Standardizálás, transzformációk

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Standardizálás, transzformációk"

Átírás

1 Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát, így az átlag 0 lesz. (Spektrál felbontás esetén tulajdonképpen a centrált adatok kovariancia mátrixával dolgozunk.) Standardizálás: korrelációs mátrix standardizált adatok kovariancia mátrixa. Relatív értékek (arányok): legnagyobb értékkel osztjuk az összeset. Megfigyelési egységeket is lehet standardizálni. Abundancia adatoknál fontos, ha a megfigyelési egységek mérete különböző. (arányok) 0,-é is lehet konvertálni. Sokszor hasznos lehet különböző módokon standardizálni és összehasonlítani az eredményeket: eredeti standardizált 0, eredeti: legnagyobb abundanciájú mit befolyásol 0, : prezencia, abszenciától mi függ. Asszociációs mértékek implicit módon standardizáltak.

2 Az, hogy a kovariancia vagy korrelációs mátrixot használjuk attól függ, hogy a varianciák különbsége fontos-e biológiai szempontból.

3 Hiányzó adatok MCAR-missing completely at random: független mind a megfigyelt adatoktól, mind a többi hiányzótól. Random részhalmaza az adatoknak. MAR lehet, hogy függ a csoporttól, hogy hiányzik-e. Mit tegyünk a hiányzó adatokkal?. Objektum törlése (deletion): legjobb megoldás, ha kevesebb, mint 5% hiányzik és MCAR Információ vesztés (complete.obs) esetén. Ha az analízis páronkénti (pairwise) asszociációkon alapul (kovariancia, korreláció), akkor paiwise.complete.obs. Csak akkor töröljük, ha éppen azokkal a változókkal dolgozunk, amelyiknél hiányzik a megfigyelés. Imputáció Helyettesítés becsléssel. Módszerek:. átlaggal (változó értékeiből számolt\na) A varianciát alulbecsüli.. Regressziós modellel. Más változókkal becsüljük, pl. a legjobban korrelált változót vagy változókat választjuk prediktornak.) 3. Hot-deck: Hasonló objektum értékével helyettesítjük. Problémák: függetlenség sérül; varianciát alulbecsli.

4 Maximum likelihood (ML) és EM becslés ML : paraméter becslés a megfigyelt, nem teljes adatokból, majd a modellből becsüljük a hiányzó adatokat. Felhasználja a megfigyelt adatok eloszlását és a hiányzó adatok mintázatát. Iteratív imputáció + ML : Expectation Maximization ML paraméter becslés hiányzó adatok ML paraméterbecslés hiányzó adatok..., amíg nem konvergál. ML és EM feltétele a MAR.

5 Adatredukció (Ordináció) Főkomponens analízis (PCA) Felfedező adatelemzésben használatos. Adathalmaz kényelmesebb és informatívabb ábrázolása, dimenziószám csökkentése, fontos változók beazonosítása. Cél: Van p változónk:,,..., p és keressük ezeknek olyan,,..., p kombinációit (főkomponensek), amelyek nem korreláltak. A korrelálatlanság azt jelenti, hogy az új változók az adatok különböző dimenzióit mérik. ( ) ( )... ( p ) σ σ σ Remény: a legtöbb főkomponens szórása olyan kicsi, hogy elhanyagolhatók, így az adatokban meglévő változatosság néhány főkomponenssel jól leírható. Ha az eredeti változók egyáltalán nem korreláltak, az analízis semmit nem csinál. Legjobb eredmény: nagyon korrelált változók esetén. Adatok: Egyed... p x x... x p x x... x p M n x n x n x np

6 A főkomponensek: i = ai + ai aip p a + a a = i i ip és σ( ) σ( ) σ( p ).... A főkomponensek varianciái az adatok kovariancia mátrixának sajátértékei (λ i ), az együtthatói pedig a megfelelő sajátértékhez tartozó sajátvektor együtthatói. Ha a kovarianciamátrix: c c... c p c c... c p C =, M M M cp cp cpp akkor λ + λ λp = c + c cpp = σ ( ) + σ ( ) σ ( p ) Célszerű az adatokat standardizálni az analízis előtt. Ekkor a kovariancia mátrix megegyezik korrelációs mátrixszal. Feltételek: Normalitás nem feltétel, de a nagyon ferde eloszlás ronthatja az eredményt. A normalitás csak tesztek esetén szükséges. Linearitás. Ne legyenek outlierek.

7 Azt mutatja meg, hogy a főkomponensek mennyit magyaráznak az egyes változókból. A korrelációs/kovariancia mátrix s.é.-ei, és a megfelelő variancia hányadok.

8 A s.é.-kek a komponens sorszám függvényében.

9 > pca=princomp(vereb[,:6],cor=t) > summary(pca,loadings=true) Importance of components: Comp. Comp. Comp.3 Standard deviation Proportion of Variance Cumulative Proportion Comp.4 Comp.5 Standard deviation Proportion of Variance Cumulative Proportion Loadings: Comp. Comp. Comp.3 Comp.4 Comp >par(pty="s") >plot(pca$scores[,],pca$scores[,], >ylim=range(pca$scores[,]), >xlab="pc",ylab="pc",type="n",lwd=) >text(pca$scores[,],pca$scores[,], >labels=row.names(vereb),cex=0.7,lwd=)

10 > pca$scores Ezekkel a szkórokkal tudjuk kiszámolni a komponensek értékeit az egyes esetekre. (Ezek az a ij együtthatók.) >biplot(pca) > cor(data.frame(pca$scores[,],vereb[,:6]))[,] pca.scores... pca.scores

11 Faktoranalízis Nagyszámú változó korrelációinak elemzése. Változók faktorokba csoportosítása. Az egy faktorba csoportosított változók korreláltsága nagyobb egymással, mint a csoporton kívüliekkel. A faktorok interpretálása (látens változók) a változók alapján. Sok változó összesítése néhány faktorba. = a F + a F a F + i i i im m e i aij - faktorsúlyok (loadings), i -k a standardizált változók. F j : korrelálatlan közös faktorok 0 várható értékkel és szórással. e i - egyedi faktor, várható értéke 0, F j -kel nem korrelált. σ = ( i ) = = aiσ ( F ) aimσ ( Fm ) + σ ( ei ) a a + σ ( e ) i im i = a i aim - kommunalitás, σ ( ) - egyediség. e i

12 i és j m l a il a jl - az és korrelációs együtthatója. (Csak akkor lehet két változó nagyon korrelált, ha nagy súllyal szereplenek ugyanabban a faktorban.) Számítás menete:. Korrelációs vagy kovarinacia mátrix kiszámítása.. Faktorsúlyok becslése (faktor extrakció). Pl. főkomponens analízisből megtartjuk az -nél nagyobb sajátértékű főkomponenseket (Főkomponens faktoranalízis). Főkomponensek: = b + b b M p = b = b p + b + b p p b p b Mátrix egyenlet formában: Így: = b + b b pp =B B - = B T = Mivel a B mártix ortonormált. M p = b = b p + b + b p b p p b pp p p p p p p

13 Mivel Faktor analízis esetén m < p számú faktorral dolgozunk, ezért: M p = b = b = b p + b + b + b p b b m m b mp m m + e + e m + e p Mostmár csak át kell skálázni az eredeti főkomponenseket úgy, hogy legyen a varianciájuk. Ehhez a i ket osztani kell a szórásukkal, ami éppen λ i. Így: F = i i / λi. 3. Faktor rotációt végzünk azért, hogy a faktorok interpretálhatóbbak legyenek. A súlyok minden faktor esetén vagy nagyok vagy nagyon kicsik legyenek. 4. Faktor értékek kiszámítása a mintaegyedekre. További analízisek. Rotációs módszerek: Ortogonális: Varimax, Quartimax, Equamax Varimax: úgy forgat, hogy az együtthatók vagy -hez vagy 0-hoz közeliek legyenek. Quartimax: minimalizálja a változók magyarázásához szükséges faktorok számát Equamax: Az előző kettő kompromisszuma. A rotált faktorok nem korreláltak.

14 Ferde (Oblique): Direct Oblimin, Promax Nagyobb sajátértékeket eredményeznek. A Promax nagyon nagy táblázatok esetén használatos. Korrelált faktorok. Maximum-likelihood faktor analízis Leginkább elfogadott módszer. Szükséges faktorszám tesztelhető. Fakt > fa<-factanal(vereb[,:6],factors=,scores="regression",correlation=t) > fa Call: factanal(x = vereb[, :6], factors =, scores = "regression", correlation = T) Uniquenesses: Loadings: Factor Factor Factor Factor SS loadings Proportion Var Cumulative Var Test of the hypothesis that factors are sufficient. The chi square statistic is 0.7 on degree of freedom. The p-value is 0.603

15 Ha nem szign., akkor jó. > fa<-factanal(vereb[,:6],factors=,rotation="promax") > fa Call: factanal(x = vereb[, :6], factors =, rotation = "promax") Uniquenesses: Loadings: Factor Factor Factor Factor SS loadings Proportion Var Cumulative Var Test of the hypothesis that factors are sufficient. The chi square statistic is 0.7 on degree of freedom. The p-value is > par(pty="s") > plot(fa$scores[,],fa$scores[,], + ylim=range(fa$scores[,]), + xlab="fa",ylab="fa",type="n",lwd=) > text(fa$scores[,],fa$scores[,], + labels=row.names(vereb),cex=0.7,lwd=)

16

17 Klaszter analízis n egyedből álló minta, amelynek minden egyedén p számú változó értékét mérjük. Csoportosítási séma, amely a hasonló objektumokat egy csoportba sorolja. A csoportok száma nem ismert (általában). Algoritmusok két típusa: Hierarhikus technikák. Dendrogramot produkálnak.. Egyedek egymástól való távolságának kiszámítása.. Csoportok létrehozása vagy összevonással, vagy felosztással. Az összevonás esetén először minden objektumot külön csoportba sorolunk és azután a legközelebbieket fokozatosan egyesítjük. A felosztó módszerek esetén, először egy csoportba soroljuk az összes objektumot, majd először ketté osztjuk, majd a ketté osztottakat is tovább osztjuk egészen addíg, amíg minden egyed külön csoportot alkot. Másik típusa esetén az egyedek be is kerülhetnek egy csoportba és ki is kerülhetnek onnan (k-means clustering). Előre meg kell határozni, hogy hány csoportunk legyen.

18 Összevonási technikák (linkage methods):

19 Egyszerű lánc módszer (nearest neighbor): Két csoport távolságát az egymáshoz legközelebb eső, de nem egy csoportba tartozó elemeik távolságaként határozzuk meg. Ha a csoportok közt nincs éles elválás, akkor nem működik jól, viszont ha élesen elhatárolódnak, akkor nagyon effektív. Teljes lánc módszer (furthest neighbor): Két csoport távolságát legtávolabbi elemeik távolsága adja meg. Jól működik nem elhatárolódó, de erős kohéziójú csoportok esetén. Csoportátlag módszer (between-groups linkage): Az előző két módszer közötti átmenet. A két csoport távolsága elemeik páronkénti távolságainak átlaga osztva a két csoport elemszámával. Jól működik akkor is, ha azt várjuk, hogy a csoportok elemszáma nagyon különböző lesz.

20 Egyszerű átlag módszer (within-groups linkage): Ugyanaz, mint az előző, de nem veszi figyelembe az csoportok elemszámát. Centoid módszer (centroid clustering): Két csoport távolságát a súlypontjaik távolsága adja meg. Medián módszer (median clustering): Ugyanaz, mint az előző, de figyelembe veszi a csoportok elemszámát is. Ha várhatóan nagyok az elemszámokban a különbségek, akkor az előzőhöz képest ezt célszerű használni. Ward módszer (Ward s method): A csoportokon belüli varianciát minimalizálja. Nagyon effektív, de kis elemszámú csoportok létrehozására hajlamos módszer.

21 pl: Az emlősállatoknak négyféle foguk van: metszőfog, szemfog, kiszápfog és zápfog. Az adattáblázat 3 állatfaj egyik oldali állkapcsában alul illetve felül található különböző fogainak számát tartalmazza.

22 Modell alapú klaszterezés (Model based clustering) A populáció valahány részpopulációból (= klaszterek) áll. Csilpcsalp füzikék szárnyhossz eloszlása

23 Paraméterek $pro [] $mean $variance $variance$modelname [] "V" $variance$d [] $variance$g [] $variance$sigmasq [] $variance$scale []

24

Standardizálás, transzformációk

Standardizálás, transzformációk Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,

Részletesebben

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3.

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3. . El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása -1 Áttekintés - Gyakoriság eloszlások -3 Az adatok vizualizációja -4 A centrum mérıszámai -5 A szórás mérıszámai -6 A relatív elhelyezkedés

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Faktoranalízis előadás. Kvantitatív statisztikai módszerek

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Faktoranalízis előadás. Kvantitatív statisztikai módszerek Faktoranalízis 6.-7. előadás Kvantitatív statisztikai módszerek Faktoranalízis Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim

Részletesebben

Szepesvári Csaba. 2005 ápr. 11

Szepesvári Csaba. 2005 ápr. 11 Gépi tanulás III. Szepesvári Csaba MTA SZTAKI 2005 ápr. 11 Szepesvári Csaba (SZTAKI) Gépi tanulás III. 2005 ápr. 11 1 / 37 1 Döntési fák 2 Felügyelet nélküli tanulás Klaszter-anaĺızis EM algoritmus Gauss

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK KVANTITATÍV MÓDSZEREK Dr. Kövesi János Tóth Zsuzsanna Eszter 6 Tartalomjegyzék Kvantitatív módszerek. Valószínűségszámítási tételek. eltételes valószínűség. Események függetlensége.... 3.. eltételes valószínűség...

Részletesebben

statisztikai menürendszere Dr. Vargha András 2007

statisztikai menürendszere Dr. Vargha András 2007 A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre

Részletesebben

AZ ÁLTALÁNOS ISKOLÁSOK IDEGENNYELV-TANULÁSI ATTITŰDJEI ÉS MOTIVÁCIÓJA

AZ ÁLTALÁNOS ISKOLÁSOK IDEGENNYELV-TANULÁSI ATTITŰDJEI ÉS MOTIVÁCIÓJA MAGYAR PEDAGÓGIA 0. évf.. szám 5. (00) AZ ÁLTALÁNOS ISKOLÁSOK IDEGENNYELV-TANULÁSI ATTITŰDJEI ÉS MOTIVÁCIÓJA Csizér Kata és Dörnyei Zoltán Eötvös Loránd Tudományegyetem és Nottigham University Az általános

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,

Részletesebben

Statisztika, próbák Mérési hiba

Statisztika, próbák Mérési hiba Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:

Részletesebben

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

EEG mérések hardveres és szoftveres validációja

EEG mérések hardveres és szoftveres validációja EEG mérések hardveres és szoftveres validációja Kovács Annamária EAR1LJ Szoftver verifikáció és validáció 2015-12-10 Az elektroenkefalográfiáról (EEG) Az EEG olyan pszichofiziológiai mérési eljárás, mely

Részletesebben

Faktoranalízis az SPSS-ben

Faktoranalízis az SPSS-ben Faktoranalízis az SPSS-ben Kvantitatív statisztikai módszerek Petrovics Petra Feladat Megnyitás: faktor.sav Fogyasztók materialista vonásai (Richins-skála) Forrás: Sajtos-Mitev, 250.oldal Faktoranalízis

Részletesebben

Reiczigel Jenő, 2006 1

Reiczigel Jenő, 2006 1 Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy

Részletesebben

Faktoranalízis az SPSS-ben

Faktoranalízis az SPSS-ben Faktoranalízis az SPSS-ben = Adatredukciós módszer Petrovics Petra Doktorandusz Feladat Megnyitás: faktoradat_msc.sav Forrás: Sajtos-Mitev 250.oldal Fogyasztók materialista vonásai (Richins-skála) Faktoranalízis

Részletesebben

Csicsman József-Sipos Szabó Eszter csicsman@calculus.hu, siposeszti@gmail.com. Matematikai alapok az adatbányászati szoftverek első megismeréséhez

Csicsman József-Sipos Szabó Eszter csicsman@calculus.hu, siposeszti@gmail.com. Matematikai alapok az adatbányászati szoftverek első megismeréséhez Csicsman József-Sipos Szabó Eszter csicsman@calculus.hu, siposeszti@gmail.com Matematikai alapok az adatbányászati szoftverek első megismeréséhez 1.1 A statisztikai sokaság A statisztika a valóság számszerű

Részletesebben

Klaszterezés, 2. rész

Klaszterezés, 2. rész Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket

Részletesebben

A SERVQUAL (szolgáltatás-minőség) modell alkalmazhatóságának elemzése sokváltozós adatelemzési módszerekkel. Becser Norbert

A SERVQUAL (szolgáltatás-minőség) modell alkalmazhatóságának elemzése sokváltozós adatelemzési módszerekkel. Becser Norbert Műhelytanulmányok Vállalatgazdaságtan Intézet 1053 Budapest, Veres Pálné u. 36., 1828 Budapest, Pf. 489 (+36 1) 482-5901, fax: 482-5844, www.uni-corvinus.hu/vallgazd Vállalatgazdaságtan Intézet A SERVQUAL

Részletesebben

A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel

A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel Kovács Máté PhD hallgató (komoaek.pte) Pécsi Tudományegyetem Közgazdaságtudományi

Részletesebben

SZTOCHASZTIKUS MÓDSZEREK

SZTOCHASZTIKUS MÓDSZEREK EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR BUDAPESTI CORVINUS EGYETEM KÖZGAZDASÁGTUDOMÁNYI KAR SZTOCHASZTIKUS MÓDSZEREK A NEM-ÉLETBIZTOSÍTÁSOK TARTALÉKOLÁSÁBAN MSc szakdolgozat Írta: Orbán Barbara

Részletesebben

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41 Minden az adatról Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Minden az adatról 1 / 41 Adat: alapfogalmak Adathalmaz elvileg bármi, ami információt

Részletesebben

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba Kecskeméti Fıiskola GAMF Kar Informatika Tanszék Johanyák Zsolt Csaba 003 Tartalomjegyzék. Bevezetés.... A megbízhatóság fogalmai..... A termék idıtıl függı képességei...... Használhatóság /Üzemkészség/

Részletesebben

Define Measure Analyze Improve Control. F(x), M(ξ),

Define Measure Analyze Improve Control. F(x), M(ξ), 5.5.5. Six Sigma Minőségmenedzsment Statisztikai folyamatszabályozási (SPC) rendszer Erdei János Egy fegyelmezett és erősen mennyiségi szemléletű folyamatfejlesztési megközelítés, amely a gyártási, szolgáltatási

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

4. előadás. Vektorok

4. előadás. Vektorok 4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

Illeszkedésvizsgálat χ 2 -próbával

Illeszkedésvizsgálat χ 2 -próbával Illeszkedésvizsgálat χ -próbával Szalay Krisztina 1. feladat (tiszta illeszkedésvizsgálat) Négy pénzérmét 0-szor feldobunk. A kapott gyakoriságok: fejek száma 0 1 3 4 Összes gyakoriság 5 35 67 41 1 0 Elfogadható-e

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 6. MA3-6 modul A statisztika alapfogalmai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.

Részletesebben

Az adatmátrix, az adatok átalakítása

Az adatmátrix, az adatok átalakítása 2 Az adatmátrix, az adatok átalakítása (Az elsõ bátortalan lépések... de még sok minden rejtve marad) A mintavételezés során, mint láttuk, a mintavételi egységeket változók segítségével írjuk le. A kapott

Részletesebben

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Többváltozós roblémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests Nonparametric Tests Petra Petrovics Hypothesis Testing Parametric Tests Mean of a population Population proportion Population Standard Deviation Nonparametric Tests Test for Independence Analysis of Variance

Részletesebben

Regressziószámítás alkalmazása kistérségi adatokon

Regressziószámítás alkalmazása kistérségi adatokon Lengyel I. Lukovics M. (szerk.) 2008: Kérdıjelek a régiók gazdasági fejlıdésében. JATEPress, Szeged, 264-287. o. Regressziószámítás alkalmazása kistérségi adatokon Szakálné Kanó Izabella 1 A lokális térségek

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

GAZDASÁGI STATISZTIKA

GAZDASÁGI STATISZTIKA GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Fkt Faktoranalízis líi Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására szolgál. A kiinduló változók számát úgynevezett faktorváltozókba

Részletesebben

ekultúra Csepeli György Prazsák Gergı 1. Bevezetés

ekultúra Csepeli György Prazsák Gergı 1. Bevezetés ekultúra Csepeli György Prazsák Gergı 1. Bevezetés Az internet megjelenése óta a legváltozatosabb elképzeléseket és érzéseket keltette fel mind a kívülállókban, mind azokban, akiknek ez az új technológia,

Részletesebben

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics. Nonparametric Tests Petra Petrovics PhD Student Hypothesis Testing Parametric Tests Mean o a population Population proportion Population Standard Deviation Nonparametric Tests Test or Independence Analysis

Részletesebben

Feladatok és megoldások a 6. heti eladshoz

Feladatok és megoldások a 6. heti eladshoz Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású

Részletesebben

Populációbecslések és monitoring 2. előadás tananyaga

Populációbecslések és monitoring 2. előadás tananyaga Populációbecslések és monitoring 2. előadás tananyaga 1. A becslések szerepe az ökológiában. (Demeter és Kovács 1991) A szabadon élő állatok egyedszámának kérdése csak bizonyos esetekben merül fel. De

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

1. melléklet A ciklodextrin hatásának jellemzése mikroorganizmusok szaporodására Murányi Attila

1. melléklet A ciklodextrin hatásának jellemzése mikroorganizmusok szaporodására Murányi Attila 1. melléklet A ciklodextrin hatásának jellemzése mikroorganizmusok szaporodására Murányi Attila Bevezetés... 1 A kutatás hipotézise... 2 A kutatás célja... 2 Az alkalmazott mikroorganizmusok... 3 Kísérleti

Részletesebben

AutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február

AutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február AutoN cr Automatikus Kihajlási Hossz számítás AxisVM-ben elméleti háttér és szemléltető példák 2016. február Tartalomjegyzék 1 Bevezető... 3 2 Célkitűzések és alkalmazási korlátok... 4 3 Módszertan...

Részletesebben

A rádió* I. Elektromos rezgések és hullámok.

A rádió* I. Elektromos rezgések és hullámok. A rádió* I. Elektromos rezgések és hullámok. A legtöbb test dörzsölés, nyomás következtében elektromos töltést nyer. E töltéstől függ a test elektromos feszültsége, akárcsak a hőtartalomtól a hőmérséklete;

Részletesebben

BIOMETRIA_ANOVA_2 1 1

BIOMETRIA_ANOVA_2 1 1 Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

KISTERV2_ANOVA_

KISTERV2_ANOVA_ Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

8. A fehérjék térszerkezetének jóslása

8. A fehérjék térszerkezetének jóslása 8. A fehérjék térszerkezetének jóslása A probléma bonyolultsága Általánosságban: találjuk meg egy tetszõleges szekvencia azon konformációját, amely a szabadentalpia globális minimumát adja. Egyszerû modellekben

Részletesebben

TANULÁSI STÍLUS KÉRDŐÍV

TANULÁSI STÍLUS KÉRDŐÍV 1. A tanulási mintázat kérdőív... 215 2. A hallgatói élettörténetek gyűjtésének kutatási eszköze... 223 3. A tanulási orientációk állításainak újrarendezési kísérlete faktoranalízis segítségével (N=1004)...

Részletesebben

Informatikai ismeretek vizsgálata a 8. osztály végén. Kiss Gábor Óbudai Egyetem kiss.gabor@bgk.uni-obuda.hu

Informatikai ismeretek vizsgálata a 8. osztály végén. Kiss Gábor Óbudai Egyetem kiss.gabor@bgk.uni-obuda.hu Informatikai ismeretek vizsgálata a 8. osztály végén Kiss Gábor Óbudai Egyetem kiss.gabor@bgk.uni-obuda.hu A vizsgálat célja A diákok informatikai ismereteinek vizsgálata a 8. osztály befejezésekor arra

Részletesebben

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária TANÍTÓI KÉZIKÖNYV a Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária, Nemzeti Tankönyvkiadó Zrt., 2009 Nemzeti Tankönyvkiadó Zrt. www.ntk.hu Vevőszolgálat: info@ntk.hu Telefon:

Részletesebben

Számítógépi képelemzés

Számítógépi képelemzés Számítógépi képelemzés Elıadás vázlat Szerzık: Dr. Gácsi Zoltán, egyetemi tanár Dr. Barkóczy Péter, egyetemi docens Lektor: Igaz Antal, okl. gépészmérnök a Carl Zeiss technika kft. Ügyvezetı igazgatója

Részletesebben

DÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN ELŐSZÓ

DÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN ELŐSZÓ Dr. Gyarmati József mk. őrnagy ZMNE BJKMK Katonai Logisztikai Minőségügyi és Közlekedésmérnöki Tanszék DÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN Absztrakt A cikk egy olyan algoritmust mutat

Részletesebben

SZÍNES KÉPEK FELDOLGOZÁSA

SZÍNES KÉPEK FELDOLGOZÁSA SZÍNES KÉPEK FELDOLGOZÁSA Színes képek feldolgozása Az emberi szem többezer színt képes megkülönböztetni, de csupán 20-30 különböző szürkeárnyalatot A színes kép feldolgozása két csoportba sorolható -

Részletesebben

PageRank algoritmus Hubs and Authorities. Adatbányászat. Webbányászat PageRank, Hubs and Authorities. Szegedi Tudományegyetem.

PageRank algoritmus Hubs and Authorities. Adatbányászat. Webbányászat PageRank, Hubs and Authorities. Szegedi Tudományegyetem. Webbányászat PageRank, Szegedi Tudományegyetem Miért akarjuk rangsorolni a Weboldalakat? Mert tudásra szomjazunk Mert a Google-nak megéri. Pontosan hogy is? Mert állatorvost keresünk, pizzázni akarunk,

Részletesebben

Mérési jegyzőkönyv. Rezonancia. 4. mérés: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium. A mérés időpontja: 2013.03.06.

Mérési jegyzőkönyv. Rezonancia. 4. mérés: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium. A mérés időpontja: 2013.03.06. Mérési jegyzőkönyv 4. mérés: Rezonancia A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2013.03.06. A mérést végezte: Jánosa Dávid Péter

Részletesebben

és élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá-

és élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá- 152 - - - - - - Az öko, a bio vagy az organikus kifejezések használata még napjainkban sem egységes, miután azok megjelenési formája a mindennapi szóhasználatban országon- A német, svéd, spanyol és dán

Részletesebben

Mátrixaritmetika. Tartalom:

Mátrixaritmetika. Tartalom: Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám

Részletesebben

Statistical Inference

Statistical Inference Petra Petrovics Statistical Inference 1 st lecture Descriptive Statistics Inferential - it is concerned only with collecting and describing data Population - it is used when tentative conclusions about

Részletesebben

Egyéni gazdaságok kockázatkezelése a növénytermesztésben Risk management at individual farms of crop producers

Egyéni gazdaságok kockázatkezelése a növénytermesztésben Risk management at individual farms of crop producers Tóth József 1 Nemes Anna 2 Egyéni gazdaságok kockázatkezelése a növénytermesztésben Risk management at individual farms of crop producers nemes.anna@aki.gov.hu 1 Budapesti Corvinus Egyetem, egyetemi docens

Részletesebben

Beton-nyomószilárdság értékelésének alulmaradási tényezője

Beton-nyomószilárdság értékelésének alulmaradási tényezője Beton-nyomószilárdság értékelésének alulmaradási tényezője Acceptance constant of concrete compressive strength evaluation Dr. KAUSAY Tibor okl. vasbetonépítési szakmérnök, címzetes egyetemi tanár Budapesti

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József Matematika III. 8. A szórás és a szóródás egyéb Prof. Dr. Závoti, József Matematika III. 8. : A szórás és a szóródás egyéb Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

A MAGYAR SPORT TERÜLETI VERSENYKÉPES- SÉGÉNEK VIZSGÁLATA TÖBBVÁLTOZÓS STATISZTIKAI MÓDSZEREKKEL

A MAGYAR SPORT TERÜLETI VERSENYKÉPES- SÉGÉNEK VIZSGÁLATA TÖBBVÁLTOZÓS STATISZTIKAI MÓDSZEREKKEL Tér és Társadalom 21. évf. 2007/2. 117-126. p. TÉT XXI. évf. 2007 2 Gyors ténykép 117 A MAGYAR SPORT TERÜLETI VERSENYKÉPES- SÉGÉNEK VIZSGÁLATA TÖBBVÁLTOZÓS STATISZTIKAI MÓDSZEREKKEL (The Analysis of the

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

GroupWise 5.2 használói jegyzet

GroupWise 5.2 használói jegyzet GroupWise 5.2 használói jegyzet 32 bites verzió Készítette: Borsodi Gábor, ABS Consulting Kft. (http://www.abs.hu) 1998-2001 Ez a dokumentáció szabadon felhasználható (nyomtatható, másolható) és terjeszthet,

Részletesebben

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I. Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja

Részletesebben

Gyémánt Mihály 2-14-B Cukorinverzio sebesse gi á llándo já nák meghátá rozá sá polárimetriá s me re ssel

Gyémánt Mihály 2-14-B Cukorinverzio sebesse gi á llándo já nák meghátá rozá sá polárimetriá s me re ssel Cukorinverzio sebesse gi á llándo já nák meghátá rozá sá polárimetriá s me re ssel Bevezetés A szacharóz inverziója szőlőcukorrá (D-glükóz) és gyümölcscukorrá (D-fruktóz) vizes közegben lassú folyamat.

Részletesebben

ELEMI VALÓSZÍNŰSÉGSZÁMÍTÁS és STATISZTIKAI MÓDSZEREK A FIZIKÁBAN

ELEMI VALÓSZÍNŰSÉGSZÁMÍTÁS és STATISZTIKAI MÓDSZEREK A FIZIKÁBAN ELEMI VALÓSZÍNŰSÉGSZÁMÍTÁS és STATISZTIKAI MÓDSZEREK A FIZIKÁBAN SINKOVICZ PÉTER (PhD hallgató) MTA WIGNER FIZIKAI KUTATÓKÖZPONT (2013) a TARTALOMJEGYZÉK A VALÓSÁG STATISZTIKAI LEKÉPEZÉSE 1. Alapfogalmak

Részletesebben

Inferencia. ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }

Inferencia. ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, } Street1931 Falk1975 Falk1975 Inferencia ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }! KISZÁMOLANDÓK:! normalizáció

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016.

KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket az

Részletesebben

Tómács Tibor. Matematikai statisztika

Tómács Tibor. Matematikai statisztika Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly

Részletesebben

FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE

FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE 1. Egy alkalmassági vizsgálat adatai szerint a vizsgált személyeken 0,05 valószínűséggel mozgásszervi és 0,03 valószínűséggel érzékszervi

Részletesebben

Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés!

Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés! Az indukció A logikában indukciónak nevezzük azt a következtetési módot, amelyek segítségével valamely osztályon belül az egyes esetekb l az általánosra következtetünk. Például: 0,, 804, 76, 48 mind oszthatóak

Részletesebben

Öregedés és társadalmi környezet TARTALOMJEGYZÉK

Öregedés és társadalmi környezet TARTALOMJEGYZÉK TARTALOMJEGYZÉK Bevezetés... 7 Az öregség képe a közgondolkodásban és felkészülés az öregkorra... 11 I. A közvéleményben élő kép az öregségről... 12 1. Hány éves kortól számít az ember öregnek?... 12 2.

Részletesebben

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését

Részletesebben

INTELLIGENS ADATELEMZÉS

INTELLIGENS ADATELEMZÉS Írta: FOGARASSYNÉ VATHY ÁGNES STARKNÉ WERNER ÁGNES INTELLIGENS ADATELEMZÉS Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Fogarassyné Dr. Vathy Ágnes, Pannon Egyetem Műszaki Informatikai Kar Matematika

Részletesebben

Normál eloszlás. Gyakori statisztikák

Normál eloszlás. Gyakori statisztikák Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,

Részletesebben

LOGISZTIKAI KÉPESSÉGEK A MAGYAR VÁLLALATOK GYAKORLATÁBAN

LOGISZTIKAI KÉPESSÉGEK A MAGYAR VÁLLALATOK GYAKORLATÁBAN BUDAPESTI CORVINUS EGYETEM VÁLLALATGAZDASÁGTAN INTÉZET VERSENYKÉPESSÉG KUTATÓ KÖZPONT Gelei Andrea: LOGISZTIKAI KÉPESSÉGEK A MAGYAR VÁLLALATOK GYAKORLATÁBAN VERSENYBEN A VILÁGGAL 2004 2006 GAZDASÁGI VERSENYKÉPESSÉGÜNK

Részletesebben

Demokratikus attitűdök a hazai középiskolákban 1

Demokratikus attitűdök a hazai középiskolákban 1 Kalocsai Janka Demokratikus attitűdök a hazai középiskolákban 1 A különböző történelmi korokban a tudás- és tapasztalatátadás mindig az adott társadalomban fontosnak tartott értékek figyelembevételével

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT I. rész: Az alábbi 4 feladat megoldása kötelező volt! 1) Egy idegen nyelvekkel kapcsolatos online kérdőívet hetven SG-s töltött ki. Tudja, hogy minden

Részletesebben

HÁTTÉRTÉNYEZŐK HATÁSÁNAK VIZSGÁLATA HIERARCHIKUS LINEÁRIS MODELLEKKEL

HÁTTÉRTÉNYEZŐK HATÁSÁNAK VIZSGÁLATA HIERARCHIKUS LINEÁRIS MODELLEKKEL MAGYAR PEDAGÓGIA 111. évf. 1. szám 5 3. (011) HÁTTÉRTÉNYEZŐK HATÁSÁNAK VIZSGÁLATA HIERARCHIKUS LINEÁRIS MODELLEKKEL Tóth Edit * és Székely László ** *MTA SZTE Képességfejlődés Kutatócsoport **Szent István

Részletesebben

Statisztikai alapismeretek (folytatás)

Statisztikai alapismeretek (folytatás) Statisztikai alapismeretek (folytatás) 3. elıadás (5-6. lecke) Az alapsokaság fıbb jellemzıi () 5. lecke Folytonos változó megoszlásának jellemzése A sokasági átlag és szórás Átlag és szórás tulajdonságai

Részletesebben

Egyesült Acél Kft. KATALÓGUS ÁRJEGYZÉK 2014.07.21-től

Egyesült Acél Kft. KATALÓGUS ÁRJEGYZÉK 2014.07.21-től 00267 CS DB 928 Ft 00421 24 DB 946 Ft 20101 DB 30 690 Ft 00267 N DB 928 Ft 00422 DB 1 392 Ft 20102 DB 30 690 Ft 00360 50 DB 1 190 Ft 00425 20 DB 1 150 Ft 20103 DB 30 690 Ft 00360 60 DB 1 295 Ft 00425 22

Részletesebben

Csődvalószínűségek becslése a biztosításban

Csődvalószínűségek becslése a biztosításban Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

Elektromiográfia. I. Háttér. II. Mérési elvek. III. Kísérletes célkitűzések

Elektromiográfia. I. Háttér. II. Mérési elvek. III. Kísérletes célkitűzések Elektromiográfia I. Háttér Az emberi test mozgatásáért a vázizomzat felelős. Az emberi szervezetben a harántcsíkolt izmok képesek mechanikai munkát végezni. Kontrakció akkor jön létre, ha az agyi vagy

Részletesebben

Általánosítás. Többdimenziós normális eloszlás. Matematikai statisztika elıadás III. éves elemzı szakosoknak

Általánosítás. Többdimenziós normális eloszlás. Matematikai statisztika elıadás III. éves elemzı szakosoknak Matematikai statisztika elıadás. éves elemzı szakosokak 0. elıadás Többdimeziós ormális eloszlás Kétdimeziós ormális eloszlás sőrőségfüggvéye ( ( x µ ) ρ ( y ν ) f x, y) ex + ( x µ )( y ν ) ) πσς ρ σ σς

Részletesebben

10. Genomika 2. Microarrayek és típusaik

10. Genomika 2. Microarrayek és típusaik 10. Genomika 2. 1. Microarray technikák és bioinformatikai vonatkozásaik Microarrayek és típusaik Korrelált génexpresszió mint a funkcionális genomika eszköze 2. Kombinált megközelítés a funkcionális genomikában

Részletesebben

A magyar kisvállalatok versenyképességének kompetencia alapú mérése és komplex vizsgálata

A magyar kisvállalatok versenyképességének kompetencia alapú mérése és komplex vizsgálata Energiatermelési, energiafelhasználási és hulladékgazdálkodási technológiák vállalati versenyképességi, városi, regionális és makrogazdasági hatásainak komplex vizsgálata és modellezése - TÁMOP 4.2.2 A

Részletesebben

Munkaügyi Központja 2014. I. NEGYEDÉV

Munkaügyi Központja 2014. I. NEGYEDÉV Munkaügyi Központja A MUNKAERİ-GAZDÁLKODÁSI FELMÉRÉS ÖSSZEFOGLALÓJA 2014. I. NEGYEDÉV Pápa Zirc Devecser Ajka Veszprém Várpalota Sümeg Balatonalmádi Tapolca Balatonfüred Veszprém megye 8200 Veszprém, Megyeház

Részletesebben