Standardizálás, transzformációk
|
|
- András Székely
- 9 évvel ezelőtt
- Látták:
Átírás
1 Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát, így az átlag 0 lesz. (Spektrál felbontás esetén tulajdonképpen a centrált adatok kovariancia mátrixával dolgozunk.) Standardizálás: korrelációs mátrix standardizált adatok kovariancia mátrixa. Relatív értékek (arányok): legnagyobb értékkel osztjuk az összeset. Megfigyelési egységeket is lehet standardizálni. Abundancia adatoknál fontos, ha a megfigyelési egységek mérete különböző. (arányok) 0,-é is lehet konvertálni. Sokszor hasznos lehet különböző módokon standardizálni és összehasonlítani az eredményeket: eredeti standardizált 0, eredeti: legnagyobb abundanciájú mit befolyásol 0, : prezencia, abszenciától mi függ. Asszociációs mértékek implicit módon standardizáltak.
2 Az, hogy a kovariancia vagy korrelációs mátrixot használjuk attól függ, hogy a varianciák különbsége fontos-e biológiai szempontból.
3 Hiányzó adatok MCAR-missing completely at random: független mind a megfigyelt adatoktól, mind a többi hiányzótól. Random részhalmaza az adatoknak. MAR lehet, hogy függ a csoporttól, hogy hiányzik-e. Mit tegyünk a hiányzó adatokkal?. Objektum törlése (deletion): legjobb megoldás, ha kevesebb, mint 5% hiányzik és MCAR Információ vesztés (complete.obs) esetén. Ha az analízis páronkénti (pairwise) asszociációkon alapul (kovariancia, korreláció), akkor paiwise.complete.obs. Csak akkor töröljük, ha éppen azokkal a változókkal dolgozunk, amelyiknél hiányzik a megfigyelés. Imputáció Helyettesítés becsléssel. Módszerek:. átlaggal (változó értékeiből számolt\na) A varianciát alulbecsüli.. Regressziós modellel. Más változókkal becsüljük, pl. a legjobban korrelált változót vagy változókat választjuk prediktornak.) 3. Hot-deck: Hasonló objektum értékével helyettesítjük. Problémák: függetlenség sérül; varianciát alulbecsli.
4 Maximum likelihood (ML) és EM becslés ML : paraméter becslés a megfigyelt, nem teljes adatokból, majd a modellből becsüljük a hiányzó adatokat. Felhasználja a megfigyelt adatok eloszlását és a hiányzó adatok mintázatát. Iteratív imputáció + ML : Expectation Maximization ML paraméter becslés hiányzó adatok ML paraméterbecslés hiányzó adatok..., amíg nem konvergál. ML és EM feltétele a MAR.
5 Adatredukció (Ordináció) Főkomponens analízis (PCA) Felfedező adatelemzésben használatos. Adathalmaz kényelmesebb és informatívabb ábrázolása, dimenziószám csökkentése, fontos változók beazonosítása. Cél: Van p változónk:,,..., p és keressük ezeknek olyan,,..., p kombinációit (főkomponensek), amelyek nem korreláltak. A korrelálatlanság azt jelenti, hogy az új változók az adatok különböző dimenzióit mérik. ( ) ( )... ( p ) σ σ σ Remény: a legtöbb főkomponens szórása olyan kicsi, hogy elhanyagolhatók, így az adatokban meglévő változatosság néhány főkomponenssel jól leírható. Ha az eredeti változók egyáltalán nem korreláltak, az analízis semmit nem csinál. Legjobb eredmény: nagyon korrelált változók esetén. Adatok: Egyed... p x x... x p x x... x p M n x n x n x np
6 A főkomponensek: i = ai + ai aip p a + a a = i i ip és σ( ) σ( ) σ( p ).... A főkomponensek varianciái az adatok kovariancia mátrixának sajátértékei (λ i ), az együtthatói pedig a megfelelő sajátértékhez tartozó sajátvektor együtthatói. Ha a kovarianciamátrix: c c... c p c c... c p C =, M M M cp cp cpp akkor λ + λ λp = c + c cpp = σ ( ) + σ ( ) σ ( p ) Célszerű az adatokat standardizálni az analízis előtt. Ekkor a kovariancia mátrix megegyezik korrelációs mátrixszal. Feltételek: Normalitás nem feltétel, de a nagyon ferde eloszlás ronthatja az eredményt. A normalitás csak tesztek esetén szükséges. Linearitás. Ne legyenek outlierek.
7 Azt mutatja meg, hogy a főkomponensek mennyit magyaráznak az egyes változókból. A korrelációs/kovariancia mátrix s.é.-ei, és a megfelelő variancia hányadok.
8 A s.é.-kek a komponens sorszám függvényében.
9 > pca=princomp(vereb[,:6],cor=t) > summary(pca,loadings=true) Importance of components: Comp. Comp. Comp.3 Standard deviation Proportion of Variance Cumulative Proportion Comp.4 Comp.5 Standard deviation Proportion of Variance Cumulative Proportion Loadings: Comp. Comp. Comp.3 Comp.4 Comp >par(pty="s") >plot(pca$scores[,],pca$scores[,], >ylim=range(pca$scores[,]), >xlab="pc",ylab="pc",type="n",lwd=) >text(pca$scores[,],pca$scores[,], >labels=row.names(vereb),cex=0.7,lwd=)
10 > pca$scores Ezekkel a szkórokkal tudjuk kiszámolni a komponensek értékeit az egyes esetekre. (Ezek az a ij együtthatók.) >biplot(pca) > cor(data.frame(pca$scores[,],vereb[,:6]))[,] pca.scores... pca.scores
11 Faktoranalízis Nagyszámú változó korrelációinak elemzése. Változók faktorokba csoportosítása. Az egy faktorba csoportosított változók korreláltsága nagyobb egymással, mint a csoporton kívüliekkel. A faktorok interpretálása (látens változók) a változók alapján. Sok változó összesítése néhány faktorba. = a F + a F a F + i i i im m e i aij - faktorsúlyok (loadings), i -k a standardizált változók. F j : korrelálatlan közös faktorok 0 várható értékkel és szórással. e i - egyedi faktor, várható értéke 0, F j -kel nem korrelált. σ = ( i ) = = aiσ ( F ) aimσ ( Fm ) + σ ( ei ) a a + σ ( e ) i im i = a i aim - kommunalitás, σ ( ) - egyediség. e i
12 i és j m l a il a jl - az és korrelációs együtthatója. (Csak akkor lehet két változó nagyon korrelált, ha nagy súllyal szereplenek ugyanabban a faktorban.) Számítás menete:. Korrelációs vagy kovarinacia mátrix kiszámítása.. Faktorsúlyok becslése (faktor extrakció). Pl. főkomponens analízisből megtartjuk az -nél nagyobb sajátértékű főkomponenseket (Főkomponens faktoranalízis). Főkomponensek: = b + b b M p = b = b p + b + b p p b p b Mátrix egyenlet formában: Így: = b + b b pp =B B - = B T = Mivel a B mártix ortonormált. M p = b = b p + b + b p b p p b pp p p p p p p
13 Mivel Faktor analízis esetén m < p számú faktorral dolgozunk, ezért: M p = b = b = b p + b + b + b p b b m m b mp m m + e + e m + e p Mostmár csak át kell skálázni az eredeti főkomponenseket úgy, hogy legyen a varianciájuk. Ehhez a i ket osztani kell a szórásukkal, ami éppen λ i. Így: F = i i / λi. 3. Faktor rotációt végzünk azért, hogy a faktorok interpretálhatóbbak legyenek. A súlyok minden faktor esetén vagy nagyok vagy nagyon kicsik legyenek. 4. Faktor értékek kiszámítása a mintaegyedekre. További analízisek. Rotációs módszerek: Ortogonális: Varimax, Quartimax, Equamax Varimax: úgy forgat, hogy az együtthatók vagy -hez vagy 0-hoz közeliek legyenek. Quartimax: minimalizálja a változók magyarázásához szükséges faktorok számát Equamax: Az előző kettő kompromisszuma. A rotált faktorok nem korreláltak.
14 Ferde (Oblique): Direct Oblimin, Promax Nagyobb sajátértékeket eredményeznek. A Promax nagyon nagy táblázatok esetén használatos. Korrelált faktorok. Maximum-likelihood faktor analízis Leginkább elfogadott módszer. Szükséges faktorszám tesztelhető. Fakt > fa<-factanal(vereb[,:6],factors=,scores="regression",correlation=t) > fa Call: factanal(x = vereb[, :6], factors =, scores = "regression", correlation = T) Uniquenesses: Loadings: Factor Factor Factor Factor SS loadings Proportion Var Cumulative Var Test of the hypothesis that factors are sufficient. The chi square statistic is 0.7 on degree of freedom. The p-value is 0.603
15 Ha nem szign., akkor jó. > fa<-factanal(vereb[,:6],factors=,rotation="promax") > fa Call: factanal(x = vereb[, :6], factors =, rotation = "promax") Uniquenesses: Loadings: Factor Factor Factor Factor SS loadings Proportion Var Cumulative Var Test of the hypothesis that factors are sufficient. The chi square statistic is 0.7 on degree of freedom. The p-value is > par(pty="s") > plot(fa$scores[,],fa$scores[,], + ylim=range(fa$scores[,]), + xlab="fa",ylab="fa",type="n",lwd=) > text(fa$scores[,],fa$scores[,], + labels=row.names(vereb),cex=0.7,lwd=)
16
17 Klaszter analízis n egyedből álló minta, amelynek minden egyedén p számú változó értékét mérjük. Csoportosítási séma, amely a hasonló objektumokat egy csoportba sorolja. A csoportok száma nem ismert (általában). Algoritmusok két típusa: Hierarhikus technikák. Dendrogramot produkálnak.. Egyedek egymástól való távolságának kiszámítása.. Csoportok létrehozása vagy összevonással, vagy felosztással. Az összevonás esetén először minden objektumot külön csoportba sorolunk és azután a legközelebbieket fokozatosan egyesítjük. A felosztó módszerek esetén, először egy csoportba soroljuk az összes objektumot, majd először ketté osztjuk, majd a ketté osztottakat is tovább osztjuk egészen addíg, amíg minden egyed külön csoportot alkot. Másik típusa esetén az egyedek be is kerülhetnek egy csoportba és ki is kerülhetnek onnan (k-means clustering). Előre meg kell határozni, hogy hány csoportunk legyen.
18 Összevonási technikák (linkage methods):
19 Egyszerű lánc módszer (nearest neighbor): Két csoport távolságát az egymáshoz legközelebb eső, de nem egy csoportba tartozó elemeik távolságaként határozzuk meg. Ha a csoportok közt nincs éles elválás, akkor nem működik jól, viszont ha élesen elhatárolódnak, akkor nagyon effektív. Teljes lánc módszer (furthest neighbor): Két csoport távolságát legtávolabbi elemeik távolsága adja meg. Jól működik nem elhatárolódó, de erős kohéziójú csoportok esetén. Csoportátlag módszer (between-groups linkage): Az előző két módszer közötti átmenet. A két csoport távolsága elemeik páronkénti távolságainak átlaga osztva a két csoport elemszámával. Jól működik akkor is, ha azt várjuk, hogy a csoportok elemszáma nagyon különböző lesz.
20 Egyszerű átlag módszer (within-groups linkage): Ugyanaz, mint az előző, de nem veszi figyelembe az csoportok elemszámát. Centoid módszer (centroid clustering): Két csoport távolságát a súlypontjaik távolsága adja meg. Medián módszer (median clustering): Ugyanaz, mint az előző, de figyelembe veszi a csoportok elemszámát is. Ha várhatóan nagyok az elemszámokban a különbségek, akkor az előzőhöz képest ezt célszerű használni. Ward módszer (Ward s method): A csoportokon belüli varianciát minimalizálja. Nagyon effektív, de kis elemszámú csoportok létrehozására hajlamos módszer.
21 pl: Az emlősállatoknak négyféle foguk van: metszőfog, szemfog, kiszápfog és zápfog. Az adattáblázat 3 állatfaj egyik oldali állkapcsában alul illetve felül található különböző fogainak számát tartalmazza.
22 Modell alapú klaszterezés (Model based clustering) A populáció valahány részpopulációból (= klaszterek) áll. Csilpcsalp füzikék szárnyhossz eloszlása
23 Paraméterek $pro [] $mean $variance $variance$modelname [] "V" $variance$d [] $variance$g [] $variance$sigmasq [] $variance$scale []
24
Standardizálás, transzformációk
Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,
RészletesebbenDefiníció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3.
. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása -1 Áttekintés - Gyakoriság eloszlások -3 Az adatok vizualizációja -4 A centrum mérıszámai -5 A szórás mérıszámai -6 A relatív elhelyezkedés
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Faktoranalízis előadás. Kvantitatív statisztikai módszerek
Faktoranalízis 6.-7. előadás Kvantitatív statisztikai módszerek Faktoranalízis Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására
Részletesebben1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.
1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )
RészletesebbenStatisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter
Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis
Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim
RészletesebbenSzepesvári Csaba. 2005 ápr. 11
Gépi tanulás III. Szepesvári Csaba MTA SZTAKI 2005 ápr. 11 Szepesvári Csaba (SZTAKI) Gépi tanulás III. 2005 ápr. 11 1 / 37 1 Döntési fák 2 Felügyelet nélküli tanulás Klaszter-anaĺızis EM algoritmus Gauss
RészletesebbenKVANTITATÍV MÓDSZEREK
KVANTITATÍV MÓDSZEREK Dr. Kövesi János Tóth Zsuzsanna Eszter 6 Tartalomjegyzék Kvantitatív módszerek. Valószínűségszámítási tételek. eltételes valószínűség. Események függetlensége.... 3.. eltételes valószínűség...
Részletesebbenstatisztikai menürendszere Dr. Vargha András 2007
A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre
RészletesebbenAZ ÁLTALÁNOS ISKOLÁSOK IDEGENNYELV-TANULÁSI ATTITŰDJEI ÉS MOTIVÁCIÓJA
MAGYAR PEDAGÓGIA 0. évf.. szám 5. (00) AZ ÁLTALÁNOS ISKOLÁSOK IDEGENNYELV-TANULÁSI ATTITŰDJEI ÉS MOTIVÁCIÓJA Csizér Kata és Dörnyei Zoltán Eötvös Loránd Tudományegyetem és Nottigham University Az általános
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október
RészletesebbenBemenet modellezése II.
Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási
RészletesebbenHalmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.
Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,
RészletesebbenStatisztika, próbák Mérési hiba
Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:
RészletesebbenMINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia
MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek
RészletesebbenSTATISZTIKA PRÓBAZH 2005
STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk
RészletesebbenKörmozgás és forgómozgás (Vázlat)
Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen
RészletesebbenEEG mérések hardveres és szoftveres validációja
EEG mérések hardveres és szoftveres validációja Kovács Annamária EAR1LJ Szoftver verifikáció és validáció 2015-12-10 Az elektroenkefalográfiáról (EEG) Az EEG olyan pszichofiziológiai mérési eljárás, mely
RészletesebbenFaktoranalízis az SPSS-ben
Faktoranalízis az SPSS-ben Kvantitatív statisztikai módszerek Petrovics Petra Feladat Megnyitás: faktor.sav Fogyasztók materialista vonásai (Richins-skála) Forrás: Sajtos-Mitev, 250.oldal Faktoranalízis
RészletesebbenReiczigel Jenő, 2006 1
Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy
RészletesebbenFaktoranalízis az SPSS-ben
Faktoranalízis az SPSS-ben = Adatredukciós módszer Petrovics Petra Doktorandusz Feladat Megnyitás: faktoradat_msc.sav Forrás: Sajtos-Mitev 250.oldal Fogyasztók materialista vonásai (Richins-skála) Faktoranalízis
RészletesebbenCsicsman József-Sipos Szabó Eszter csicsman@calculus.hu, siposeszti@gmail.com. Matematikai alapok az adatbányászati szoftverek első megismeréséhez
Csicsman József-Sipos Szabó Eszter csicsman@calculus.hu, siposeszti@gmail.com Matematikai alapok az adatbányászati szoftverek első megismeréséhez 1.1 A statisztikai sokaság A statisztika a valóság számszerű
RészletesebbenKlaszterezés, 2. rész
Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket
RészletesebbenA SERVQUAL (szolgáltatás-minőség) modell alkalmazhatóságának elemzése sokváltozós adatelemzési módszerekkel. Becser Norbert
Műhelytanulmányok Vállalatgazdaságtan Intézet 1053 Budapest, Veres Pálné u. 36., 1828 Budapest, Pf. 489 (+36 1) 482-5901, fax: 482-5844, www.uni-corvinus.hu/vallgazd Vállalatgazdaságtan Intézet A SERVQUAL
RészletesebbenA magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel
A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel Kovács Máté PhD hallgató (komoaek.pte) Pécsi Tudományegyetem Közgazdaságtudományi
RészletesebbenSZTOCHASZTIKUS MÓDSZEREK
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR BUDAPESTI CORVINUS EGYETEM KÖZGAZDASÁGTUDOMÁNYI KAR SZTOCHASZTIKUS MÓDSZEREK A NEM-ÉLETBIZTOSÍTÁSOK TARTALÉKOLÁSÁBAN MSc szakdolgozat Írta: Orbán Barbara
RészletesebbenMinden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41
Minden az adatról Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Minden az adatról 1 / 41 Adat: alapfogalmak Adathalmaz elvileg bármi, ami információt
RészletesebbenKecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba
Kecskeméti Fıiskola GAMF Kar Informatika Tanszék Johanyák Zsolt Csaba 003 Tartalomjegyzék. Bevezetés.... A megbízhatóság fogalmai..... A termék idıtıl függı képességei...... Használhatóság /Üzemkészség/
RészletesebbenDefine Measure Analyze Improve Control. F(x), M(ξ),
5.5.5. Six Sigma Minőségmenedzsment Statisztikai folyamatszabályozási (SPC) rendszer Erdei János Egy fegyelmezett és erősen mennyiségi szemléletű folyamatfejlesztési megközelítés, amely a gyártási, szolgáltatási
RészletesebbenKomputer statisztika gyakorlatok
Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes
Részletesebben4. előadás. Vektorok
4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához
RészletesebbenA statisztika részei. Példa:
STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,
Részletesebbenmatematikai statisztika 2006. október 24.
Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................
RészletesebbenIlleszkedésvizsgálat χ 2 -próbával
Illeszkedésvizsgálat χ -próbával Szalay Krisztina 1. feladat (tiszta illeszkedésvizsgálat) Négy pénzérmét 0-szor feldobunk. A kapott gyakoriságok: fejek száma 0 1 3 4 Összes gyakoriság 5 35 67 41 1 0 Elfogadható-e
RészletesebbenNyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 6. MA3-6 modul A statisztika alapfogalmai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.
RészletesebbenAz adatmátrix, az adatok átalakítása
2 Az adatmátrix, az adatok átalakítása (Az elsõ bátortalan lépések... de még sok minden rejtve marad) A mintavételezés során, mint láttuk, a mintavételi egységeket változók segítségével írjuk le. A kapott
RészletesebbenTöbb mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).
Többváltozós roblémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests
Nonparametric Tests Petra Petrovics Hypothesis Testing Parametric Tests Mean of a population Population proportion Population Standard Deviation Nonparametric Tests Test for Independence Analysis of Variance
RészletesebbenRegressziószámítás alkalmazása kistérségi adatokon
Lengyel I. Lukovics M. (szerk.) 2008: Kérdıjelek a régiók gazdasági fejlıdésében. JATEPress, Szeged, 264-287. o. Regressziószámítás alkalmazása kistérségi adatokon Szakálné Kanó Izabella 1 A lokális térségek
RészletesebbenDr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások
Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek
RészletesebbenLineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény
RészletesebbenGAZDASÁGI STATISZTIKA
GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK
RészletesebbenElméleti összefoglalók dr. Kovács Péter
Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet
Fkt Faktoranalízis líi Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására szolgál. A kiinduló változók számát úgynevezett faktorváltozókba
Részletesebbenekultúra Csepeli György Prazsák Gergı 1. Bevezetés
ekultúra Csepeli György Prazsák Gergı 1. Bevezetés Az internet megjelenése óta a legváltozatosabb elképzeléseket és érzéseket keltette fel mind a kívülállókban, mind azokban, akiknek ez az új technológia,
RészletesebbenBiostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.
Nonparametric Tests Petra Petrovics PhD Student Hypothesis Testing Parametric Tests Mean o a population Population proportion Population Standard Deviation Nonparametric Tests Test or Independence Analysis
RészletesebbenFeladatok és megoldások a 6. heti eladshoz
Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású
RészletesebbenPopulációbecslések és monitoring 2. előadás tananyaga
Populációbecslések és monitoring 2. előadás tananyaga 1. A becslések szerepe az ökológiában. (Demeter és Kovács 1991) A szabadon élő állatok egyedszámának kérdése csak bizonyos esetekben merül fel. De
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
RészletesebbenEsetelemzés az SPSS használatával
Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét
Részletesebben1. melléklet A ciklodextrin hatásának jellemzése mikroorganizmusok szaporodására Murányi Attila
1. melléklet A ciklodextrin hatásának jellemzése mikroorganizmusok szaporodására Murányi Attila Bevezetés... 1 A kutatás hipotézise... 2 A kutatás célja... 2 Az alkalmazott mikroorganizmusok... 3 Kísérleti
RészletesebbenAutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február
AutoN cr Automatikus Kihajlási Hossz számítás AxisVM-ben elméleti háttér és szemléltető példák 2016. február Tartalomjegyzék 1 Bevezető... 3 2 Célkitűzések és alkalmazási korlátok... 4 3 Módszertan...
RészletesebbenA rádió* I. Elektromos rezgések és hullámok.
A rádió* I. Elektromos rezgések és hullámok. A legtöbb test dörzsölés, nyomás következtében elektromos töltést nyer. E töltéstől függ a test elektromos feszültsége, akárcsak a hőtartalomtól a hőmérséklete;
RészletesebbenBIOMETRIA_ANOVA_2 1 1
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
RészletesebbenKISTERV2_ANOVA_
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
Részletesebben8. A fehérjék térszerkezetének jóslása
8. A fehérjék térszerkezetének jóslása A probléma bonyolultsága Általánosságban: találjuk meg egy tetszõleges szekvencia azon konformációját, amely a szabadentalpia globális minimumát adja. Egyszerû modellekben
RészletesebbenTANULÁSI STÍLUS KÉRDŐÍV
1. A tanulási mintázat kérdőív... 215 2. A hallgatói élettörténetek gyűjtésének kutatási eszköze... 223 3. A tanulási orientációk állításainak újrarendezési kísérlete faktoranalízis segítségével (N=1004)...
RészletesebbenInformatikai ismeretek vizsgálata a 8. osztály végén. Kiss Gábor Óbudai Egyetem kiss.gabor@bgk.uni-obuda.hu
Informatikai ismeretek vizsgálata a 8. osztály végén Kiss Gábor Óbudai Egyetem kiss.gabor@bgk.uni-obuda.hu A vizsgálat célja A diákok informatikai ismereteinek vizsgálata a 8. osztály befejezésekor arra
RészletesebbenBéres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez
Béres Mária TANÍTÓI KÉZIKÖNYV a Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária, Nemzeti Tankönyvkiadó Zrt., 2009 Nemzeti Tankönyvkiadó Zrt. www.ntk.hu Vevőszolgálat: info@ntk.hu Telefon:
RészletesebbenSzámítógépi képelemzés
Számítógépi képelemzés Elıadás vázlat Szerzık: Dr. Gácsi Zoltán, egyetemi tanár Dr. Barkóczy Péter, egyetemi docens Lektor: Igaz Antal, okl. gépészmérnök a Carl Zeiss technika kft. Ügyvezetı igazgatója
RészletesebbenDÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN ELŐSZÓ
Dr. Gyarmati József mk. őrnagy ZMNE BJKMK Katonai Logisztikai Minőségügyi és Közlekedésmérnöki Tanszék DÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN Absztrakt A cikk egy olyan algoritmust mutat
RészletesebbenSZÍNES KÉPEK FELDOLGOZÁSA
SZÍNES KÉPEK FELDOLGOZÁSA Színes képek feldolgozása Az emberi szem többezer színt képes megkülönböztetni, de csupán 20-30 különböző szürkeárnyalatot A színes kép feldolgozása két csoportba sorolható -
RészletesebbenPageRank algoritmus Hubs and Authorities. Adatbányászat. Webbányászat PageRank, Hubs and Authorities. Szegedi Tudományegyetem.
Webbányászat PageRank, Szegedi Tudományegyetem Miért akarjuk rangsorolni a Weboldalakat? Mert tudásra szomjazunk Mert a Google-nak megéri. Pontosan hogy is? Mert állatorvost keresünk, pizzázni akarunk,
RészletesebbenMérési jegyzőkönyv. Rezonancia. 4. mérés: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium. A mérés időpontja: 2013.03.06.
Mérési jegyzőkönyv 4. mérés: Rezonancia A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2013.03.06. A mérést végezte: Jánosa Dávid Péter
Részletesebbenés élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá-
152 - - - - - - Az öko, a bio vagy az organikus kifejezések használata még napjainkban sem egységes, miután azok megjelenési formája a mindennapi szóhasználatban országon- A német, svéd, spanyol és dán
RészletesebbenMátrixaritmetika. Tartalom:
Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám
RészletesebbenStatistical Inference
Petra Petrovics Statistical Inference 1 st lecture Descriptive Statistics Inferential - it is concerned only with collecting and describing data Population - it is used when tentative conclusions about
RészletesebbenEgyéni gazdaságok kockázatkezelése a növénytermesztésben Risk management at individual farms of crop producers
Tóth József 1 Nemes Anna 2 Egyéni gazdaságok kockázatkezelése a növénytermesztésben Risk management at individual farms of crop producers nemes.anna@aki.gov.hu 1 Budapesti Corvinus Egyetem, egyetemi docens
RészletesebbenBeton-nyomószilárdság értékelésének alulmaradási tényezője
Beton-nyomószilárdság értékelésének alulmaradási tényezője Acceptance constant of concrete compressive strength evaluation Dr. KAUSAY Tibor okl. vasbetonépítési szakmérnök, címzetes egyetemi tanár Budapesti
RészletesebbenMiskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
RészletesebbenMatematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József
Matematika III. 8. A szórás és a szóródás egyéb Prof. Dr. Závoti, József Matematika III. 8. : A szórás és a szóródás egyéb Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
RészletesebbenA MAGYAR SPORT TERÜLETI VERSENYKÉPES- SÉGÉNEK VIZSGÁLATA TÖBBVÁLTOZÓS STATISZTIKAI MÓDSZEREKKEL
Tér és Társadalom 21. évf. 2007/2. 117-126. p. TÉT XXI. évf. 2007 2 Gyors ténykép 117 A MAGYAR SPORT TERÜLETI VERSENYKÉPES- SÉGÉNEK VIZSGÁLATA TÖBBVÁLTOZÓS STATISZTIKAI MÓDSZEREKKEL (The Analysis of the
RészletesebbenPrincipal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
RészletesebbenGroupWise 5.2 használói jegyzet
GroupWise 5.2 használói jegyzet 32 bites verzió Készítette: Borsodi Gábor, ABS Consulting Kft. (http://www.abs.hu) 1998-2001 Ez a dokumentáció szabadon felhasználható (nyomtatható, másolható) és terjeszthet,
RészletesebbenBevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja
RészletesebbenGyémánt Mihály 2-14-B Cukorinverzio sebesse gi á llándo já nák meghátá rozá sá polárimetriá s me re ssel
Cukorinverzio sebesse gi á llándo já nák meghátá rozá sá polárimetriá s me re ssel Bevezetés A szacharóz inverziója szőlőcukorrá (D-glükóz) és gyümölcscukorrá (D-fruktóz) vizes közegben lassú folyamat.
RészletesebbenELEMI VALÓSZÍNŰSÉGSZÁMÍTÁS és STATISZTIKAI MÓDSZEREK A FIZIKÁBAN
ELEMI VALÓSZÍNŰSÉGSZÁMÍTÁS és STATISZTIKAI MÓDSZEREK A FIZIKÁBAN SINKOVICZ PÉTER (PhD hallgató) MTA WIGNER FIZIKAI KUTATÓKÖZPONT (2013) a TARTALOMJEGYZÉK A VALÓSÁG STATISZTIKAI LEKÉPEZÉSE 1. Alapfogalmak
RészletesebbenInferencia. ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }
Street1931 Falk1975 Falk1975 Inferencia ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }! KISZÁMOLANDÓK:! normalizáció
RészletesebbenÁltalános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László
Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication
RészletesebbenKÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016.
KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket az
RészletesebbenTómács Tibor. Matematikai statisztika
Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly
RészletesebbenFELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE
FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE 1. Egy alkalmassági vizsgálat adatai szerint a vizsgált személyeken 0,05 valószínűséggel mozgásszervi és 0,03 valószínűséggel érzékszervi
RészletesebbenAz indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés!
Az indukció A logikában indukciónak nevezzük azt a következtetési módot, amelyek segítségével valamely osztályon belül az egyes esetekb l az általánosra következtetünk. Például: 0,, 804, 76, 48 mind oszthatóak
RészletesebbenÖregedés és társadalmi környezet TARTALOMJEGYZÉK
TARTALOMJEGYZÉK Bevezetés... 7 Az öregség képe a közgondolkodásban és felkészülés az öregkorra... 11 I. A közvéleményben élő kép az öregségről... 12 1. Hány éves kortól számít az ember öregnek?... 12 2.
Részletesebben1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?
Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését
RészletesebbenINTELLIGENS ADATELEMZÉS
Írta: FOGARASSYNÉ VATHY ÁGNES STARKNÉ WERNER ÁGNES INTELLIGENS ADATELEMZÉS Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Fogarassyné Dr. Vathy Ágnes, Pannon Egyetem Műszaki Informatikai Kar Matematika
RészletesebbenNormál eloszlás. Gyakori statisztikák
Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,
RészletesebbenLOGISZTIKAI KÉPESSÉGEK A MAGYAR VÁLLALATOK GYAKORLATÁBAN
BUDAPESTI CORVINUS EGYETEM VÁLLALATGAZDASÁGTAN INTÉZET VERSENYKÉPESSÉG KUTATÓ KÖZPONT Gelei Andrea: LOGISZTIKAI KÉPESSÉGEK A MAGYAR VÁLLALATOK GYAKORLATÁBAN VERSENYBEN A VILÁGGAL 2004 2006 GAZDASÁGI VERSENYKÉPESSÉGÜNK
RészletesebbenDemokratikus attitűdök a hazai középiskolákban 1
Kalocsai Janka Demokratikus attitűdök a hazai középiskolákban 1 A különböző történelmi korokban a tudás- és tapasztalatátadás mindig az adott társadalomban fontosnak tartott értékek figyelembevételével
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT I. rész: Az alábbi 4 feladat megoldása kötelező volt! 1) Egy idegen nyelvekkel kapcsolatos online kérdőívet hetven SG-s töltött ki. Tudja, hogy minden
RészletesebbenHÁTTÉRTÉNYEZŐK HATÁSÁNAK VIZSGÁLATA HIERARCHIKUS LINEÁRIS MODELLEKKEL
MAGYAR PEDAGÓGIA 111. évf. 1. szám 5 3. (011) HÁTTÉRTÉNYEZŐK HATÁSÁNAK VIZSGÁLATA HIERARCHIKUS LINEÁRIS MODELLEKKEL Tóth Edit * és Székely László ** *MTA SZTE Képességfejlődés Kutatócsoport **Szent István
RészletesebbenStatisztikai alapismeretek (folytatás)
Statisztikai alapismeretek (folytatás) 3. elıadás (5-6. lecke) Az alapsokaság fıbb jellemzıi () 5. lecke Folytonos változó megoszlásának jellemzése A sokasági átlag és szórás Átlag és szórás tulajdonságai
RészletesebbenEgyesült Acél Kft. KATALÓGUS ÁRJEGYZÉK 2014.07.21-től
00267 CS DB 928 Ft 00421 24 DB 946 Ft 20101 DB 30 690 Ft 00267 N DB 928 Ft 00422 DB 1 392 Ft 20102 DB 30 690 Ft 00360 50 DB 1 190 Ft 00425 20 DB 1 150 Ft 20103 DB 30 690 Ft 00360 60 DB 1 295 Ft 00425 22
RészletesebbenCsődvalószínűségek becslése a biztosításban
Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,
RészletesebbenElektromiográfia. I. Háttér. II. Mérési elvek. III. Kísérletes célkitűzések
Elektromiográfia I. Háttér Az emberi test mozgatásáért a vázizomzat felelős. Az emberi szervezetben a harántcsíkolt izmok képesek mechanikai munkát végezni. Kontrakció akkor jön létre, ha az agyi vagy
RészletesebbenÁltalánosítás. Többdimenziós normális eloszlás. Matematikai statisztika elıadás III. éves elemzı szakosoknak
Matematikai statisztika elıadás. éves elemzı szakosokak 0. elıadás Többdimeziós ormális eloszlás Kétdimeziós ormális eloszlás sőrőségfüggvéye ( ( x µ ) ρ ( y ν ) f x, y) ex + ( x µ )( y ν ) ) πσς ρ σ σς
Részletesebben10. Genomika 2. Microarrayek és típusaik
10. Genomika 2. 1. Microarray technikák és bioinformatikai vonatkozásaik Microarrayek és típusaik Korrelált génexpresszió mint a funkcionális genomika eszköze 2. Kombinált megközelítés a funkcionális genomikában
RészletesebbenA magyar kisvállalatok versenyképességének kompetencia alapú mérése és komplex vizsgálata
Energiatermelési, energiafelhasználási és hulladékgazdálkodási technológiák vállalati versenyképességi, városi, regionális és makrogazdasági hatásainak komplex vizsgálata és modellezése - TÁMOP 4.2.2 A
RészletesebbenMunkaügyi Központja 2014. I. NEGYEDÉV
Munkaügyi Központja A MUNKAERİ-GAZDÁLKODÁSI FELMÉRÉS ÖSSZEFOGLALÓJA 2014. I. NEGYEDÉV Pápa Zirc Devecser Ajka Veszprém Várpalota Sümeg Balatonalmádi Tapolca Balatonfüred Veszprém megye 8200 Veszprém, Megyeház
Részletesebben