A Lorentz transzformáció néhány következménye

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Lorentz transzformáció néhány következménye"

Átírás

1 A Lorenz ranszformáció néhány köekezménye Abban az eseben, ha léezik egy sebesség, amely minden inercia rendszerben egyforma nagyságú, akkor az egyik inercia rendszerből az áérés a másik inercia rendszerre a köekező ranszformáció írja le: ( z = ( ( z A feni képle eseén a ké rendszer úgy álaszouk meg, hogy koordináa engelyeik párhuzamosak legyenek és a K rendszer a z-engellyel párhozamosan mozogjon sebességgel a K rendszerhez képes. A képleben c-el jelölük a kiünee sebessége. A alóságban a fény erjedési sebessége az a sebesség, amely minden inercia rendszerben állandó nagyságú, hozzáeőleg c = m/s. Az előző képleből egyszerűen leolashajuk, hogy ké inercia rendszer közöi sebesség nem haladhaja meg a fénysebessége, hiszen akkor képzees mennyiségeke kapnánk a ranszformál koordináákra, ami fizikailag nem érelmezheő. (. Lorenz konrakció Hendrik Anoon Lorenz Vegyünk egy l hosszúságú ruda, amelynek az egyik égé helyezzük a K és K rendszer közös origójába. Mérjük meg a hosszá a K rendszerben, agyis adjuk meg a égpon z = l koordináájá = 0-ban. Persze a K rendszerben más időben leszünk és i a rúd másik ége a z = l ponban lesz, agyis a sebességgel mozgó rendszerben más hossza fogunk mérni, min a rúdhoz képes álló rendszerben: ( ( ( 0 l = c l (, Az előzőekből a köekező ké egyenlee kapjuk: = l (3 l = l (, (4

2 ehá l = l (5 A mozgó rendszerben ehá a ruda röidebbnek mérjük! Ez a jelensége híjuk Lorenz konrakciónak. Persze nyugodabbak lennénk, ha egy rúd hosszá egyérelműen meg udnánk mondani, ezér a rúd hosszá célszerű a rúddal együ mozgó inercia rendszerben mérni.. Idő dilaáció Egy egyenlees sebességgel mozgó részecske sajá rendszerében az idő máskén elik min az a laboraóriumi rendszerben mérjük. A részecskéel együ mozgó rendszer álaszhajuk úgy, hogy a részecske mindig az origóban helyezkedik el. A Lorenz ranszformáció ekkor a köekező alakú lesz: ( 0 = ( ( z. Soronkén kiíra a köekező egyenleeke kapjuk: z =, ( =, amelyből köekezik, hogy = c, agyis a laboraóriumi rendszerben hosszabb idő mérünk, min a ömegponal együ mozgó rendszerben. A speciális relaiiás elméle eme jelenségé híjuk idő dilaációnak. Ennek a jelenségnek sokkal könnyebb kísérleileg a nyomára akadni, min a Lorenz konrakciónak. Az egyik legismerebb példa bizonyos könnyű részecskék, a müonok bomlásához kapcsolódik. A müonok a leponok családjába aroznak, így az elekronok rokonai. Legöbbször a kozmikus részecskék és a légkör részecskéinek üközéskor kelekeznek nagyjából 0 km-re a föld felszínéől. Az élearamuk τ =. 0 6 s, így ha még fénysebességgel is repülnek, legfeljebb 660 méer ehenek meg, ennek ellenére a föld felszínén is udjuk deekálni őke. Ennek oka, hogy a sajá órájuk lassabban jár, min a mi földfelszínhez köö óránk. Természeesen azoka a fizikai folyamaoka, amelyek a részecske bomlásá okozzák a részecskéel együ mozgó rendszerben kell leírnunk és számára az idő is a sajá rendszeréhez köö óra szerin múlik. A Lorenz ranszformációnak megfelelően τ idő ala, ameddig el nem bomlik a részecske, z = τ/ áolságo esz meg. Tegyük fel, hogy a müonunk a fénysebesség 99%-al halad, ekkor elbomlásáig a mi rendszerünkben 3.4 km- esz meg a 0.66 km-rel szemben. A részecskéel együ mozgó rendszer nem felélenül inercia rendszer, de egy infiniezimálisan röid ideig ekinsük úgy, minha egyenlees, egyenesonalú mozgás égezne egy inercia rendszerben, majd a köekező pillanaban egy

3 új sebességgel mozog egyenleesen és így oább. Ekkor a labor rendszerben elel időből a köekező inegrállal számíhajuk ki a részecskéel együ mozgó rendszerben elel idő: τ = ( d (6 c Ez a mennyiség, amelye sajáidőnek híunk, minden inercia rendszerben ugyanaz marad, agyis inariáns a Lorenz ranszformációal szemben. 3. Sebességek összeadása Vizsgáljuk mos a köekező problémá: mekkora sebességgel mozog egy részecske a K redszerben, amely a K rendszerben sebességgel mozog? A K rendszer mozogjon V sbességgel K-hoz képes. Tegyük fel, hogy kezdeben a részecske a ké rendszer közös origójában ol. idő mula K-ban a z = helyen lesz, a K redszerben pedig a, z = ponban. A ké éridő pono a Lorenz ranszformáció köi össze: ( ( ( V = c (7 V V Vagyis V = V (8 A ké egyenleből egyszerűen kifejezheő: V = V + (9 = V V (0 Ha helyére a fénysebessége, c- helyeesíjük be, akkor a K rendszer beli sebességre, elárásainknak megfelelően, ugyancsak a fénysebessége kapjuk. 4. Inariáns íelem Az számú képle a K rendszer beli idő és helye ranszformálja á a K beli időé és hellyé. Azonban egy kicsi slampos dolog az, hogy ha egy ekornak ekinjük a (, z mennyisége, akkor a komponenseknek különböző mérékegysége an. Ez a problémá egyszerűen orosolhajuk, ha az időszerű koordináá megszorozzuk a fénysebességgel, amely állandó minden inercia rendszerben. Ebben az eseben a köekező alakba írhajuk a ranszformáció: ( ( ( c z = c c ( c z 3

4 Muassuk meg, hogy a (c z mennyiség inariáns a Lorenz ranszformációal szemben: (c, z ( ( 0 c = (c, z ( ( 0 c 0 z 0 z = ( ( ( ( (c, z c 0 c c c 0 = c z (c, z ( ( 0 c. ( 0 z Az (c, z ( ( 0 c mennyiség inariáns a Lorenz ranszformációal szemben, ezér definiáljuk a kédimenziós éridőnkben a skalár szorza- 0 z o ezzel a műeleel: u µ µ = (c, z ( ( 0 c (3 0 z ( 0 ahol u = c, u = z és a merikus enzor. Természeesen egyszerűen erjeszhejük ki a skalárszorzao háromdimenziós érre is, csak a merikus 0 enzor lesz 4x4-es márix: g = , ( a négyes helyekor pedig (c, r négyes lesz. A sebesség a helyekor idő szerini deriálja. Ha azonban az éppen akuális inercia rendszer ideje szerin deriálunk, akkor az eredmény nem fog megfelelni a Lorenz ranszformációnak, agyis az eredmény nem egy négyes ekor lesz. A négyes sebessége ezér a négyes helyekor sajáidő szerini deriáljakén definiáljuk: 5. Fénykúp µ = du µ dτ = du µ d d dτ, (5 ( c = (. (6 Ábrázoljuk a éridőnke egy + dimenziós koordináa rendszerben. (Csak ké érszerű koordináánk an az egyszerűbb ábrázolás ége, persze aki álája a négydimenziós ere, az árajzolhaja +3 dimenzióba is. A = 0 pillanaban az origóban agyunk, az ábrán láhaó kúpok csúcsában. Ha elindíunk egy 4

5 fénysugara, az a felső kúp palásján fog mozogni, egy korábban felénk indío fénysugár pedig az alsón. Az ábrán az u, u,, ekorok egy-egy esemény helyé és idejé adják. Figyelembe ée, hogy a kölcsönhaásoknak éges a erjedési sebességük, az egyes eseményeke a köekezőképpen oszályozhajuk: u egy esemény a jöőben, amelyre haással leheünk (uu > 0 u egy esemény a múlban, amely haással lehe ránk (uu > 0 egy esemény a jöőben, amelyre nem leheünk haással ( < 0 egy esemény a múlban, amely nem lehe haással ( < 0 A fénykúp w ponjában léő esemény eseén, ermészeesen, a (ww skalárszorza nulla lesz. 5

Fizika Előadás

Fizika Előadás Fizika. Előadás A speiális relaiiás elélee Kineaika Krdináarendszerek Nygó (labraórii) krd. rdsz. Mzgó krd. rdsz. és y y és z z Galilei-ranszfráió: az órák gyanúgy járnak y z y z & & y & A ehanika örényei

Részletesebben

mateking.hu -beli vektorokat, de egyáltalán nem biztos, hogy így az egész V

mateking.hu -beli vektorokat, de egyáltalán nem biztos, hogy így az egész V LINEÁRIS LEKÉPEZÉSEK ÉS TRANSZFORMÁCIÓK A leképezés lineáris leképezésnek neezzük, h ármely elesül, hogy ; ekorokr és R számr Minden lineáris leképezés lhogy így néz ki: Kerφ Imφ meking.hu H kkor lineáris

Részletesebben

É Ü É ÉÉ Ú ű ű É Á Á Á Á Á Á ű Á Á Á É Ú Ö ű ű É ű É ű Ú ű ű ű ű É Á ű ű Á ű ű ű Ü Ü Ú Ü ű ű ű Ú Ö Ó Ú ű ű ű ű ű ű ű ű ű Ú Ú Ö Á ű ű ű ű Ü ű Ü ű ű Ü ű ű Ü Ú Ú Ö ű Á Á ű ű ű Ú Ü Ü ű ű ű ű Ú Ú Ú ű Ü ű ű

Részletesebben

Ú Í Í í í ú Ő ü Ú É í í Ü ű ü ű í í í ű ü ú ü í ű ü ú ü ú ü ü ü ű ü Ú É í ú ü ü ü ú ü ü ú í ü ü ú ü í í ú ű í ú ű ü í í ü í Í í í ü í ú Ü Ú É í í í ü ü ü ú ú ü ü ú ü ü ú ú í í ű ü ü ü ű Á ü ú ű í í ü ü

Részletesebben

Speciális relativitás

Speciális relativitás Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban

Részletesebben

A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer

A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer Kinemaikai egyensúly éele: Téel: zár kinemaikai lánc relaív szögsebesség-vekorrendszere egyensúlyi. Mechanizmusok sebességállapoa a kinemaikai egyensúly éelével is meghaározhaó. sebességállapo ismer, ha

Részletesebben

FIZIKA FELVÉTELI MINTA

FIZIKA FELVÉTELI MINTA Idő: 90 perc Maximális pon: 100 Használhaó: függvényábláza, kalkuláor FIZIKA FELVÉTELI MINTA Az alábbi kérdésekre ado válaszok közül minden eseben ponosan egy jó. Írja be a helyesnek aro válasz beűjelé

Részletesebben

XVII. SZILÁRD LEÓ NUKLEÁRIS TANULMÁNYI VERSENY Beszámoló, II. rész

XVII. SZILÁRD LEÓ NUKLEÁRIS TANULMÁNYI VERSENY Beszámoló, II. rész osan megszûn Ez alapján közelíôleg egy évben kimondoan csak a avaszi óraáállíásnak köszönheôen álagosan 43 GWh érékkel csökken az országos villamosenergia-fogyaszás Hasonlóképpen számolunk mind az 5 évben

Részletesebben

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás FIZIKA Elekromágneses indukció, válakozó 6 március 14. 3. előadás FIZIKA II. 5/6 II. félév Áram ás mágneses ér egymásra haása Válakozó feszülség jellemzése FIZIKA II. 5/6 II. félév Lorenz erő mal ájár

Részletesebben

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás)

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás) Maemaika A3 gyakorla Energeika és Mecharonika BSc szakok, 6/7 avasz 3. feladasor: Görbe ívhossza, görbemeni inegrál megoldás. Mi az r 3 3 i + 6 5 5 j + 9 k görbe ívhossza a [, ] inervallumon? A megado

Részletesebben

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást. . Ideális olyadék FOLYDÉKOK ÉS GÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan

Részletesebben

8. előadás Ultrarövid impulzusok mérése - autokorreláció

8. előadás Ultrarövid impulzusok mérése - autokorreláció Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

5. Szerkezetek méretezése

5. Szerkezetek méretezése . Serkeeek méreeése Hajlío, ömör gerinű gerendaarók és oso selvénű nomo rúd méreeési példái..1. Tömör gerinű gerendaarók méreeése.1.1. elegen hengerel gerendaarók Sükséges ismereek: - Keresmesei ellenállások

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

2. A speciális relativitás elmélete

2. A speciális relativitás elmélete László Isán Éíőérnök Fzka II. rész (Bdaes 4). A seáls relaás elélee.5 Eseének áolsága. Az íele. Teknsünk ké eseén a K nerarendszerben. Az egke a és z koordnáák jellezk a áska edg a és z koordnáák. Az s

Részletesebben

HARMONIKUS REZGŐMOZGÁS

HARMONIKUS REZGŐMOZGÁS HARMONIKUS REZGŐMOZGÁS A es ké szélső helze közö periodikus mozás éez. Kérdés: a kiérés az időnek milen füéne:? f Eensúli helze: Eszerű leírás: a harmonikus rezőmozás az eenlees körmozás merőlees eülee.

Részletesebben

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü

Részletesebben

Ns/m, y0 3 mm, v0 0,18 m/s. Feladat: meghatározása. meghatározása. 4 2 k 1600 Ns 1. , rad/s, rad/s. 0,209 s.

Ns/m, y0 3 mm, v0 0,18 m/s. Feladat: meghatározása. meghatározása. 4 2 k 1600 Ns 1. , rad/s, rad/s. 0,209 s. SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 8. MECHANIKA-EZGÉSTAN GYAKOLAT (kidoloza: Fehér Lajos, sz. mérnök; Tarnai Gábor, mérnök anár; Molnár Zolán, ey. adj., Dr. Nay Zolán, ey. adj.) Ey

Részletesebben

a. Egyenes vonalú mozgás esetén az elmozdulás mindig megegyezik a megtett úttal.

a. Egyenes vonalú mozgás esetén az elmozdulás mindig megegyezik a megtett úttal. A ponszerű es mozgása (Kinemaika). Ellenőrző kérdések, feladaok... Mozgásani alapfogalmak. Dönsd el a köekező állíások mindegyikéről, hogy igaz agy hamis. Írj az állíás mellei kis négyzebe I agy H beű!

Részletesebben

Ö Ü Ü É Ü ű Ü Ü Ú Ú ű ű ű ű Ó Ú Ú ű ű Ü Ő ű ű Ü Ú Ü ű ű ű Ő Ő É ű Ú ű Ü ű Á Á Ú ű Ú ű Ü Ü Á É É Ú É Ú É ű Ü Ü ű Ü Ú Ü Ő ű Ú ű ű ű Ű ű ű Ő É ű ű ű ű ű Ő Ú Ú Ő Á ű ű ű ű ű Ü ű ű ű Ú Ü ű ű Ú Ü Ú ű Á Ü ű Ü

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (a) Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2015. január 11.. 1 Egy egyszerű probléma (1) A K nyugvó vonatkoztatási rendszerben tekintsünk

Részletesebben

Egyenes vonalú mozgások - tesztek

Egyenes vonalú mozgások - tesztek Egyenes onalú mozgások - eszek 1. Melyik mérékegységcsoporban alálhaók csak SI mérékegységek? a) kg, s, o C, m, V b) g, s, K, m, A c) kg, A, m, K, s d) g, s, cm, A, o C 2. Melyik állíás igaz? a) A mege

Részletesebben

Fizika A2E, 7. feladatsor megoldások

Fizika A2E, 7. feladatsor megoldások Fizika A2E, 7. feladasor ida György József vidagyorgy@gmail.com Uolsó módosíás: 25. március 3., 5:45. felada: A = 3 6 m 2 kereszmesze rézvezeékben = A áram folyik. Mekkora az elekronok drifsebessége? Téelezzük

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

1. Előadás: Készletezési modellek, I-II.

1. Előadás: Készletezési modellek, I-II. . Előadás: Készleezési modellek, I-II. Készleeke rendszerin azér arunk hogy, valamely szükséglee, igény kielégísünk. A szóban forgó anyag, cikk iráni igény, keresle a készle fogyásá idézi elő. Gondoskodnunk

Részletesebben

Bor Pál Fizikaverseny. 2015/2016-os tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny. 2015/2016-os tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor ál Fizikaverseny 2015/201-os anév DÖNTŐ 201. április 1. 8. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a ovábbi lapokon is fel kell írnod a neved! skola:... Felkészíő anár neve:...

Részletesebben

Fourier-sorok konvergenciájáról

Fourier-sorok konvergenciájáról Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees

Részletesebben

Á Á ő É ö ö ő É ő ö ö ő ö É É Á ő É ő ö ö ö ő ő ő ő ő ő Ó É ő ő ő ő ü ő ő ü ü ö ö ő ő ú ű ű ö ő ö ú ő ü ő Ü ö ö ő ö ü ő ö ö ö ö ö ő ő ö ö ő ő ö ú ü ű ü ú ő É Á ő ő ö ő ő Ü ö ő ö ö ü ő ő ú ű ü ő Í ö ü ú

Részletesebben

ö ü ö Ö ü ü ü ü Í Í Í Í ű ö ö ű ú ö ö ö ü ú ü ü ü ü ü ü ü ü ö ü ú ü ü ú ü ö ü ü ü ü ú ú ö ö ü ú Ö Ő Ü É Ó Ö Ó Ó ö ö ö ö É ü ö Í ö Ó Ó ű Ó Ó ű ü Ó Ó Í ü Ó Ü ü ü Ö ü ü Í ö ü ü ú ú ü ü ü ö ö ö ö ü ü ö ü ü

Részletesebben

É É Í ü ü ü ű ü ü ü ü ü ü ú Í ű ú ü ű Á ú Ú ű űü Ú Ú É É ű Ú ü ú ű ú ű ü ű Í Í Ú É Ú Ú Ú Í ú ú Ú Ú É ü űü ü ü ü Ú ű ú ü ú ü ú ű ű ü ú ü ú ü Ú ü ú ü ü ú úü ú ú ü ú ü ú Ú ű ú ü ú Ú ű ü Ú ú ü ú ú ü ü ú ú

Részletesebben

ő ő Á ő ő ő ü ő ü ő ő ő ű ő ő ő ü ő ő ő ő ő ő ő ő ü ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ű ő ő ü ü ű ő ő ő Á ő ü Ó ő ő ő ő ő ü ő ü ő ő ő ő ü ő ő ü ő ő ü ő ü ő ü ő ő ő ő ő ü ő ü ü ő ő ő ű ő ű ü ü ő ő

Részletesebben

Í ü ú ü ü ü ü ú ű ű Á ü ü ű ü ű ű ü ü ü ü ü ü ü ű ű ű ű ű ü ű ü ű ü ü ű Ö ű ű ű ü Ö Í ü ű ü ű ű ű ű Í ü ű ű ü ű ű ü ű ü ű ü ű ű ü ű ű ű ű ű ü ü ü ű ü ű ü Í ű ü ű ű ű ü ű ü ü ű ü ű ü ű ü ű ű ű ű ü ü ü ü

Részletesebben

Ü Ö Á Á Á Á É É Ü ű ű ű ű Á Ú Ü Ü ű Á Ú Ü Á Ü Ü Ü ű É Ü É Á ÜÜ Ü Á Ü Ü Ü Ü Ü Ü ű Ú ű ű ű Ü Ú Ü Ü ű Ü ű ű ű ű ű ű ű ű ű Ü Ü ű ű ű ű ű Ü Ü Ü Ú Ü Ü ű Ü Ü ű Ú Ú Ü ű ű Ü Ü Ü ű ű Ú ű Ő Ü Ü Ü Ü Ü Ö Ú ű Ú ű ű

Részletesebben

ü Í Í Í Í Í Í Ö Í Í ú ő ü Ú ő Í Í Í ü ü ő ő ő ú Í ú ő Ó Í ő ü ű ű Í ő Í ű ű Í ú Í ú ü ú ő ő ü Ü Í Í ú Ó ű ő Í ő ő ü ő ő ő Í Í ü ü ú Ú ü ü ü ő ű ü ő ő ú ő ü ő ú ő ő ő ű ő ő ü ü ű ü ő ü ő ú ő ő ü ő ő ő ü

Részletesebben

ö Ö ü ö ü ö Ö í ü ö ü ű ö ö í ö ö ö ö í ü í ö í ö ö ü ú ö í ö ö ö í ö ú ü ö ö ö ű ö ü í í ö í í ö ö ö ü Í í Ú ú ü ű ö í ű ö ö ö ü ú ö ö í ö í ú ö ö ö ö Ö ü Ö ű ö Ö ü ö ö ö ö ü ű ö í ú í Á ü í í ö ü ö Ö

Részletesebben

ő ú É É ő ő ő ő ő ű ő ő ő ő ő ő ő ú ű ő ú ü ü ő ő ü ő ú ú ü ő ő ő Ó É ő ő ő ő ő ő ő ő ő ü ő ő ő Í ü ű ő ő Í ü ő úú ú ű ü É Ő Í ü ő ő ő ő ü ő ű ő ü ő ü Ű ü ü ú ü ü ü ü ú ő ő ő ő ű ő ő ú ü ő ü ő ő ű ü ő

Részletesebben

É É ő ő ő ő Ü ú ú ő ú ú ú ú Ú ő ű ú ű ú ő ú ú ú É É ú Ú ő ő ú ú Ó Ó ú ú ú ő É É Ü Ó É ő ű ú ő ő É ú ú ú ő ő ő ő ő ú ő ő ú ú ú ű ő ő ő ű ő ő ú ő ú ú Ó ő ú ú ú ú ú ő ú ő Ó ő ő ő ú ú ő ő ő ú ű ú ű ű ű ú ő

Részletesebben

Í ú Í Ú É Á É Á Ü Ü Ü É Ü Á É Á Á Í Á Á Á Á É É Á Á Ú É ú Í Ú Í Í ú ú ú Í ú ú ú ú Í ú Ú ú ú ú ú ú ú ú Í Í Í Í Ú Í ú Ú Ú Ö Í ú ú Ú É Ú É ú ű ú ú ú ú ú ú ű ű ú Í ú ú Ú É ú ú ű ú ú ú ú Ú ű Ú ú Ú ú Ú É ű ű

Részletesebben

Ö Ú É ő ú Ü Ú É É ö ú ő ú ú ú ú ö ö ú ő ú ú ö ú Ő ö ő Ö Ú Ó ö ü ú Ü ö ú ü ü ú Ü Ú Ö Ú É ü Ú Ó ú Ú É É ő ú ő ő Ö ö Ö ü Ó Ú ú É ú ú ö úú ú ö Ü Ú É ö ő ő Ó É Ú Ú Ú Ó É É Ü É Ú Ú É ú ö ú ö ő Ú É ö ü ö ő ü

Részletesebben

ű ő Ü ő Ü ő ő ő ő ő ő ő Ó Ú Ú Ü Ú ű Ú Ö ő ő Ó ő Ú ő ő Ú Ú ű ő ő ő ő ő Ú ő ő ő ű ő Ú Ú ő ő ő ő ő Ü ő Ú ő ő ő ű ő Ú Ú ő Ú ő Ú ő Ü ő ő Ö ő ő Ú ő Ú Ú Ü ű Ö ű Ö Ó ő Ó Ú ő ő ő ű ő Ó Ú ő Ü Ú Ü ő ű ő ő ű ő ő ő

Részletesebben

ű ű ű ö ö ö ö ú ö ö ö ú ö ö ö ö ú ö ö ö ö ú ú ú ö ö ö ú ú ú ú ö ö ö ú ű ű ű ú ú ö ö ö ö ú ú ö ű ö ö ö ö ö ö ű ú ö ú ö ö ö ö ö ö ö ö ö ö ű ú ú ö ö ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ú ö ö ú ú ú ö ú ú ú ű ú

Részletesebben

Ó Á Á ű Ü Á Á ű ű ű ű ű Á ű ű Ö ű Á Á Á Ú Ú Á Á Ú Ü Á Ö Ú Ó Ó Ő ű ű Ő ű ű ű ű ű ű ű ű ű ű Ú Ő ű ű ű Á ű ű ű Ü Ü Ü Ú Ó Ü Ü Ö ű Ü Ú Ó Ó Ó ű Ü Ü Ü Ü Á Á Á Ö Ú ű ű ű ű Ö Á ű Ö Ö Ö ű Ú Ó Ö Ö Ö ű ű ű Ú Ú Ö

Részletesebben

ő ö ú ö ű ü ő Ö ő ő ő ő ö ö ö ö Ü Ö Ö Ö Ö ő ő Ö Ú Ő ő Ü ö ő ő ő ő ö ú ö ö ö ő ö ú ö ú ő ű ú ö ú ü ű ö Ú ü ü ö ő ő Ó ÜÜ ő ő ö ö ű ö ö Ü Ó ö ö ú ö ú ű ö ú ö ú ö ö ö ű ő ö ő ö ő ö ú ő ő ő ő ő ú ő ő ő ö ú

Részletesebben

Í Í Ü Á ú Ú É ú Ú Í ű ú ú ú ú ú Í ú ú Ú ú ú ú Ú É ú ű ú ú ű ú ú Í ű ú ú ú Ú É ú ú ú ű ú Ú ű ú Í ű ú ú ú Á ú Ú É É ú ú ú ú ú Á Í ú ú Í Ú É ú ú ú Í Ü ű ú Í ú ú ű ú ú Í Í ú Í Ú É ú ű ú ú ú Í ű ú ú ú ű ű ű

Részletesebben

ü ű Ü ü Ü ü Ü ü ü Ó ü ü ü ü ü ü ü ü ű ű ü ü ü ü ü ű ű ü ü Ú ű ü Ú ű ü ü ü ü ü ü ű Ú Ú ű ü ü ü ü ü ü ü ü ü ü ü ü ü ű ű ü Ú ű ü ü ü ü ü ű ü Ó Ó Ö Ó Ó ü Ö Ó Ü Ó Ó Ó Ó Ó Ö Ó Ó Ö Ó Ó Ó Ó Ü Ü Ú Ó Ó Ö Ó Ó Ó ű

Részletesebben

Ü ő Á ü ú ü Ó ú ő ú ú ő ü ü Á ú ü Í Ó ú ü ú ü ü Á Á ú ő ú ü ü ő Ö ő Í ő ü ő ü ű ü ú ú ü ü ú ő ű ú ú Á Á Á ő ő ú Ó Ö Á Ö ü ő Á ü ü ü ü ő ű üü ü ő ü ő ü ü Ú ú ü Í ú ü ü ü ő ő ő Á ő ő Ó Ó Á ő ü ü Ó ő ú ő

Részletesebben

ü ő ő Á Á Á Á ú ú ő Í Á Ö Á ü Á ü ő ű ú ü ő ö ü ü ü ú ú ő ö ö ú Á Á Á ü ő ő ű ö ü ö ő ö ű ú ű ú ő ö ú ő ö ü ő ü ü ö ö ő ü ü ű ő ü ö ü ö ő ő ő ö ü ő ü ő ü ö ú ú ü ö ö ü ö ü ő ö ű ű ü ö ü ő ő ú ő ú ő ő ö

Részletesebben

ö Ö Á ö ö ü ö É ű ö ö ú ö ö ö ö Á ö ö ö ö ö ö ü ö ö ü Ö ö ö ú ú ú ö ú ö ü ö ü ö ö ö ö ö ö ö ű ö ö ö ö ö ö ü ö ö ú ö ú ö ö Á ö ö ü ú ü ö ú ű ö ö ö ö ö ö ö É É Í ö É ü É ö ö ű ö ö ö ö ö ü ú üü ö ö ü ö ö

Részletesebben

Ö Á Ö Á ú ú ú ú ú ú ú ú ú ú Ú ú ú ű É ú ú Ó Á ú ú ú ú ú ú Ú ú ú ű ű ű ű Á ú ú ú ú É Ó ú ű ű Á ú ú ú ú Á ú ú ú ú ú ű ú ű ú ű ű ű ű ú Ú ú ű Ú ú ú ú ú Ö É Á Á Á Á ú Á Ú Ü ű Á Á Á Ö É Ú Á É Ü Ü ú Ú ú ú Ú Ú

Részletesebben

Í Á Ó É ö ő Ö ö ő ü ő ü ő ü ö ö ő Ö ú ő ő ú ü ő ő ü ő ő ő ú ö ö ő ű ö ö ü ű ő ö ú ö ú ü ü ű É É É ö ö ú ű ő ú ő ú ő ű ö ö ü ö ű ö ú ö ú ü ú ő ő ö ü ö ű É É ö ö ú ő ö ő Ö ű ú ö ő ö ö ü ő ő ő ö ű ö ő ő ö

Részletesebben

É Ö É É Ö É É Í Ü Ü É Ó ö ú í Á ö í ö Ü ú í ú ö í ö ö í ü ö í ü ü ö ö ö í ü ü ö ú í ö ö ö í ü ü ú í ú í ú ú ú ö ü ö ú í ö ú ü ú ö ö ú ö Á í ö Ü Í Ü ö ö Ü Ó ö ü É í ö í ü ö í ö í í ú í í ü ö ö í ü ö ö í

Részletesebben

É ű ű ú ű ú ű ű ű ű ú ű ú ű Ü Ú Ú ú ű ú ú ú Ú Ú ú Ü ú Ó ú ú É Ő É ú ű ú Ü Ö ú Ö Ö ú ú Ü ú ú ú Ó ú Ö Ó ú ú Ü ű ú ú Ö Ü É Ú Ú Ú Ú É ű Ú Ö ú ú ű ú ú Ú ű ú ű Ú Ü ú Ó ú Ó ú Ü Ó É Ö É ú ú ú ú É ú Ü Ü ú ú ú ú

Részletesebben

ű Ú Ü Ü Ü Ú Ű ű ű Ú Ú ű Ü Ú ű ű ű Ú Ü Ú ű Ú ű Ú Ú Ű Ú Ú Ű ű Ú Ú ű Ú Ú Ú ű Ú Ú ű Ú ű Ú Ú Ú Ú ű Ú Ú ű Ú ű ű ű Ú ű ű Ú Ó Ü Ü Ú Ú Ú ű ű ÜÜ Ú Ü Ú Ü ű Ú Ü Ü ű Ú Ú Ü Ú ű Ú Ú Ö Ü Ü Ú Ú Ú Ú Ü Ú Ö Ü Ú Ö Ü Ü ű Ú

Részletesebben

Á Á Á Á Á Á Á Ú Ő Ő Ő Á Á Ú Á Á Á Ő Ú Ú Á Ú Ú Ú Ú Ú Ú Ő Ű Ú Ő Ú Ú Ú Ú Á Á Ú Ő Ő Ő Ő Ú Á Ő Ő Ű Ő Ú Á Ú Ő Ő Á Ú Ő Ő Ú Ú Ú Ú Á Á Ű Á Á Ő Á Á Ú Á Á Á Ú Ú Ú Ő Ú Ú Ú Ú Ő Ú Ő Ő Ő Ú Ő Ő Ő Ú Ű Ő Ú Ő Á Ú Ő Ú Á Á

Részletesebben

ú Á É ű ű Á ú ú ú Ú ű ú ű Ö ű ú ű É ú ú Ü Ú ú ú ú ú Ó Ú ú Ú Ú ú ú ú ú Ú Ú Ő É ú Á ú ú ú Á ú ú Á Á ú ú ű ú É ű ú ű ú ú ú ú ű ú É ű ú ű Ö Ü ú Ú ú ú Ú ú Ú ű ű ú ú ű É Ú ű Á ú ú ú ú Á ú ú ű ű ú ú ú ú ú ú Á

Részletesebben

É É Ő ö ő ő ő ö ő ö É ő ő ő Ü ö Ó Ü ő ő ő Ü ö ö Ó ü ö ő ö ű ö ű ö ő ö Ö ö ö Ö ú ö Ü ü ő ő ő ö ő ü ő Ú ú Ü ő ö ő É ő ő ű Í ő ő ö É ö ő Ö ő É Í ő ö ő Ü ő Í ú Ó ü Ő ú ö ú ű ú ú Í Í Í Í Í ő ö ö ö ő ő Ö ö ü

Részletesebben

ö ü ó ö ü ü ó ó í ó í ó ú ó ö ö ö ü ü í ü ü ó ü ü ü ö ö ö ö í ü ü ö í ü ú ö í Í ö ö ó ö í ú ö ú ó ó ó í ú ö ú ó ó ó í ö ú ö ú ó í ó ü ö ö ó ú ó ó ó Ö ö ü ö í í ó í ü É ü ú ö í í ü í ó ó Í ö ü í ó í ö ö

Részletesebben

Á ü Á Ü Í Ü ü ü ú Ú Ó ü ő ü ö ő ö Ö ú ö ú ö ü ü ő ú ü ü ő ű ő Ö ü ü ő Ú ö ő ü ő ő ö ö ö ö ö ő Í ő ő ő Ü ő ű ő ö ü ü ő ü ő ü ű ú ő ú ö ű ő ű ú ő ú ő Ű ü ő ő ú ő Ú Ö Ö Ö Ö ü Ó ő ö ö ö ö ú ö ü ü ő ő ő ő ű

Részletesebben

ü Ö Ö É Ű ü ű É É É ő Ő É ű É ő ő ő ő ü ü ü ő ő ő Ü ő ő ő ő ü ő ü Í ő ű ü ő ő Ö Ö ő ü Ö Ö ő ő ő Ö ő ü ő ü ü ő Ö ü ü ő ő Ö ő ő ű ő ő ő ő ű ő ő ű ő ő ő ő ő Ö ő ü ő Ö Ö ő ű ű ő ő ő ő É ő ő ő Ö ő É ő ü ü ő

Részletesebben

ű Á Ü É Ü Ü Í ö ö ű ö ö ö ü ű ü ü ü ü Í ű Í ű ü ű ö ü ö ű ü ö Í ö ö Ö Á Á É Á Í Ő Ő Ő É Ü É ü É ö Ü ö Ü Ü ö ö ö ö ü ü ű ö ü ü ü É Á É ü ö Í ö ö É ö Á É É Á Á Ü ö ű Ü Á Á É É Á Á Á Á Ö Ü ű Ü ö ü Ü ü Ü Ö

Részletesebben

Í í ú ú ű í í í í í í Í í í í í í í í í í í í í Á í í í í í Ó ÜÜ Ü ü ü í Á Á Á Ö í Á Á í í ü í í í í í í Í í í í í í ü í í ü í í í í í í í í í í í í ü í í í í í í í í í í í í í í í í í í í í í ű ü í í

Részletesebben

ö ü ö ü í ü ü ü ö Á Á í ö ö ö ü ü í ü ü ü ö ű ö í í í í ö Ö ú ű ö Í ű ö ö í ö Ó Í ü ö ö í ö ú ű ö ö ö ű ö ö ü ü í í ö Ö ü ú ű ö Í ü ü ü ű ü ü ü ü ú ü í ö ü ü ö Ó ü ú ű ö ű í ö Á ö Á ö í ö ö ü ö ö ü ű í

Részletesebben

Ú Í ü ü Ö É ű ű ű ű Í Ú Í ű ű Ú Á ű Á Á Ú Á Ö Ó ű ű Í Ú ű Ú Ú Á Á Á Í Ű Í Á Ú Ú Ú ű Í ű Í ü É É Ú Ú Ú ű Ú Ú Ú Ú Á É Ú Ú Ú Ú Ú Ú Ú Í Í Ú ű Ú ű Ú Ú Í Í É ű Ó Ú ú Ú Ú Ú Ú Ú Ú Í É ű Í Á Á ű Í ű ű Ú Ú ű Ú

Részletesebben

Ü É É ü ü ú ú Á ü ú ü ú ú ú ü ű É ü ü Ü É Á Á Á ú ü Ö Á ű ű ú ű É ú Ű ű ü ü ú ű ü ú ü ű ü ú ú ü Ú ú Ó ú ü ű ü Í ü ú ü ü ü ü ú ü ú ú ü ú ü ú ű ű ü Ü Ű ú ü ű ú ű ú ú ü Ü ü ü Ü ü Ü ü ü Ó Ö ü Ú ú ü ú ű ü ú

Részletesebben

Í Ú ü Á Á ü ű ü ü Ö É Ő ű ű ú ú ű É ű Í Ü É ü ü Ü úü ü ü Í ú ü Ő ű Í ű Í Ú Í Ú ü ú ű ű Ú ű É ú ú Í ü ü Ú Ú Ú Ú Á ű ü ü Í Ú Á Á ű ü ü Ú Á ű ü ú Ú ü ü Ú Ö É Ö ü ú ú ú ü ü ú Ö Ü ü Ü ú üü Á ú É Í É Í Í ű Á

Részletesebben

Ü Í ú Í É Ú É É Ú Ó ú ü ü ü ú ú Ő ú ú Í ú ú ú ú ű ú ú Á ú ú ú ú ú ú ü ú ü ű É ú ú ű ü ü ú ú ú ú ü ú ü Ú ü ú ú ü ű ú ü ü ü Í ü ú ú ü ú ü ü Ú ü ü ú Ú Á ü ű ü ű ú ú ü ü Ú ü ü ü ü ü ű ű ü ú ú Í ü ú ű ú Ú ü

Részletesebben

É Ü ú ü Ü Ü ú Ü Ü ü ü Ü ú ú ú ű ü É Ü É Í Ó É ü ű Ü É ü ü É Ü Í Ó Ó Ó Ü Ó Í Ó Ó Ó Í Ü ü Ó Ö Ü ü ü Ü Ü ű Ü Ö Ü É Ü É Ü É É É É É ű Ó É Ö Ö ü ü ú ú ú Ü Ü Ü ú ú Ü ú ú ú ú ú ú Ü ú ú É Ú ü Ú Ú Í Í Ú É Ü Ü Í

Részletesebben

Í Ö Ű ő í Ú Ó Á ú ó É ű ú ő ó ó ő ó ü Á ó ű Ű ő í Ó Á ű í Ó ó Ó Á ó ó í ó í ó Ö í ú Á É Í Í Ú í í űü í ő í É Ó í í Ú Ü ű Ú ő ő Ű ő ű ő Ú ő ő ő Ü ő ő ű ő í É í í Í Ő ő ó í í ő ő ú ő ő ó ó ő ő ú ő ő Ö ő

Részletesebben

DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta

DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta BIOFIZIKA I 010. Okóber 0. Bugyi Beáa TRANSZPORTELENSÉGEK Transzpor folyama: egy fizikai mennyiség érbeli eloszlása megválozik Emlékezeő: ermodinamika 0. főéele az egyensúly álalános feléele TERMODINAMIKAI

Részletesebben

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel

Részletesebben

Ú ő ő ü ü É É É ú ü ú ü ö ő ö ö ő üú ü ü ö ö ü ö ö ü É ü ő ü ö ö ö ü ü ö ö ü ú ú ő É ü ü É ú É ú ü ü ő ű ö ő ö ő ő ü ő ő ö ö É É É ő ú ü Ű É ú ö Í ö ü ö ö ö ö ö ö ö ő ű ö Ü ü ű ü ü ü ö ú ű ú ü ü ő ö ú

Részletesebben

Á Ö ő ő ö Ö Á Í Á É ÉÉ í ő ö Í í őí í ú ú ö í í ö Í Í Í í ú í ú ő ú í Ö Ö ú ü í ű Ö í ű Í ő Ö í í í ü Ö í í ú í ő ú í í í ő í ő ü í í ű Ö ő í ő í Í ö Ő ü ő í í ö í ő í Á í ö ü ö Ő ü ü ő ü ü Íő Í Í Í í

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

2. gyakorlat: Z épület ferdeségmérésének mérése

2. gyakorlat: Z épület ferdeségmérésének mérése . gyakorla: Z épüle ferdeségének mérése. gyakorla: Z épüle ferdeségmérésének mérése Felada: Épíésellenőrzési feladakén egy 1 szines épüle függőleges élének érbeli helyzeé kell meghaározni, majd az 1986-ban

Részletesebben

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása hagyományos beszállíás JIT-elvû beszállíás az uolsó echnikai mûvele a beszállíás minõségellenõrzés F E L H A S Z N Á L Ó B E S Z Á L L Í T Ó K csomagolás rakározás szállíás árubeérkezés minõségellenõrzés

Részletesebben

É Ü ú ő ü ő Á ő ő Á ő ő ü ő ü ő ü ő ő ü ú ő ú ü ű ü ő Á ő ő ő ú ű ő ő Ö Á ő ü ő É ü ő ő ő ő ő ő ü ő ő ü ű ü ü ü ő ő ü ű ő ő ő ő ő ő ü ő ü Ü ű ő ő ő ü ő ü ő ü ű ő ú ő ő ő ő ő ü ő ő ő ő ü ű ű ő ő ű Á ő ü

Részletesebben

Egydimenziós instacionárius gázáramlás, nyíltfelszínű csatornabeli folyadékáramlás

Egydimenziós instacionárius gázáramlás, nyíltfelszínű csatornabeli folyadékáramlás Eimenziós inscionárius gázármlás, nyílfelszínű csornbeli folyékármlás Koninuiási eenle e ellenőrzőfelüleel hárol érfogr: () Mozgáseenle (imulzuséel: z imulzus iőbeli álozásánk és felülei imulzusármoknk

Részletesebben

REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja

REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja REKCIÓKINETIK LPFOGLMK Reakiókineika élja. Reakiók idbeli lefuásának, idbeliségének vizsgálaa: miér gyors egy reakió, és miér lassú egy másik?. Hogyan függ a reakiók sebessége a hmérséklel? 3. Reakiók

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Ö Ó Ö Í Á Ö Á Ö Í Ö Ö Ö Ó É Í Ö Ö Á Ö Ó Ö Ö Ö Ö É Ö Ö Á Ö Ó Á Á Í Ö Ö Í Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö É Ö Ö Ö Ö Ó Ö Ö É Ö Ö Ö Ö Ó Ö Ö Ö Ó Á Ö Á Á Í Í Ú Ó Á Á Á É Á Í Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö É Í Á Á Á Á

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

ELLENŐRZŐ KÉRDÉSEK KINEMATIKA ÉS DINAMIKÁBÓL

ELLENŐRZŐ KÉRDÉSEK KINEMATIKA ÉS DINAMIKÁBÓL ELLENŐRZŐ KÉRDÉSEK KINEMTIK ÉS DINMIKÁBÓL nyagi pon kinemaikája: Mi a definíciója a kövekező alapfogalmaknak: - pálya: mozgásörvény grafikonja a érben, valamilyen görbe (érgörbe), de fonos speciális eseek

Részletesebben

LUCKY LUKE AZ EMBER, AKI GYORSABBAN LÔ, MINT AZ ÁRNYÉKA

LUCKY LUKE AZ EMBER, AKI GYORSABBAN LÔ, MINT AZ ÁRNYÉKA KÉN (S) megnevezése a nyelvújíás idején is kevese válozo, ez megelôzôen Zay büdöskônek is neveze 1791 (Zay: Mineralógia), Kovás is így emlíi 1822 (Kovás: Ásványnévár); a nyelvújíás idején kénô 1829 (Schuser:

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben