4,4 m= - 4 /dekád, lg MTLB programmal a NEW, m-file menü válaszása uán írjuk be a kövekező uasíásoka:
8 Phase (deg) Magniude () num=[5]; den=[1 3 5]; bode(num,den) Bode Diagram Frequency (rad/sec) Megjegyzés Másodrendűnek lászó agnál ellenőrizni kell, hogy az nem bonhaó-e fel ké elsőrendű ag szorzaára. Például (s +3s+) nem másodrendű ag, hanem (s+1)(s+) ké elsőrendű ag szorzaa (D>1)! Példa összee frekvencia-ávieli függvény ábrázolására Ábrázoljuk érinőivel a 1 (j,1) (j) frekvencia-ávieli függvény! j (j) 5j 4 G Áalakíva a kifejezés ismer ípusú ényezők szorzaára: j,1( 1) 1 (j,1) 1,1 G(j) j (j) 5j 4 j j j 4,5 1 1 j 1 j j 5j ( 1),5 1 1.ípus,1.ípus 3.ípus 1
9 z ábrázolás során a kövekező sorrende célszerű köveni: 1) Ha van K (j) n ípusú ényező, akkor annak ábrázolásával kezdjük a szerkeszés, mivel az ilyen ényezőből származik a görbe bal oldali érinője. z érinőnek célszerűen az a P ponjá haározzuk meg, melynek abszcisszája =1 rad/s. I 1 az erősíés 5(j =5 ami decibelben ( 1) log 5 8 P ) 1 P P, lg z egyenes meredeksége annyiszor /dekád, amennyi (j) kievője. Jelen eseben n= -1, ehá az egyenes meredeksége - /dekád m= - / dekád P, lg ) zzal a ényezővel folyajuk a szerkeszés, melynek örésponi körfrekvenciája a j 1 legkisebb. Jelen eseben ez a ( 1) ényező, melynek örésponi körfrekvenciája,1 1,1 rad / s. Mivel ez a ényező elsőrendű és kievője n=+1, ezér a öréspon uán az érinő meredeksége n= + /dekád érékkel válozik a öréspon elői érékhez képes. öréspon elő a meredekség - /dekád vol, így a öréspon uán - /dekád+ db/dekád= /dekád lesz.
10 m= - / dekád -6 m= / dekád , lg 3) kövekező ényező az, melynek örésponi körfrekvenciája soron kövekezik. 1 j j,5 1 másodrendű ényező örésponi körfrekvenciája rad / s, kievője n=-1. Ebben a örésponban az érinő meredeksége a öréspon elői /dekád érékhez képes n /dekád érékkel, ehá -4 /dekád érékkel válozik. m= - / dekád -6 m= / dekád , m= -4 / dekád 1 lg Végezeül a közelíő görbé is berajzoljuk az ábrába. z erősíés elérés az első 1 =,1 rad/s örésponi körfrekvencián 3 (elsőrendű ag, elérés az érinőkön belül alálhaó), míg a második = rad/s örésponban (D) n =,5-1 =4, ami decibelben log4=1 (úllövés az érinőkön kívül alálhaó).
