13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull"

Átírás

1 13 Wiener folyama és az Iô lemma Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 1

2 Markov folyamaok Memória nélküli szochaszikus folyamaok, a kövekező lépés csak a pillananyi helyzeől függ Felevés: részvényárak mozgása Markov folyama Kövekezmény: echnikai analízis nem működhe! Haékony piac hipoézis gyenge formában: a pillananyi ár minden információ aralmaz a múlbeli viselkedésről φm,v: normál eloszlás, m álag, v variancia σ Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01

3 Variancia & sandard szórás Markov folyamanál az egymás köveő lépések függelenek Álag és variancia addiív andard szórás nem addiív Pl. φm,v: φ0,1 év uán: φ0, σ hónap uán: φ0,0.5 σ hónap uán: φ0,0.5 σ 0.5 év uán: φ0, σ 1/ Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 3

4 Wiener folyamaok Egy z vélelen válozó Wiener folyama, ha z z megválozása egy kicsi inervallumban: z z eszőleges különböző nem áfedő periódusban függelen ahol ϕ 0,1 [z T z 0] i álaga 0 i 1 [z T z 0] varianciája T N [z T z 0] sandard szórása T Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 4

5 Álalánosío Wiener folyamaok Drif: álagos válozása -nek egységnyi idő ala a Variancia: egységnyi idő ala b a b d a d b dz 0 a Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 5

6 Iô folyama Egy Iô folyamanál a drif és a variancia idő és állapo függő: da, db, dz Véges időlépés eseén: a, b, ponos eredmény, ha zéróhoz ar reje felevés: ala a és b nem válozik! Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 6

7 Álalánosío Wiener folyama és a részvények ára Várakozás: árak válozása százalékosan állandó elvár hozam nem függ az áról Az árak válozékonysága arányos az ár nagyságával Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 7

8 Részvények árválozása: Iô folyama d d μ d i μ az elvár hozam reurn σ a volailiás. Diszkré időlépés: μ σ dz eomeriai Brown mozgás Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 σ μ d σ dz ~ ϕ μd, σ d T 0 e μt 8

9 Mone Carlo szimuláció Vélelen szám generálás: Pl.: μ 0.15, σ 0.30, és 1 hé 1/5 azaz év, ekkor or Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 9

10 Mone Carlo szimuláció: Week ock Price a ar of Period Random ample for Change in ock Price, Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 10

11 Iô lemma Ha ismerjük egy folyama részleei, Iô lemmája megadja egy, szochaszikus függvény viselkedésé. Minhogy minden származékos ermék függ az eszköz áráól és az időől, az Iô lemma fonos szerepe jászik minden árazási problémánál. Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 11

12 Taylor sorfejés: Egy, függvény Taylor sora Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 1 K ½ ½

13 Levágás rendje: Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 13!! ~ 1 komponense egyik eseén : zochaszikus kalkulus : függvény kalkulus zokásos

14 Ha Iô folyama: Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull b b a dz b d a d ½ : levágás nél - idő diszkré,, ekkor

15 Az ag Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull b E E E E E 1 emia ~ varianciája 1 1 ] [ 0 0,1, Minhogy φ

16 Infiniezimális haárérék d d d a d bdz d a d ½ b ½ b d bdz eziolemmája d Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 16

17 Iô lemma és részvény árak A részvény ár Io folyama d μ d σ d z függvény megválozása és függvénye : d μ ½ σ d σ dz Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 17

18 Példák Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 dz d d dz d r d e T T r a logarimus ár Részvény. idő lejárai ára Forward 1. σ σ μ σ μ ln 0 T r T r re e dz d d ½ σ σ μ 0 1 1

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag, Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Meserséges Inelligencia MI Valószínűségi emporális kövekezeés Dobrowiecki Tadeusz Eredics Péer, és mások BME I.E. 437, 463-28-99 dobrowiecki@mi.bme.hu, hp://www.mi.bme.hu/general/saff/ade X - a időpillanaban

Részletesebben

DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta

DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta BIOFIZIKA I 010. Okóber 0. Bugyi Beáa TRANSZPORTELENSÉGEK Transzpor folyama: egy fizikai mennyiség érbeli eloszlása megválozik Emlékezeő: ermodinamika 0. főéele az egyensúly álalános feléele TERMODINAMIKAI

Részletesebben

Járműpark üzemeltetési rendszere vizsgálatának Markov típusú folyamatmodellje

Járműpark üzemeltetési rendszere vizsgálatának Markov típusú folyamatmodellje Széchenyi Isván Egyeem Járműpark üzemeleési rendszere vizsgálaának Markov ípusú folyamamodellje Dr. Zvikli Sándor f. anár Széchenyi Isván Egyeem, Győr Közlekedésudományi konferencia Győr, 2 március 24-25

Részletesebben

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

Neptun kód: KTA60220, KTA60850, TMME0408, KT30725, KT30320, T M3537

Neptun kód: KTA60220, KTA60850, TMME0408, KT30725, KT30320, T M3537 Opcióértékelés/Opcióelmélet kurzusok Neptun kód: KTA60220, KTA60850, TMME0408, KT30725, KT30320, T M3537 2013-14, I. félév tagozat: nappali Oktatók: Gáll József (előadás), jozsef.gall kukac econ.unideb.hu,

Részletesebben

Intraspecifikus verseny

Intraspecifikus verseny Inraspecifikus verseny Források limiálsága evolúciós (finesz) kövekezmény aszimmeria Denziás-függés Park és msai (930-as évek, Chicago) - Tribolium casaneum = denziás-függelen (D-ID) 2 = alulkompenzál

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi

Részletesebben

Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli elõrejelezhetetlensége

Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli elõrejelezhetetlensége Az árfolyamsávok empirikus modelljei 507 Közgazdasági Szemle, XLVI. évf., 1999. június (507 59. o.) DARVAS ZSOLT Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli elõrejelezheelensége

Részletesebben

ö Á ö É É ü ü É É Ő ö É ö Á ó ü É Ó Ö Á ú é ü ö é Ö é ü é é ü ü é é Ü é ö ö Ö ö é Á é é é é é ó é é é é ü é ö ö ö í é ü ú é é é ü ü é é é ü é é ö é ö é é ó ö ü é é é é ó ó ö í ó é ó é é é ó é é é ű ö é

Részletesebben

Á Á É Á Ü ö ű ű ő í ő ö ő í ő ö í É ő í ű ö ő ő í ö ü ő ő ü ő ü í ö ö ü ö ü ő ő ü ü ő ü ö ő ő ő ő íő ö ö ö ü ő ő ő ő í ú ő ő í ü ö ő í ű ü ö ő ő ő ő í ú ö ö ő ö ö ö ö ü ő ő ö ő ő í í ő ö ü ö í ö ö ö ö

Részletesebben

ó Í ó ó Ü ó ő Ú ő É ó É Í ő Ö ő ő ó Íó ó Ú ó É Ö ó ő ő Ú Íő ő ő ő ő ő Ú ő ó ó ő ő ő ő ó ő ő ő ő ő ő Í ő ő ó ő ő ó ő Í ő ó ő ő ő ő ő ó ó ó ő ő ó ő ő ő ő ő ő ó ő ő ő ó ő ő Á ű ő ő ő ő ő ő Í ó ő ő ő ő ó ó

Részletesebben

Á Á Í ó ó ó ö ó Ü ö ú Í ó ö ö ó ú ö ó ö ö Ü ö ú ó ó ó ó ö ü ó ö ö ü Ü ö ö ú ó ó ö ú ö ó ó ó ó ö ó ö ó ö ó ö ű ö ö ö ű ö ö ű ö ö ö ű ö ö ó ö ö ó ó ü ö ö ű ö ö ö ó ö ű ö Ü ö ö ú ó ö ó ü ü ö ü ü ö Í ö ü ö

Részletesebben

ó ő ó ó ö ö ú Á Í ö ó ő ö ú Í ó ü ó ő ö ú ö ó ő ó ő ü ő ű ö ö ü ő ü ó Ó ö ó ó ő ő ő ö Í ó ö ö ö ó ő ö ő Í ü ö ö ö ö ö ö ő ö ö ö ö ú ú ű ö ű ó ó ö ö ő ű ö ú ö ö ö ö ö ó Á ö ö ö ő ő ó ő ő Ö ő ú ó ö ú ú ű

Részletesebben

Ő Ö ö Ö É Á Ü É ó É ó ü É É Ö Ö Á É Ő ú É Á ú Ő Ö Ü Ö Ö ü ó ó ü Ü ű ö ú ó Á í ó ö ö ö ö ó ü í í Á í Ó í ó ü Ö ö ú ó ó ö ü ó ó ö í í ű ö ó í ü í ö í í ű ö ü Ő ü ú Ö ö ó ö ó ö ö ö ü ó ö í ó Ö ö Ő ü Ö Ö ü

Részletesebben

ű í ö ö Á ü ü ö ö ö í í É ú ú ö ö ű í ö ü ö ú ü ű ú ö í í ú ö ú í ö ü í í ö í Á Ó É í ű ö ü ö ü ú ü ö ü ú ű ö ü ű ü í ü ű ü ü ö ű í ü í ö ü í í í í ö í ö ö ö Á ű ú ű ö ö ű í ö ö í ú í í ű í ö ú ö ö í Á

Részletesebben

ú ű ö ö ü ü Í ö ö ö ö É Í É ú ú É ú ú ö É ö Í Ü ú Í ö ö Í ú ö ö ö ö ü ö ö ú ü Ü ö ü Í ö ö ű ö ö Í ű ú ö ö ö ö Í ö ö ű ö ö Í ü Í ü ú Í É ö ö ü ö ö Ü ö ö Í ü Í ö ü Í Í ö Í ö Í ü ö ú Í ú Í ö É ú Í ö ö Í É

Részletesebben

Ő Ö Ü Ö Ö ő ü ó í ü ü ő ü ó Ö ó ő ó ó ő ó ő í ő í ü ő ö ö ö ü í ü ö ö ö ö Ö ő ő Ö ő í ó ő ó ő Ö í ő ő ő ő ü ő ő ö ó ű ö ó ö ú ő ő ó ü ö í ü ö ö ó í ú ő ó ő í ö ö ö í ő ö ő ő ó ü ö ú ü ő ó ó ő ó ő ó í í

Részletesebben

É É É Ó Ö É í Ö ő ü ó ő ó ű Á ű ó ő ó ü ó ő ű ő Ö ü É É É ó É ó ü ű í Ö ü ó ű í ó ő ó ő ü ó ü ő ó É Í ő ő ő Ú ó ő ő ő ó ű ó ő ó ü ő ő ő í ü ő ü ő ó Ü ő ó ő ő ó ő Ú ő ő ó ő í ó ő ü ó Í ő ő ü ő É í ő ü ó

Részletesebben

ő ö é ü ö é Ö é ő ü é í ü é é ő ö é ő ö Á ó ü ö é í é ö é Ö é ő ü ü é í é é ó é é í í é é ő ü í ő Ö í é ő é é ő é ő éü ú ü ö ő í Ú Ú ö É í í ü ó ó ó ü ő ö é í ó ö é í ö é é í ö é ó ű ő ö é ő ű ő í é í

Részletesebben

ú Ö ü ő ő ú ú ű ő í ó ó í ó ú ő ü ú ű ő í ó ó í ó ű í ó ő Í ő ü ú ő ő í ó ú Ö ő Ü ó ő ő É ó ó ó ó ő ő ú ű ő í ó ú ű ő ú ú ő ű ő í ő ó í ű ő ü ú ó ő ő ó ű ő ő í í í í ó ű ú ő Á ó ő Á ú ó ó ő ó í ó ű í í

Részletesebben

ú ő ó ú ö ő ü ú ö ő ó ó ó ü ő í ö í ó ú ő ó ó ó ú ó ú ó ő ő ö ö ő ó ú ó ő ó ő í Á Á ö ö ó ő ú ö ő ú ó í ő ü ü ü í ú ü ü ü ó ú í ü í ó ő ó ő í ú ü ú ó ü ü ö ó ü ó í ü ó ő ö ö í ü ú ó ő ó í ó ő ó í ó ó í

Részletesebben

Á ó ü ő Ö Á ü ó ü ő Í ü Í Ó ü ő ő ó ó ó Í ó ü ó ő ő ó ó ü ú Í ő ő ó Ó ő ó ü ó Á ü ó ő ó Í Á Í ő ó ó ó ő ő Á ó ó ú ő Í ő ű ó Ó ü ó ó ú ó ő ú ü ő ó ó ó ő ó ó Ö ó ó ő ó ő ó ő ü ű ő ó ó ő ú ő ú ü Í ü ő ó ó

Részletesebben

ü ö Ö ü ó ü ó ó ó Á Ő É ö Ö ü ó ü ú ó ó ó ö ó í í ö ú Ó É ö Ö ü ó ü ü ó ó ó ö ó í ü ö Ö ó ü ü ü ó ó ó ö ó ü í í í ó í ú ű ű ü ű ú í ü ö ö í ö ú ü ó ú ú ű í ü ö ö ó ú ó í ü ú ó ü ó ó ű ó í ü ű ü í ű í

Részletesebben

Á Ó Á Ü ő ű Ú ö í ő Ó ú ö Á ú Ű Ó ű Ó í ű ö í ö ő ö ö í ö ö ő É ö Á ű Ó ö Á Ó ö í Á í í ö ű ö ú ö ö ú ö Ú ö ű Ó Ú ö Á í Ó í í Í í í Í ö Ú ö Á ú í Ó ő í ú ö Á ú Á í ú ö Á ú í ö Á ú í Ó ö ű Ó Ú Ú ű ő ö ü

Részletesebben

É ő ő íí í ú í ő Ő ő ü ü ü ü ü Ü Ü ő ő ő ő í ő ő ő í íí í ő ű í Ó Ó Ó í Ö Ö í Á Ö Ü Ö É í Ö í ő Ö Ö Ö Á í Á ő ő ő ő É Í Í ő ú Ú ú Ö í ő Á Ö ő Í Í ő ű í ő ú ü íí í Ö ő ő ő ő Í ő ő ő ő í ő ő ő ő í É É í

Részletesebben

í ö ő í ú ö ö í íí ü Ú Í Á ú ü í ö í ő í ö ő ű Í í ö ü ü ő ő ú í ő í ő ü ü ő Í ő Í í ü ö ö ö ö í ű ő ö ö ö í ü í Ó ö í ő ő í í ő Ó Ú Ő Íő Ő Ó ő ö ő ü ű í í ü ú Ő Í ő ő ő í ü ő É í Ő í ü ü ö ő í ü ö ö ü

Részletesebben

Í ö Í ű ú ö ö ú ö É í í ö Ó ű í ö ö í ö ö ö í í ö í í ö ö í ö ö ö ű í ö ö ö ö ö ö ö ú ö í ö ö í ö ö ö ö ö ú ű ű ú ö ö í ö É í ö ö í ö ö ö ú ű ö ö í ö ú ű ö ö í í ú ö ö í ö í í ö ö ö ú ö ö ö ö Í ö ú ö ú

Részletesebben

ö Ö ö Ö ö ö ö ö ö ö ö Ö ö Ö ö ö ö ö ö ű ö ö ö ö Ö ö Ő Ü ö ö Ö Ö ö ö ö ö ö ö ö ö Ü ö ö ö ű ö ö ö ö ű ö ű ö Ö Ü Ü ö ö ú Ű ÍŐ Ö Ő ÍŐ ö ö ö ö ű ö Ö Ö Ó ö ö Ö ö ö Ö ö ö Ö ö ű ö ö É ö ö Í Á Á Ő ű ö ű ú Ö Ü Á

Részletesebben

í ö Ö Á í ö í í ö í ö ö í í ö ö ö ö í í ö í ö í ö í ü í í ö í í í í í ö ö í í í ú ö í í ö Á Á Á ü ú í ö Á í í í ö í í ü ö ö ö ö í ö í í í ú í í ű ú í í í í ö í ű í ö ö ü ö ű ö ö í í í í í ö ü í ö í ö ű

Részletesebben

ö é Ö é ü ö é ü ö é Ö é ü í ü ü ü é é ü é é Ö ö é é é é ö ü ö ü ö é é ö é é ö é é ö ö é í é ü é é é í é ö é é ö é ö é ü é ü ú é é é é é í é é é é ö ö é é ö ö é é í í é í é ü ö ü Á é ö Á í ö í é ö ü ö é

Részletesebben

ö ú í í í ő ű Ü Ű Í í Ő Á Á Ö Ő Ű Í ö ú í í í ú ő ö ű í í í ö Ó ő í í í ö ú í ö ö ö ö Ü ő ö ö ö ú ű ő ú ű ö ö ú ö ö ő Ü ö ö í í ő ö í í í í í í ö ö í ö ö í í ő í ő ö ő í ú í ö í ö í í ö ű ö ö Ó Ü ö ő ő

Részletesebben

É ö ö Í Í Í Ó Í Í Á Ó Á Ü Ú Í Á Á ű Á Ó Í Í É Á Ó Á Á ö ö Á Í Á Á ö ö ű ö ö Í Í ű Ö ű ö ö ű Í Í Ü ö ö Ó ű Í ö ö Í ö ö Ó ö Ö Í ö ö Ö ö ű ö ö Ó Í ű Ó ö ö ű ö ű Ö Ü Ö ű ű ö ö ö ö ö ö Íö ö Í Ö Ó ű ö ű ö ö

Részletesebben

ü ó Ö ü í ü ü ü ö É ó ó í ó ó ö ó ö ö ö í í ű ü ü ü Í í ü ü ü ö í ó í ó ó í ó í É ü ö í Í É í ö ú í ó í ö ö ó í ö ó ó ó ö ó ö í í ó ó í ó ó Ö í ö ö ó ö ó ú ó ö ó í ó ó í í ü ó í ö ó ó ü ü ó ö ó ú í ó í

Részletesebben

Í ú ó ú ó ú ó ó Á ó ó ö ű ú Á ú ó ó ó Í ó ö ö ö Í ö ó ó ö ó ó ó ö ó ö ö ö ö ó ö ó ö ó ü ó ó ü ó ü ö ö ö ö Ő ó ó Íó ó ó ü ó ű ó ó ű ű ó ö ü ö ú ö ü ű ö ö ö ö ó ú ö ö ö ü Í Í Í Á ó ó ú ü ú Á ü ö Á ó ü ó

Részletesebben

ü Ü ö ö ú Í ó í í ó ó ó ü ó ű ó í ó ó í ö ó ö ú ü ö Í í í ó ó ó ó Í ó ü ű ó í ó ó í ó Í í ó ü ö ú ó ó ó í í ó í í ű í ü ö í ó í ö í ú ó í ú ü ú Í í ü Í í í ó ü ö í ó í ó ü ö ó Í í í ó Í É ó ó ó Í í ö ö

Részletesebben

Előszó. 1. Rendszertechnikai alapfogalmak.

Előszó. 1. Rendszertechnikai alapfogalmak. Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,

Részletesebben

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor OPTIK STTISZTIKUS OPTIK IDŐELI KOHERENCI udpesi Műszki és Gzdságudományi Egyeem omfizik Tnszék, dr. Erdei Gáor Ágzi felkészíés hzi ELI projekel összefüggő képzési és K+F feldokr TÁMOP-4...C-//KONV-0-0005

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

TERMELÉSMENEDZSMENT TERMELÉSMENEDZSMENT. 1. Előadás. A f é l é v t a r t a l m a. 1. Előrejelzés. 2. Kapacitástervezés. 3. Készletgazdálkodás

TERMELÉSMENEDZSMENT TERMELÉSMENEDZSMENT. 1. Előadás. A f é l é v t a r t a l m a. 1. Előrejelzés. 2. Kapacitástervezés. 3. Készletgazdálkodás TERMELÉSMEEZSMET. Előadás TERMELÉSMEEZSMET. Előrejelzés 2. Kapaciáservezés 3. Készlegazdálkodás 4. Termeléservezés 5. Termelési folyama szabályozása 6. Telephely opimális kialakíása A f é l é v a r a l

Részletesebben

ÉLETTARTAM KOCKÁZAT A nyugdíjrendszerre nehezedő egyik teher

ÉLETTARTAM KOCKÁZAT A nyugdíjrendszerre nehezedő egyik teher ÉLETTARTAM KOCKÁZAT A nyudíjrendszerre nehezedő eyik eher Májer Isván - Kovács Erzsébe i.majer@erasmusmc.nl Taralom. Várhaó élearam alakulása 2. A moraliás modellezése a Lee-Carer modell 3. Alkalmazás

Részletesebben

SZAKDOLGOZAT. Variancia derivatívák

SZAKDOLGOZAT. Variancia derivatívák SZAKDOLGOZAT Variancia derivaívák Solymosi Ernő Bizosíási és Pénzügyi Maemaika MSc Témavezeő: Dr. Molnár-Sáska Gábor Morgan Sanley Execuive Direcor Eövös Loránd Tudományegyeem Természeudományi Kar 6 Taralomjegyzék

Részletesebben

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása hagyományos beszállíás JIT-elvû beszállíás az uolsó echnikai mûvele a beszállíás minõségellenõrzés F E L H A S Z N Á L Ó B E S Z Á L L Í T Ó K csomagolás rakározás szállíás árubeérkezés minõségellenõrzés

Részletesebben

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11 ELEKTONIKA (BMEVIMIA7) Az ún. (normál) kaszkád erősíő. A kapcsolás: C B = C c = 3 C T ki + C c = C A ranziszorok soros kapcsolása mia egyforma a mnkaponi áramk (I B - -nak véve, + -re való leoszásával

Részletesebben

Fizika A2E, 11. feladatsor

Fizika A2E, 11. feladatsor Fizika AE, 11. feladasor Vida György József vidagyorgy@gmail.com 1. felada: Állandó, =,1 A er sség áram öl egy a = 5 cm él, d = 4 mm ávolságban lév, négyze alakú lapokból álló síkkondenzáor. a Haározzuk

Részletesebben

Modulzáró ellenőrző kérdések és feladatok (3)

Modulzáró ellenőrző kérdések és feladatok (3) Modulzáró ellenőrző kérdések és feladaok (3) 1. Érelmezze az alábbi, fennarási rendszerekkel és sraégiákkal kapcsolaos fogalmaka (1): Üzemvieli folyama. Meghibásodásig örénő üzemeleés. TMK jellegű fennarás.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek

Részletesebben

Tartalom. Éghajlati rendszer: a légkör és a vele kölcsönhatásban álló 4 geoszféra együttese. Idıjárás vs. éghajlat

Tartalom. Éghajlati rendszer: a légkör és a vele kölcsönhatásban álló 4 geoszféra együttese. Idıjárás vs. éghajlat Az éghajlai modellszimulációk bizonyalanságainak felérképezése a Kárpá-medencére Szabó Péer (szabo.p@me.hu) és Szépszó Gabriella Taralom Alapfogalmak és az éghajlai rendszer Numerikus modellezés Az éghajlai

Részletesebben

Fourier-sorok konvergenciájáról

Fourier-sorok konvergenciájáról Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees

Részletesebben

ÜZEMELTETÉS ELMÉLETE ÜZEMELTETÉS, FENNTARTÁS 1-2 előadás vázlatok

ÜZEMELTETÉS ELMÉLETE ÜZEMELTETÉS, FENNTARTÁS 1-2 előadás vázlatok ÜZEMELTETÉS ELMÉLETE ÜZEMELTETÉS, FENNTARTÁS -2 előadás vázlaok f. anár Széchenyi Isván Egyeem, Győr E-mail: zvikli@sze.hu Web: hp://rs.sze.hu/~zvikli A anárgy okaásának célja hogy az üzemeleés és fennarás,

Részletesebben

DIPLOMADOLGOZAT Varga Zoltán 2012

DIPLOMADOLGOZAT Varga Zoltán 2012 DIPLOMADOLGOZAT Varga Zolán 2012 Szen Isván Egyeem Gazdaság- és Társadalomudományi Kar Markeing Inéze Keresle-előrejelzés a vállalai logiszikában Belső konzulens neve, beoszása: Dr. Komáromi Nándor, egyeemi

Részletesebben

Instrumentális változók módszerének alkalmazásai Mikroökonometria, 3. hét Bíró Anikó Kereslet becslése: folytonos választás modell

Instrumentális változók módszerének alkalmazásai Mikroökonometria, 3. hét Bíró Anikó Kereslet becslése: folytonos választás modell Insrumenális válozók módszerének alkalmazásai Mikroökonomeria, 3. hé Bíró Anikó Keresle becslése: folyonos válaszás modell Folyonos vs. diszkré válaszás: elérő modellek Felevés: homogén jószág Közelíés:

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Távközlı hálózatok és szolgáltatások

Távközlı hálózatok és szolgáltatások Távközlı hálózaok és szolgálaások Forgalmi köveelmények, hálózaméreezés Csopaki Gyula Némeh Kriszián BME TMIT 22. nov. 2. A árgy felépíése. Bevezeés 2. I hálózaok elérése ávközlı és kábel-tv hálózaokon

Részletesebben

Adatbányászat: Rendellenesség keresés. 10. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba

Adatbányászat: Rendellenesség keresés. 10. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba Adabányásza: Rendellenesség keresés 10. fejeze Tan, Seinbach, Kumar Bevezeés az adabányászaba előadás-fóliák fordíoa Ispány Máron Logók és ámogaás A ananyag a TÁMOP-4.1.2-08/1/A-2009-0046 számú Kele-magyarországi

Részletesebben

Néhány betegség statisztikai adatainak idősori elemzése. Doktori (PhD) értekezés. Fazekasné Kis Mária

Néhány betegség statisztikai adatainak idősori elemzése. Doktori (PhD) értekezés. Fazekasné Kis Mária Néhány beegség saiszikai adaainak idősori elemzése Dokori (PhD) érekezés Fazekasné Kis Mária Debreceni Egyeem Debrecen, 004 Ezen érekezés a Debreceni Egyeem TTK Maemaika- és Számíásudomány Dokori Iskola

Részletesebben

A termelési, szolgáltatási igény előrejelzése

A termelési, szolgáltatási igény előrejelzése A ermelés, szolgálaás gény előrejelzése Termelés- és szolgálaásmenedzsmen r. alló oém egyeem docens Menedzsmen és Vállalagazdaságan Tanszék Termelés- és szolgálaásmenedzsmen Részdős üzle meserszakok r.

Részletesebben

Valószínűségi modellellenőrzés Markov döntési folyamatokkal

Valószínűségi modellellenőrzés Markov döntési folyamatokkal Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek

Részletesebben

Túlgerjesztés elleni védelmi funkció

Túlgerjesztés elleni védelmi funkció Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Kockázati folyamatok

Kockázati folyamatok Kockázai folyamaok Sz cs Gábor Szegedi Tudományegyeem Bolyai Inéze, Szochaszika Tanszék Uolsó frissíés: 219. szepember 17. Taralomjegyzék 1. Az exponenciális eloszlás 2 2. A Wald-azonosság 4 3. Felújíási

Részletesebben

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Konvergencia és növekedési ütem

Konvergencia és növekedési ütem Közgazdasági Szemle, LVI. évf., 2009. január (19 45. o.) DEDÁK ISTVÁN DOMBI ÁKOS Konvergencia és növekedési üem A szerzõk anulmányukban empirikusan vizsgálják a közép-kele-európai országok feléeles konvergenciájának

Részletesebben

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS Zsembery Levene VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS PÉNZÜGYI INTÉZET BEFEKTETÉSEK TANSZÉK TÉMAVEZETŐ: DR. SZÁZ JÁNOS Zsembery Levene BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI ÉS ÁLLAMIGAZGATÁSI EGYETEM

Részletesebben

Elorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció)

Elorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció) lorjlzés (prdikció vagy xrapoláció) Adapólás (inrpoláció) kompozíciós vagy drminiszikus modllk. A rndfüggvény A ciklikus haás A szzonális haás A zaj (hibaag) 3-3 4 5 6 7 8 9 Az idõsor 3 - - - 3 4 5 6 7

Részletesebben

A közgazdasági Nobel-díjat a svéd jegybank támogatásával 1969 óta ítélik oda. 1 Az

A közgazdasági Nobel-díjat a svéd jegybank támogatásával 1969 óta ítélik oda. 1 Az ROBERT F. ENGLE ÉS CLIVE W. J. GRANGER, A 003. ÉVI KÖZGAZDASÁGI NOBEL-DÍJASOK DARVAS ZSOLT A Svéd Tudományos Akadémia a 003. évi Nobel-díjak odaíélésé ké fő alkoással indokola: Rober F. Engle eseén az

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Hcserélk alapegyenlete (írta : Ortutay Miklós)

Hcserélk alapegyenlete (írta : Ortutay Miklós) Hcserél lpegyenlee (ír : Oruy Milós). Hávieli ényez. Közepes hmérséle ülönség (egyenárm) 3. Háviel csoldlon éjárú, öpenyoldlon egyjárú hcseréél. Hávieli ényez Állndósul állpon cs üls és els felüleén hádássl,

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

Budapesti Corvinus Egyetem. Tudományos Diákköri Konferencia. A CDD-call opció gyakorlati alkalmazása

Budapesti Corvinus Egyetem. Tudományos Diákköri Konferencia. A CDD-call opció gyakorlati alkalmazása Budapesi Corvinus Egyee Tudoányos Diákköri Konferencia A CDD-call opció gyakorlai alkalazása Bella Klaudia Taralojegyzék 1. BEVEZETÉS 3 2. AZ IDŐJÁRÁSI DERIVATÍVÁK GYAKORLATI JELENTŐSÉGE 5 2.1. Konrakusok

Részletesebben

1 Határidős szerződések és opciók. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 2012 1

1 Határidős szerződések és opciók. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 2012 1 1 Határidős szerződések és opciók 1 Mi egy származékos pénzügyi termék (derivative)? Értéke egy másik eszköz, vagyontárgy (asset) feltételezett jövőbeli értékétől függ. Pl.: határidős szerződés, opciók,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

STATISZTIKAI IDŐSORELEMZÉS A TŐZSDÉN. Doktori (PhD) értekezés

STATISZTIKAI IDŐSORELEMZÉS A TŐZSDÉN. Doktori (PhD) értekezés NYUGAT-MAGYARORSZÁGI EGYETEM Széchenyi Isván Gazdálkodás- és Szervezésudományok Dokori Iskola STATISZTIKAI IDŐSORELEMZÉS A TŐZSDÉN Dokori (PhD) érekezés Készíee: Hoschek Mónika A kiadvány a TÁMOP 4.. B-/--8

Részletesebben

Időbeli előrejelzések

Időbeli előrejelzések POLGÁRNÉ HOCHEK MÓNIKA Időbeli előrejelzések A saiszikában az idősor elemzés különböző módszereke alkalmaz az elmúl időszak endenciáinak, összefüggéseinek a felárására és egben ámpono núj a jövő várhaó

Részletesebben

MTA DOKTORI ÉRTEKEZÉS TÉZISEI

MTA DOKTORI ÉRTEKEZÉS TÉZISEI Powered by TCPDF (www.cpdf.org) MTA DOKTORI ÉRTEKEZÉS TÉZISEI A MODELLEZÉS SAJÁTOSSÁGAI IDŐSORI ANOMÁLIÁK ESETÉN RAPPAI GÁBOR PÉCS, 2016 Mindennek nyilván okozója az elmúl időszakban végbemen draszikus

Részletesebben

Elméleti közgazdaságtan I. A korlátozott piacok elmélete (folytatás) Az oligopólista piaci szerkezet formái. Alapfogalmak és Mikroökonómia

Elméleti közgazdaságtan I. A korlátozott piacok elmélete (folytatás) Az oligopólista piaci szerkezet formái. Alapfogalmak és Mikroökonómia Elmélei közgazdaságan I. Alafogalmak és Mikroökonómia A korláozo iacok elmélee (folyaás) Az oligoólisa iaci szerkeze formái Homogén ermék ökélees összejászás Az oligool vállalaok vagy megegyeznek az árban

Részletesebben

REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja

REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja REKCIÓKINETIK LPFOGLMK Reakiókineika élja. Reakiók idbeli lefuásának, idbeliségének vizsgálaa: miér gyors egy reakió, és miér lassú egy másik?. Hogyan függ a reakiók sebessége a hmérséklel? 3. Reakiók

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Gingl Zoltán, Szeged, :41 Elektronika - Váltófeszültségű házatok

Gingl Zoltán, Szeged, :41 Elektronika - Váltófeszültségű házatok Gngl Zolán, Szeged, 6. 6.. 3. 7:4 Elerona - Válófeszülségű házao 6.. 3. 7:4 Elerona - Válófeszülségű házao z Ohm örvény, Krchhoff örvénye érvényese z alarészeen eső feszülség és áram pllanany érée nem

Részletesebben

Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom

Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom Paraméere eljáráok, normaliávizgála, -elozlá, -próbák Saizika I.,. alkalom Paraméere eljáráok Becülik a populáció egy paraméeré Alkalmazáuknak zámo feléele van (paraméerek é a válozó elozláa Cak normál

Részletesebben

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.

Részletesebben

A sztochasztikus idősorelemzés alapjai

A sztochasztikus idősorelemzés alapjai A szochaszikus idősorelemzés alapjai Ferenci Tamás BCE, Saiszika Tanszék amas.ferenci@medsa.hu 2011. december 19. Taralomjegyzék 1. Az idősorelemzés fogalma, megközelíései 2 1.1. Az idősor fogalma...................................

Részletesebben

2003. MÁSODIK ÉVFOLYAM 2. SZÁM 41

2003. MÁSODIK ÉVFOLYAM 2. SZÁM 41 003. MÁSODIK ÉVFOLYAM. SZÁM 41 4 HITELINTÉZETI SZEMLE ALEXANDER F. BOOGERT GAÁL SZABOLCS ELEKTROMOS ENERGIA OPCIÓK ÁRAZÁSA Cikkünk célja keõs: egyrész az elekromos energia piacok (különös ekineel a holland

Részletesebben

Szempontok a járműkarbantartási rendszerek felülvizsgálatához

Szempontok a járműkarbantartási rendszerek felülvizsgálatához A VMMSzK evékenységének bemuaása 2013. február 7. Szemponok a járműkarbanarási rendszerek felülvizsgálaához Malainszky Sándor MÁV Zr. Vasúi Mérnöki és Mérésügyi Szolgálaó Közpon Magyar Államvasuak ZR.

Részletesebben

Bevezetés 2. Az igény összetevői 3. Konstans jellegű igény előrejelzése 5. Lineáris trenddel rendelkező igény előrejelzése 14

Bevezetés 2. Az igény összetevői 3. Konstans jellegű igény előrejelzése 5. Lineáris trenddel rendelkező igény előrejelzése 14 Termelésmenedzsmen lőrejelzés módszerek Bevezeés Az gény összeevő 3 Konsans jellegű gény előrejelzése 5 lőrejelzés mozgó álaggal 6 Mozgó álaggal előre jelze gény 6 Gyakorló felada 8 Megoldás 9 lőrejelzés

Részletesebben

Gingl Zoltán, Szeged, szept. 1

Gingl Zoltán, Szeged, szept. 1 Gngl Zolán, Szeged, 8. 8 szep. 8 szep. z Ohm örvény, Krchhoff örvénye érvényese z alarészeen eső feszülség és áram pllanany érée nem mndg arányos apcsola ovábbra s lneárs 8 szep. 3 d di L d I I Feszülség

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

STATISZTIKA 2. KÉPLETGYŰJTEMÉNY. idősorok statisztikai becslések hipotézisvizsgálat regressziószámítás

STATISZTIKA 2. KÉPLETGYŰJTEMÉNY. idősorok statisztikai becslések hipotézisvizsgálat regressziószámítás SAISZIKA. KÉPLEGŰJEMÉN dőoro aza beclée hpoézvzgála regrezózámíá www.maeg.hu SAISZIKA. KÉPLEGŰJEMÉN fo@maeg.hu el:675447 6. IDŐSOROK 6..Állapodőor é aramdőor ÁLLAPOIDŐSOR ARAMIDŐSOR Válozá mérée d d d

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

( r) t. Feladatok 1. Egy betét névleges kamatlába évi 20%, melyhez negyedévenkénti kamatjóváírás tartozik. Mekkora hozamot jelent ez éves szinten?

( r) t. Feladatok 1. Egy betét névleges kamatlába évi 20%, melyhez negyedévenkénti kamatjóváírás tartozik. Mekkora hozamot jelent ez éves szinten? Feladaok 1. Egy beé névleges kamalába évi 20%, melyhez negyedévenkéni kamajóváírás arozik. Mekkora hozamo jelen ez éves szinen? 21,5% a) A névleges kamalába időarányosan szokák számíani, ehá úgy veszik,

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia. 2011. június

OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia. 2011. június OKTATÁSGAZDASÁGTAN Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi

Részletesebben