11 lg, =,1 =, lg Ellenőrzésül Malab programmal is megrajzolajuk a BODE-diagramoka. frekvenciaávieli függvény számlálójának (numeraor=számláló) és nevezőjének (denominaor=nevező) megadása uán a bode(számláló,nevező) uasíással megkapjuk a BODE-diagramoka. program az alábbi m-file begépeléséből áll: num=[1 1]; % számláló j csökkenő haványai szerin rendeze együhaói den=[1 5 4 ]; % nevező j csökkenő haványai szerin rendeze együhaói bode(num,den) ile( Bode Diagram ) % a diagram címe
12 Phase (deg) Magniude () 1 Bode Diagram Frequency (rad/sec) kézzel szerkesze, valamin a számíógéppel rajzolao BODE-diagramok ökélees egyezés muanak. BODE-diagramok ovábbi ulajdonságai Erősíés válozaása Vizsgáljuk meg, hogy mikén módosulnak egy G (j) alakú frekvencia-ávieli függvény BODE-diagramjai, ha a függvény λ skalár együhaóval megszorozzuk a) Először vizsgáljuk az ( ) ( ) ampliúdó nagyíás. Vegyük mindké oldal logarimusának hússzorosá: log ( ) log log ( ) ( ) ( ) Megállapíhajuk, hogy az új ampliúdó nagyíási függvény csupán egy logλ konsansban ér el az eredei ( ) ampliúdó nagyíási függvényől. Egy λ konsanssal való szorzás az eredei BODE-diagramo függőleges irányban olja el logλ érékkel. Ha λ>1, akkor az eredei BODE-diagram felfelé, ha λ<1, akkor lefelé olódik el. b) Mos vizsgáljuk meg, hogy a λ konsanssal való szorzásnak van-e haása a fázisolásra? fázisolás a komplex G (j) függvény komplex N (j) számlálójának és komplex D (j) nevezőjének fázisolásával kifejezve
13 Phase (deg) Magniude () ( ) N( ) D( ) Tudjuk, hogy a N (j) művele az N (j) komplex számnak mind a valós, mind a képzees részé ugyanolyan arányban nyújja meg, hiszen N (j) (Re N(j) ImN (j)) Kövekezésképpen a valós számo ábrázoló vekornak csak a hossza válozik, a szöge nem. z elmondoakból kövekezik, hogy Egy konsanssal való szorzásnak a fázisviszonyokra nincs haása. Távoli örésponokra érinőkkel való közelíés jó m1=f([1 1],[1 5 4 ]); m=f(1*[1 1],[1 5 4 ]); m3=f(1*[1 1],[1 5 4 ]); bode(m1,m,m3) 15 Bode Diagram Frequency (rad/sec)
BODE-diagram. A frekvencia-átviteli függvény ábrázolására különféle módszerek terjedtek el:
BODE-diagram Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmő kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli függvénnyel
HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és
Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.
Rendszervizsgálat frekvencia tartományban
DR. GYURCSEK ISTVÁN Rendszervizsgálat frekvencia tartományban Bode-diagramok Forrás és irodalom: http://lpsa.swarthmore.edu/bode/bode.html 1 2016.11.11.. Miről lesz szó? Bode-diagram alapfüggvények Elsőfokú
Síkalapok vizsgálata - az EC-7 bevezetése
Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül
Intraspecifikus verseny
Inraspecifikus verseny Források limiálsága evolúciós (finesz) kövekezmény aszimmeria Denziás-függés Park és msai (930-as évek, Chicago) - Tribolium casaneum = denziás-függelen (D-ID) 2 = alulkompenzál
5. Differenciálegyenlet rendszerek
5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:
3. Gyakorlat. A soros RLC áramkör tanulmányozása
3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II.
MISKOLCI EGYETEM GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA ELEKTOTECHNIKAI-ELEKTONIKAI TANSZÉK D. KOVÁCS ENŐ ELEKTONIKA II. (MŰVELETI EŐSÍTŐK II. ÉSZ, OPTOELEKTONIKA, TÁPEGYSÉGEK, A/D ÉS D/A KONVETEEK) Villamosmérnö
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése
3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel
Válakozó (hibásan váló-) menniségeknek nevezzük azoka a jeleke, melek időbeli lefolásuk közben polariás (előjele) válanak, legalább egszer. A legalább eg nullámenei (polariásválás) kriériumnak megfelelnek
JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI.
216. okóber 7., Budapes JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. Alapfogalmak, fizikai réeg mindenki álal ismer fogalmak (hobbiból azér rákérdezheek vizsgán): jel, eljesímény,
Tiszta és kevert stratégiák
sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,
Előszó. 1. Rendszertechnikai alapfogalmak.
Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,
Σ imsc
Elekronika.. vizsga 7........ Σ imsc Név: Nepun:. Felada ajzoljon le egy egyszerű, de működőképes differenciál erősíő, mely véges β paraméerű, npn ranziszorpár aralmaz, munkapon állíásra ideális áram-
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.
6/1.Vezesse le az eredő ávieli üggvény soros apcsolás eseén a haásvázla elrajzolásával. az i-edi agra, illeve az uolsó agra., melyből iejezheő a sorba apcsol ago eredő ávieli üggvénye: 6/3.Vezesse le az
5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek
5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérsékle, hőmérők A hőmérsékle a esek egyik állapohaározója. A hőmérsékle a es olyan sajáossága, ami meghaározza, hogy a es ermikus egyensúlyban van-e más esekkel. Ezen alapszik
3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás)
Maemaika A3 gyakorla Energeika és Mecharonika BSc szakok, 6/7 avasz 3. feladasor: Görbe ívhossza, görbemeni inegrál megoldás. Mi az r 3 3 i + 6 5 5 j + 9 k görbe ívhossza a [, ] inervallumon? A megado
Fourier-sorok konvergenciájáról
Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees
Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák
Tartalom Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák 215 1 Tervezési célok Szabályozó tervezés célja Stabilitás biztosítása
Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Járműelemek I. (KOJHA 7) Tengelyköés kisfelada (A ípus) Szilárd illeszés Járműelemek és Hajások Tanszék Ssz.: A/... Név:...................................
17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.
7/. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. A szinuszos áramú hálózatok vizsgálatánál gyakran alkalmazunk különbözı komplex átviteli függvényeket. Végezzük ezt a hálózat valamilyen
Elektronika 2. TFBE1302
DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek
KIS MATEMATIKA. 1. Bevezető
KIS MATEMATIKA. Bevezeő Fizikus vagyok, és azon belül is elmélei fizikusnak arom magam, mindemelle nagyon fonosnak arom a kísérlei fiziká is, ső magam is kísérleezem a graviáció erüleén. A maemaikával
F1301 Bevezetés az elektronikába Műveleti erősítők
F3 Beezeés az elekronikába Műelei erősíők F3 Be. az elekronikába MŰVELET EŐSÍTŐK Műelei erősíők: Kiáló minőségű differenciálerősíő inegrál áramkör, amely egyenfeszülség erősíésére is alkalmas. nalóg számíás
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika jellemzőinek Rendszerek stabilitása és minőségi jellemzői. Soros kompenzátor. Irányítástechnika Budapest, 29 2 Az
Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK
BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb
Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V)
Jelformálás ) Haározza meg a erhelelen feszülségoszó ki kimenı feszülségé! Adaok: =3,3 kω, =8,6 kω, e =V. (Eredmény: 7,3 V) e ki ) Haározza meg a feszülségoszó ki kimenı feszülségé, ha a mérımőszer elsı
3. Mekkora feszültségre kell feltölteni egy defibrillátor 20 μf kapacitású kondenzátorát, hogy a defibrilláló impulzus energiája 160 J legyen?
Impulzusgeneráorok. a) Mekkora kapaciású kondenzáor alko egy 0 MΩ- os ellenállással s- os időállandójú RC- kör? b) Ezen RC- kör kisüésekor az eredei feszülségnek hány %- a van még meg s múlva?. Egy RC-
Mechanikai munka, energia, teljesítmény (Vázlat)
Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Alaptagok Nyquist- és Bode-diagramjai
C Alaptagok Nyquist- és Bode-diagramjai C.1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik módja az átviteli függvények segítségével történik. Az átviteli függvényeket
7.1 ábra Stabilizált tápegység elvi felépítése
7. Tápegységek A ápegységek az elekronikus rendezések megfelelő működéséhez szükséges elekromos energiá bizosíják. Felépíésüke és jellemzőike a áplálandó rendezés igényei haározzák meg. A legöbb elekronikus
Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc
Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel
Gépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 5. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu
Irányítástechnika II. rész Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Lineáris tagok jelátvivő tulajdonságai Lineáris dinamikus rendszerek, folyamatok Lineáris tagok modellje Differenciálegyenlettel
4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.
4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel
Ancon feszítõrúd rendszer
Ancon feszíõrúd rendszer Ancon 500 feszíőrúd rendszer Az összeköő, feszíő rudazaoka egyre gyakrabban használják épíészei, lászó szerkezei elemkén is. Nagy erhelheősége melle az Ancon rendszer eljesíi a
8. előadás Ultrarövid impulzusok mérése - autokorreláció
Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Fluoreszkáló festék fénykibocsátásának vizsgálata, a kibocsátott fény időfüggésének megállapítása
Fluoreszkáló fesék fénykibocsáásának vizsgálaa, a kibocsáo fény időfüggésének megállapíása A) A méréshez használ eszközök: 1. A fekee színű doboz aralmaz egy fluoreszkáló fesékkel elláo felülee, LED-eke
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:
REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja
REKCIÓKINETIK LPFOGLMK Reakiókineika élja. Reakiók idbeli lefuásának, idbeliségének vizsgálaa: miér gyors egy reakió, és miér lassú egy másik?. Hogyan függ a reakiók sebessége a hmérséklel? 3. Reakiók
Elsőrendű reakció sebességi állandójának meghatározása
Fizikai kémia gyakorla 1 Elsőrendű reakció... 2 Elsőrendű reakció sebességi állandójának meghaározása 1. Elmélei áekinés A reakciókineikai vizsgálaok célja egy ado reakció mechanizmusának felderíésre,
AUTOMATIKA. Dr. Tóth János
UTOMTIK UTOMTIK Dr. Tóh János TERC Kf. udapes, 3 Dr. Tóh János, 3 3 Kézira lezárva:. november 9. ISN 978-963-9968-57-8 Kiadja a TERC Kereskedelmi és Szolgálaó Kf. Szakkönyvkiadó Üzleága, az 795-ben alapío
Dinamikus optimalizálás és a Leontief-modell
MÛHELY Közgazdasági Szemle, LVI. évf., 29. január (84 92. o.) DOBOS IMRE Dinamikus opimalizálás és a Leonief-modell A anulmány a variációszámíás gazdasági alkalmazásaiból ismere hárma. Mind három alkalmazás
! Védelmek és automatikák!
! Védelmek és auomaikák! 4. eloadás. Védelme ápláló áramváló méreezése. 2002-2003 év, I. félév " Előadó: Póka Gyula PÓKA GYULA Védelme ápláló áramváló méreezése sacioner és ranziens viszonyokra. PÓKA GYULA
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 5 ÉETTSÉGI VIZSG 06. május 8. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ EMEI EŐFOÁSOK MINISZTÉIM Egyszerű, rövid feladaok Maximális
1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11
ELEKTONIKA (BMEVIMIA7) Az ún. (normál) kaszkád erősíő. A kapcsolás: C B = C c = 3 C T ki + C c = C A ranziszorok soros kapcsolása mia egyforma a mnkaponi áramk (I B - -nak véve, + -re való leoszásával
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 12. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű 2008.05.09. PTE PMMK MIT 2 Közérdekű PÓTMÉRÉS: Akinek elmaradása
RC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer
Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,
SZABÁLYOZÁSI KÖRÖK 2.
Irányítástechnika (BMEGERIA35I) SZABÁLYOZÁSI KÖRÖK 2. 2010/11/1. félév Dr. Aradi Petra Zárt szabályozási körrel szemben támasztott követelmények tulajdonság időtartományban frekvenciatartományban pontosság
1. feladat Összesen 25 pont
É 047-06//E. felada Összesen 5 pon Bepárló készülékben cukoroldao öményíünk. A bepárló páraerében 0,6 bar abszolú nyomás uralkodik. A hidroszaikus nyomás okoza forrponemelkedés nem hanyagolhaó el. A függőleges
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM
Hullámtan. Hullám Valamilyen közeg kis tartományában keltett, a közegben tovaterjedő zavar.
Hulláan A hullá fogala. A hulláok oszályozása. Kísérleek Kis súlyokkal összeköö ingsor elején kele rezgés áerjed a öbbi ingára is [0:6] Kifeszíe guiköélen kele zavar végig fu a köélen [0:08] Kifeszíe rugón
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből
Alaptagok Nyquist és Bode diagramjai
Alaptagok Nyquist és Bode diagramjai Luspay Tamás, Bauer Péter BME Közlekedésautomatikai Tanszék 212. január 1. 1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai
Túlgerjesztés elleni védelmi funkció
Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg
DIPLOMADOLGOZAT Varga Zoltán 2012
DIPLOMADOLGOZAT Varga Zolán 2012 Szen Isván Egyeem Gazdaság- és Társadalomudományi Kar Markeing Inéze Keresle-előrejelzés a vállalai logiszikában Belső konzulens neve, beoszása: Dr. Komáromi Nándor, egyeemi
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Fizika A2E, 11. feladatsor
Fizika AE, 11. feladasor Vida György József vidagyorgy@gmail.com 1. felada: Állandó, =,1 A er sség áram öl egy a = 5 cm él, d = 4 mm ávolságban lév, négyze alakú lapokból álló síkkondenzáor. a Haározzuk
A diszkrimináns, paraméteres feladatok a gyökök számával kapcsolatosan
MÁSODFOKÚ MINDEN A egoldókéle alkalazása Oldd eg a kövekező egyenleeke!... 9 A diszkriináns, araéeres feladaok a gyökök száával kacsolaosan. Az valós araéer ely érékei eseén van a 0 egyenlenek ké egyenlő
L-transzformáltja: G(s) = L{g(t)}.
Tartalom 1. Stabilitáselmélet stabilitás feltételei inverz inga egyszerűsített modellje 2. Zárt, visszacsatolt rendszerek stabilitása Nyquist stabilitási kritérium Bode stabilitási kritérium 2018 1 Stabilitáselmélet
A BIZOTTSÁG MUNKADOKUMENTUMA
AZ EURÓPAI UNIÓ TANÁCSA Brüsszel, 2007. május 23. (25.05) (OR. en) Inézményközi dokumenum: 2006/0039 (CNS) 9851/07 ADD 2 FIN 239 RESPR 5 CADREFIN 32 FELJEGYZÉS AZ I/A NAPIRENDI PONTHOZ 2. KIEGÉSZÍTÉS Küldi:
7. 17 éves 2 pont Összesen: 2 pont
1. { 3;4;5} { 3; 4;5;6;7;8;9;10} A B = B C = A \ B = {1; }. 14 Nem bontható. I. 3. A) igaz B) hamis C) igaz jó válasz esetén, 1 jó válasz esetén 0 pont jár. 4. [ ; ] Más helyes jelölés is elfogadható.
Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból
Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból 1 Átviteli tényező számítása: Lineáris rendszer: Pl1.: Egy villanymotor 100V-os bemenő jelre 1000 fordulat/perc kimenő jelet ad.
Ezt már csak azért is érdemes megtenni, mert így egy olyan egyenletet kapunk, ami bármilyen harmonikus rezgés esetén használható, csak az 0
7. Rezgések mechanikája (harmonikus rezgőmozgás mozgásegyenle, annak megoldása, periódusidő, frekvencia, csillapío rezgés, alulcsillapío ese megoldása*, kényszerrezgés és rezonancia) Fonos: a dől beűvel
Gépészeti rendszerek. RUGÓK (Vázlat) Dr. Kerényi György. Gépészeti rendszerek. Rugók. Dr. Kerényi György
0.04.. RUGÓK (Vázla) Rugók 0.04.. Rugók A rugók nagy rugalmasságú elemek, amelyek erő haására jelenős rugalmas alakválozás szenvednek. Rugalmassági jellemzőikől üggően a rugók a legkülönbözőbb eladaok
A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer
Kinemaikai egyensúly éele: Téel: zár kinemaikai lánc relaív szögsebesség-vekorrendszere egyensúlyi. Mechanizmusok sebességállapoa a kinemaikai egyensúly éelével is meghaározhaó. sebességállapo ismer, ha
Tartalom. Robusztus stabilitás Additív hibastruktúra Multiplikatív hibastruktúra
Tartalom Robusztus stabilitás Additív hibastruktúra Multiplikatív hibastruktúra 2015 1 Robusztus stabilitás Szabályozási rendszer tervezésének gyakorlati problémája az, hogy az aktuális rendszer G(s) átviteli
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉGI VIZSGA 0. okór 5. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMBEI EŐFOÁSOK MINISZTÉIMA Egyszerű, rövid feladaok
Elektromágneses indukció (Vázlat)
Elekromágneses ndukcó (Vázla). z elekromágneses ndukcó és annak fajá. mozgás ndukcó 3. Lenz-örvény 4. yugalm ndukcó 5. Időben válozó mágneses mező álal kele elekromos mező ulajdonsága 6. Kölcsönös és önndukcós
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Villamosságtan II. főiskolai jegyzet. Írta: Isza Sándor. Debreceni Egyetem Kísérleti Fizika Tanszék Debrecen, 2002.
Villamosságan II főiskolai jegyze Íra: Isza Sándor Debreceni Egyeem Kísérlei Fizika anszék Debrecen, Uolsó frissíés: 93 :5 Villamosságan II félév oldal aralom aralom emaikus árgymuaó 3 Bevezeés 4 Válóáramú
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
A Lorentz transzformáció néhány következménye
A Lorenz ranszformáció néhány köekezménye Abban az eseben, ha léezik egy sebesség, amely minden inercia rendszerben egyforma nagyságú, akkor az egyik inercia rendszerből az áérés a másik inercia rendszerre
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek
Mesterséges Intelligencia MI
Meserséges Inelligencia MI Valószínűségi emporális kövekezeés Dobrowiecki Tadeusz Eredics Péer, és mások BME I.E. 437, 463-28-99 dobrowiecki@mi.bme.hu, hp://www.mi.bme.hu/general/saff/ade X - a időpillanaban
Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com
Rezgésdiagnoszika. Bevezeés rezgésdiagnoszika a űszaki diagnoszika egy eghaározo erülee. gépek állapovizsgálaánál alán a legelerjedebb vizsgálai ódszer a rezgésérés. Ebben a jegyzeben először a rezgésérés
Statisztika II. előadás és gyakorlat 1. rész
Saiszika II. Saiszika II. előadás és gyakorla 1. rész T.Nagy Judi Ajánlo irodalom: Ilyésné Molnár Emese Lovasné Avaó Judi: Saiszika II. Feladagyűjemény, Perfek, 2006. Korpás Ailáné (szerk.): Álalános Saiszika
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Kis orvosi jelfeldolgozás
Jel: olyan (izikai) mennyiség, amely inormáció hordoz, ovábbí vagy árol Kis orvosi jeleldolgozás pl () elekromos eszülség, amely a szív-/izom-/agyműködés kövekezén a es vagy a koponya elszínén mérheő (EKG/EMG/EEG)
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 05 ÉETTSÉGI VIZSGA 005. május 0. ELEKTONIKAI ALAPISMEETEK EMELT SZINTŰ ÉETTSÉGI VIZSGA Az írásbeli vizsga időarama: 0 perc JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ OKTATÁSI MINISZTÉIM
Történeti Áttekintés
Történeti Áttekintés Történeti Áttekintés Értesülés, Információ Érzékelő Ítéletalkotó Értesülés, Információ Anyag, Energia BE Jelformáló Módosító Termelőeszköz Folyamat Rendelkezés Beavatkozás Anyag,
Navier-formula. Frissítve: Egyenes hajlítás
Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 11. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű PÓTMÉRÉS: Akinek elmaradása van, egy mérést pótolhat a
A röntgenfluoreszcencia-analízis elvi alapjai
A röngenfluoreszcencia-analízis elvi alajai Nagy ária Eövös Loránd Tudományegyeem, Természeudományi Kar 1117 Budaes, Pázmány Péer séány 1/A. A röngenfluoreszcencia-analízisnek (RFA) neveze eljárás egy
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését