Számítógéppel irányított rendszerek elmélete. A rendszer- és irányításelmélet legfontosabb részterületei. Hangos Katalin. Budapest

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számítógéppel irányított rendszerek elmélete. A rendszer- és irányításelmélet legfontosabb részterületei. Hangos Katalin. Budapest"

Átírás

1 CCS-10 p. 1/1 Számítógéppel irányított rendszerek elmélete A rendszer- és irányításelmélet legfontosabb részterületei Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék Folyamatirányítási Kutató Csoport MTA Számítástechnikai és Automatizálási Kutató Intézete Budapest hangos@scl.sztaki.hu

2 BASIC NOTIONS (from previous lectures) PARAMETER ESTIMATION OF DT-LTI SYSTEMS CCS-10 p. 2/1

3 CCS-10 p. 3/1 Prediction error minimization Parameter estimation method: D N ˆθ N Problem statement: Given measured data: D[1, N] = D N = {(y(k), u(k)) k = 1,...N} predictive parametrized model: ŷ(k θ) = g(k, D[1, k 1]; θ) prediction error sequence (discrete signal): ε(k, θ) = y(k) ŷ(k θ), k = 1,...,N norm on the prediction error: V N (θ, D N ) = 1 N N k=1 l(ε(k, θ)) where l(.) is a positive scalar-valued function, most often: l(ε) = 1 2 ε2 From the known measured data D N and from the parameter vector θ one can compute the norm V N (θ, D N ). At k = N let us choose the estimated parameter vector ˆθ N such that ˆθ N = ˆθ N (D N ) = arg min θ V N (θ, D N )

4 CCS-10 p. 4/1 Simplest case: SISO ARX models BASIC CASE: The MA term in the general I/O model is zero, i.e. the output noise is a white noise process Predictive form: A (q 1 )y(k) = B (q 1 )u(k) + e(k) ŷ(k θ) = a 1 y(k 1) a 2 y(k 2) a n y(k n)+b 0 u(k)+ +b m u(k m) Parameter vector: Prediction error (white noise!): θ = [ a 1 a 2... a n b 0 b 1... b m ] T ε(k) = ŷ(k θ) y(k) = e(k)

5 CCS-10 p. 5/1 Least-squares (LS) parameter estimation Linear in parameter model: ŷ(k θ) = θ T ϕ(k) where ϕ(.) is the so called regressor. For ARX models ϕ(k) = [y(k 1) y(k 2)... y(k n) u(k) u(k 1)... u(k m)] T In ARX case (in the linear-in-parameters case) the estimation can be computed explicitely as ˆθ LS = [ 1 N ] 1 N 1 ϕ(k)ϕ T (k) N k=1 N ϕ(k)y(k) k=1

6 A RENDSZER- ÉS IRÁNYÍTÁSELMÉLET RÉSZTERÜLETEI CCS-10 p. 6/1

7 CCS-10 p. 7/1 Rendszer- és irányításelmélet: Részterületek rendszermodellezés (realizáció-elmélet) identifikáció kísérlettervezés, jelfeldolgozás modell paraméter és struktúra becslés rendszer-analízis: megfigyelhetoség, irányíthatóság, stabilitás irányítástervezés szabályozások: értéktartó, zavarelnyomó, stabilizáló stb. optimális irányítások diszkrét vezérlési szekvenciák diagnosztika

8 CCS-10 p. 8/1 Identifikáció: Modell paraméter becslés Adott: Egy parametrizált explicit dinamikus rendszermodell: y (M) = M(x; p (M) ) (1) ahol p (M) R ν az ismeretlen modell paraméterek, x R n a jelen és múltbeli bemenetek és kimenetek és y (M) R µ jövobeli kimenet vektora. A mért adatok egy rekordja D[0, k] = { (x(i), y(i)) i = 0,, k } (2) Egy. jelnorma és a veszteségfüggvény: L = y y (M) (3) Feladat: Számítsuk ki a p (M) ismeretlen modell paraméterek egy ˆp (M) becslését úgy, hogy az L veszteségfüggvény minimális legyen.

9 CCS-10 p. 9/1 Identifikáció: Modell struktúra becslés Adott: Egy M elemu parametrizált explicit dinamikus rendszermodellekbol álló M (S) modell-halmaz (a lehetséges struktúrák) y (Mj) = M j (x; p (Mj) ), j = 1,, M ahol p (Mj) R ν az ismeretlen modell paraméterek, x R n a jelen és múltbeli bemenetek és kimenetek és y (Mj) R µ jövobeli kimenet vektora. A mért adatok egy rekordja D[0, k] = { (x(i), y(i)) i = 0,, k } Egy. jelnorma és a veszteségfüggvény: L (j) (p (Mj) ) = r (j), r (j) (τ) = y(τ) y (Mj) (τ), τ = 0,, k Feladat: Határozzuk meg azt a j modell-indexet, amelyre az L (j) veszteségfüggvény minimális (Ehhez M paraméterbecslési feladatot kell megoldani.)

10 CCS-10 p. 10/1 Predikción alapuló diagnosztika Elvi feladatkituzés Adott: A meghibásodási módok száma NF (0=normal) Prediktív rendszermodellek minden meghibásodási módra y (Fi) (k + 1) = M (Fi) (D[1, k]; p (Fi) ), k = 1,2,... A mért adatok egy rekordja: D[0, k] = { (u(τ), y(τ) τ = 0,, k} Veszteségfüggvény J (Fi), i = 0,, N F J (Fi) (y y (Fi), u) = kx τ=1 [ r (i)t (τ)qr (i) (τ) ], r (i) (τ) = y(τ) y (Fi) (τ), τ = 1,2, Kiszámítandó: A rendszer aktuális meghibásodási módja, amely az a modell index i amelyikre a veszteségfüggvény minimális. Meghibásodás-azonosítás

11 CCS-10 p. 11/1 Identifikáción alapuló diagnosztika Elvi feladatkituzés Adott: A meghibásodási módok száma NF (0=normal) Prediktív parametrikus rendszermodellek minden meghibásodási módra y (Fi) (k + 1) = M (Fi) (D[1, k]; p (Fi) ), k = 1,2,... A mért adatok egy rekordja: D[0, k] = { (u(τ), y(τ) τ = 0,, k} egy paraméterektol függo veszteségfüggvény J (Fi), i = 0,, N F J (Fi) (p (estfi) p (Fi) ) = ρ (i)t Qρ (i), ρ (i) = p (estfi) p (Fi) Kiszámítandó: A rendszer aktuális meghibásodási módja, amely az a modell index i amelyikre a veszteségfüggvény minimális. Meghibásodás-azonosítás

12 CCS-10 p. 12/1 Rendszer- és irányításelmélet: kapcsolódó tantárgyak MI BSc alapfogalmak: "Irányítástechnika" (Gerzson Miklós, VIRT) modellezés, diagnosztika: "Modell alapú diagnosztika diszkrét módszerekkel" (Hangos Katalin, VIRT Piglerné Lakner Rozália, SzTA) MI MSc rendszer-analízis, irányítástervezés: "Computer controlled systems" (Hangos Katalin, VIRT, Piglerné Lakner Rozália, SzTA) identifikáció: "Dinamikus rendszerek paramétereinek becslése" (Hangos Katalin, Magyar Attila, VIRT) diagnosztika "Intelligens irányitórendszerek" (Piglerné Lakner Rozália, SzTA, Hangos Katalin, VIRT) 5 éves egyetemi képzés rendszermodellezés: "Folyamatmodellezés és model analízis" (Piglerné Lakner Rozália, SzTA)

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Dinamikus rendszerek paramétereinek BAYES BECSLÉSE. Hangos Katalin VE Számítástudomány Alkalmazása Tanszék

Dinamikus rendszerek paramétereinek BAYES BECSLÉSE. Hangos Katalin VE Számítástudomány Alkalmazása Tanszék Dinamikus rendszerek paramétereinek BAYES BECSLÉSE Hangos Katalin VE Számítástudomány Alkalmazása Tanszék 1 Bayes-becslések 1. A véletlen Bayes féle fogalma A "véletlen" Bayes féle értelmezése a megfigyelést

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek

Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek Számítógéppel irányított rendszerek elmélete Gyakorlat - Mintavételezés, DT-LTI rendszermodellek Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos.katalin@virt.uni-pannon.hu

Részletesebben

Rendszertan. Visszacsatolás és típusai, PID

Rendszertan. Visszacsatolás és típusai, PID Rendszertan Visszacsatolás és típusai, PID Hangos Katalin Számítástudomány Alkalmazása Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium MTA Számítástechnikai és Automatizálási Kutató Intézete

Részletesebben

Számítógépvezérelt rendszerek mérnöki tervezése 2006.05.19.

Számítógépvezérelt rendszerek mérnöki tervezése 2006.05.19. Számítógépvezérelt rendszerek mérnöki tervezése 2006.05.19. 1 Bevezetés Az irányított rendszerek típusa és bonyolultsága különböző bizonyos eszközöket irányítunk másokat csak felügyelünk A lejátszódó fizikai

Részletesebben

Gyártórendszerek Dinamikája. Irányítástechnikai alapfogalmak

Gyártórendszerek Dinamikája. Irányítástechnikai alapfogalmak GyRDin-11 p. 1/19 Gyártórendszerek Dinamikája Irányítástechnikai alapfogalmak Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu GyRDin-11 p. 2/19 Tartalom

Részletesebben

Statistical Inference

Statistical Inference Petra Petrovics Statistical Inference 1 st lecture Descriptive Statistics Inferential - it is concerned only with collecting and describing data Population - it is used when tentative conclusions about

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 1. mérés: Hımérsékleti sugárzás. 2008. április 15.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 1. mérés: Hımérsékleti sugárzás. 2008. április 15. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 1. mérés: Hımérsékleti sugárzás Értékelés: A beadás dátuma: 2008. április 29. A mérést végezte: 1/8 A mérés célja A mérés célja volt,

Részletesebben

Dinamikus rendszerek identifikációja genetikus programozással

Dinamikus rendszerek identifikációja genetikus programozással Dinamikus rendszerek identifikációja genetikus programozással Madár János, Abonyi János, Szeifert Ferenc Veszprémi Egyetem, Folyamatmérnöki Tanszék www.fmt.vein.hu/softcomp, abonyij@fmt.vein.hu Kulcsszavak:

Részletesebben

rendszerszemlélető, adatközpontú funkcionális

rendszerszemlélető, adatközpontú funkcionális http://vigzoltan.hu rendszerszemlélető, adatközpontú funkcionális Integrált Vállalatirányítási Rendszerek Alkalmazói fejlesztések mindig valamilyen módszertan alapján történnek. A módszertan eljárások,

Részletesebben

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:

Részletesebben

A klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben

A klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben Hatásvizsgálói konzultációs workshop Országos Meteorológiai Szolgálat A klímamodellek alkalmazásának tapasztalatai a magyarországi gabona félék hozam előrejelzéseiben Kemény Gábor, Fogarasi József, Molnár

Részletesebben

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation

Részletesebben

MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010

MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010 MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010 KONFERENCIA ELŐADÁSAI Nyíregyháza, 2010. május 19. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága

Részletesebben

ö Á ö É É ü ü É É Ő ö É ö Á ó ü É Ó Ö Á ú é ü ö é Ö é ü é é ü ü é é Ü é ö ö Ö ö é Á é é é é é ó é é é é ü é ö ö ö í é ü ú é é é ü ü é é é ü é é ö é ö é é ó ö ü é é é é ó ó ö í ó é ó é é é ó é é é ű ö é

Részletesebben

Á Á É Á Ü ö ű ű ő í ő ö ő í ő ö í É ő í ű ö ő ő í ö ü ő ő ü ő ü í ö ö ü ö ü ő ő ü ü ő ü ö ő ő ő ő íő ö ö ö ü ő ő ő ő í ú ő ő í ü ö ő í ű ü ö ő ő ő ő í ú ö ö ő ö ö ö ö ü ő ő ö ő ő í í ő ö ü ö í ö ö ö ö

Részletesebben

ó Í ó ó Ü ó ő Ú ő É ó É Í ő Ö ő ő ó Íó ó Ú ó É Ö ó ő ő Ú Íő ő ő ő ő ő Ú ő ó ó ő ő ő ő ó ő ő ő ő ő ő Í ő ő ó ő ő ó ő Í ő ó ő ő ő ő ő ó ó ó ő ő ó ő ő ő ő ő ő ó ő ő ő ó ő ő Á ű ő ő ő ő ő ő Í ó ő ő ő ő ó ó

Részletesebben

Á Á Í ó ó ó ö ó Ü ö ú Í ó ö ö ó ú ö ó ö ö Ü ö ú ó ó ó ó ö ü ó ö ö ü Ü ö ö ú ó ó ö ú ö ó ó ó ó ö ó ö ó ö ó ö ű ö ö ö ű ö ö ű ö ö ö ű ö ö ó ö ö ó ó ü ö ö ű ö ö ö ó ö ű ö Ü ö ö ú ó ö ó ü ü ö ü ü ö Í ö ü ö

Részletesebben

ó ő ó ó ö ö ú Á Í ö ó ő ö ú Í ó ü ó ő ö ú ö ó ő ó ő ü ő ű ö ö ü ő ü ó Ó ö ó ó ő ő ő ö Í ó ö ö ö ó ő ö ő Í ü ö ö ö ö ö ö ő ö ö ö ö ú ú ű ö ű ó ó ö ö ő ű ö ú ö ö ö ö ö ó Á ö ö ö ő ő ó ő ő Ö ő ú ó ö ú ú ű

Részletesebben

Ő Ö ö Ö É Á Ü É ó É ó ü É É Ö Ö Á É Ő ú É Á ú Ő Ö Ü Ö Ö ü ó ó ü Ü ű ö ú ó Á í ó ö ö ö ö ó ü í í Á í Ó í ó ü Ö ö ú ó ó ö ü ó ó ö í í ű ö ó í ü í ö í í ű ö ü Ő ü ú Ö ö ó ö ó ö ö ö ü ó ö í ó Ö ö Ő ü Ö Ö ü

Részletesebben

ű í ö ö Á ü ü ö ö ö í í É ú ú ö ö ű í ö ü ö ú ü ű ú ö í í ú ö ú í ö ü í í ö í Á Ó É í ű ö ü ö ü ú ü ö ü ú ű ö ü ű ü í ü ű ü ü ö ű í ü í ö ü í í í í ö í ö ö ö Á ű ú ű ö ö ű í ö ö í ú í í ű í ö ú ö ö í Á

Részletesebben

ú ű ö ö ü ü Í ö ö ö ö É Í É ú ú É ú ú ö É ö Í Ü ú Í ö ö Í ú ö ö ö ö ü ö ö ú ü Ü ö ü Í ö ö ű ö ö Í ű ú ö ö ö ö Í ö ö ű ö ö Í ü Í ü ú Í É ö ö ü ö ö Ü ö ö Í ü Í ö ü Í Í ö Í ö Í ü ö ú Í ú Í ö É ú Í ö ö Í É

Részletesebben

É ö ö Í Í Í Ó Í Í Á Ó Á Ü Ú Í Á Á ű Á Ó Í Í É Á Ó Á Á ö ö Á Í Á Á ö ö ű ö ö Í Í ű Ö ű ö ö ű Í Í Ü ö ö Ó ű Í ö ö Í ö ö Ó ö Ö Í ö ö Ö ö ű ö ö Ó Í ű Ó ö ö ű ö ű Ö Ü Ö ű ű ö ö ö ö ö ö Íö ö Í Ö Ó ű ö ű ö ö

Részletesebben

Ő Ö Ü Ö Ö ő ü ó í ü ü ő ü ó Ö ó ő ó ó ő ó ő í ő í ü ő ö ö ö ü í ü ö ö ö ö Ö ő ő Ö ő í ó ő ó ő Ö í ő ő ő ő ü ő ő ö ó ű ö ó ö ú ő ő ó ü ö í ü ö ö ó í ú ő ó ő í ö ö ö í ő ö ő ő ó ü ö ú ü ő ó ó ő ó ő ó í í

Részletesebben

É É É Ó Ö É í Ö ő ü ó ő ó ű Á ű ó ő ó ü ó ő ű ő Ö ü É É É ó É ó ü ű í Ö ü ó ű í ó ő ó ő ü ó ü ő ó É Í ő ő ő Ú ó ő ő ő ó ű ó ő ó ü ő ő ő í ü ő ü ő ó Ü ő ó ő ő ó ő Ú ő ő ó ő í ó ő ü ó Í ő ő ü ő É í ő ü ó

Részletesebben

ő ö é ü ö é Ö é ő ü é í ü é é ő ö é ő ö Á ó ü ö é í é ö é Ö é ő ü ü é í é é ó é é í í é é ő ü í ő Ö í é ő é é ő é ő éü ú ü ö ő í Ú Ú ö É í í ü ó ó ó ü ő ö é í ó ö é í ö é é í ö é ó ű ő ö é ő ű ő í é í

Részletesebben

ú Ö ü ő ő ú ú ű ő í ó ó í ó ú ő ü ú ű ő í ó ó í ó ű í ó ő Í ő ü ú ő ő í ó ú Ö ő Ü ó ő ő É ó ó ó ó ő ő ú ű ő í ó ú ű ő ú ú ő ű ő í ő ó í ű ő ü ú ó ő ő ó ű ő ő í í í í ó ű ú ő Á ó ő Á ú ó ó ő ó í ó ű í í

Részletesebben

ú ő ó ú ö ő ü ú ö ő ó ó ó ü ő í ö í ó ú ő ó ó ó ú ó ú ó ő ő ö ö ő ó ú ó ő ó ő í Á Á ö ö ó ő ú ö ő ú ó í ő ü ü ü í ú ü ü ü ó ú í ü í ó ő ó ő í ú ü ú ó ü ü ö ó ü ó í ü ó ő ö ö í ü ú ó ő ó í ó ő ó í ó ó í

Részletesebben

Á ó ü ő Ö Á ü ó ü ő Í ü Í Ó ü ő ő ó ó ó Í ó ü ó ő ő ó ó ü ú Í ő ő ó Ó ő ó ü ó Á ü ó ő ó Í Á Í ő ó ó ó ő ő Á ó ó ú ő Í ő ű ó Ó ü ó ó ú ó ő ú ü ő ó ó ó ő ó ó Ö ó ó ő ó ő ó ő ü ű ő ó ó ő ú ő ú ü Í ü ő ó ó

Részletesebben

ü ö Ö ü ó ü ó ó ó Á Ő É ö Ö ü ó ü ú ó ó ó ö ó í í ö ú Ó É ö Ö ü ó ü ü ó ó ó ö ó í ü ö Ö ó ü ü ü ó ó ó ö ó ü í í í ó í ú ű ű ü ű ú í ü ö ö í ö ú ü ó ú ú ű í ü ö ö ó ú ó í ü ú ó ü ó ó ű ó í ü ű ü í ű í

Részletesebben

ü ó Ö ü í ü ü ü ö É ó ó í ó ó ö ó ö ö ö í í ű ü ü ü Í í ü ü ü ö í ó í ó ó í ó í É ü ö í Í É í ö ú í ó í ö ö ó í ö ó ó ó ö ó ö í í ó ó í ó ó Ö í ö ö ó ö ó ú ó ö ó í ó ó í í ü ó í ö ó ó ü ü ó ö ó ú í ó í

Részletesebben

ü Ü ö ö ú Í ó í í ó ó ó ü ó ű ó í ó ó í ö ó ö ú ü ö Í í í ó ó ó ó Í ó ü ű ó í ó ó í ó Í í ó ü ö ú ó ó ó í í ó í í ű í ü ö í ó í ö í ú ó í ú ü ú Í í ü Í í í ó ü ö í ó í ó ü ö ó Í í í ó Í É ó ó ó Í í ö ö

Részletesebben

Á Ó Á Ü ő ű Ú ö í ő Ó ú ö Á ú Ű Ó ű Ó í ű ö í ö ő ö ö í ö ö ő É ö Á ű Ó ö Á Ó ö í Á í í ö ű ö ú ö ö ú ö Ú ö ű Ó Ú ö Á í Ó í í Í í í Í ö Ú ö Á ú í Ó ő í ú ö Á ú Á í ú ö Á ú í ö Á ú í Ó ö ű Ó Ú Ú ű ő ö ü

Részletesebben

É ő ő íí í ú í ő Ő ő ü ü ü ü ü Ü Ü ő ő ő ő í ő ő ő í íí í ő ű í Ó Ó Ó í Ö Ö í Á Ö Ü Ö É í Ö í ő Ö Ö Ö Á í Á ő ő ő ő É Í Í ő ú Ú ú Ö í ő Á Ö ő Í Í ő ű í ő ú ü íí í Ö ő ő ő ő Í ő ő ő ő í ő ő ő ő í É É í

Részletesebben

í ö ő í ú ö ö í íí ü Ú Í Á ú ü í ö í ő í ö ő ű Í í ö ü ü ő ő ú í ő í ő ü ü ő Í ő Í í ü ö ö ö ö í ű ő ö ö ö í ü í Ó ö í ő ő í í ő Ó Ú Ő Íő Ő Ó ő ö ő ü ű í í ü ú Ő Í ő ő ő í ü ő É í Ő í ü ü ö ő í ü ö ö ü

Részletesebben

Í ö Í ű ú ö ö ú ö É í í ö Ó ű í ö ö í ö ö ö í í ö í í ö ö í ö ö ö ű í ö ö ö ö ö ö ö ú ö í ö ö í ö ö ö ö ö ú ű ű ú ö ö í ö É í ö ö í ö ö ö ú ű ö ö í ö ú ű ö ö í í ú ö ö í ö í í ö ö ö ú ö ö ö ö Í ö ú ö ú

Részletesebben

ö Ö ö Ö ö ö ö ö ö ö ö Ö ö Ö ö ö ö ö ö ű ö ö ö ö Ö ö Ő Ü ö ö Ö Ö ö ö ö ö ö ö ö ö Ü ö ö ö ű ö ö ö ö ű ö ű ö Ö Ü Ü ö ö ú Ű ÍŐ Ö Ő ÍŐ ö ö ö ö ű ö Ö Ö Ó ö ö Ö ö ö Ö ö ö Ö ö ű ö ö É ö ö Í Á Á Ő ű ö ű ú Ö Ü Á

Részletesebben

í ö Ö Á í ö í í ö í ö ö í í ö ö ö ö í í ö í ö í ö í ü í í ö í í í í í ö ö í í í ú ö í í ö Á Á Á ü ú í ö Á í í í ö í í ü ö ö ö ö í ö í í í ú í í ű ú í í í í ö í ű í ö ö ü ö ű ö ö í í í í í ö ü í ö í ö ű

Részletesebben

ö é Ö é ü ö é ü ö é Ö é ü í ü ü ü é é ü é é Ö ö é é é é ö ü ö ü ö é é ö é é ö é é ö ö é í é ü é é é í é ö é é ö é ö é ü é ü ú é é é é é í é é é é ö ö é é ö ö é é í í é í é ü ö ü Á é ö Á í ö í é ö ü ö é

Részletesebben

ö ú í í í ő ű Ü Ű Í í Ő Á Á Ö Ő Ű Í ö ú í í í ú ő ö ű í í í ö Ó ő í í í ö ú í ö ö ö ö Ü ő ö ö ö ú ű ő ú ű ö ö ú ö ö ő Ü ö ö í í ő ö í í í í í í ö ö í ö ö í í ő í ő ö ő í ú í ö í ö í í ö ű ö ö Ó Ü ö ő ő

Részletesebben

Í ú ó ú ó ú ó ó Á ó ó ö ű ú Á ú ó ó ó Í ó ö ö ö Í ö ó ó ö ó ó ó ö ó ö ö ö ö ó ö ó ö ó ü ó ó ü ó ü ö ö ö ö Ő ó ó Íó ó ó ü ó ű ó ó ű ű ó ö ü ö ú ö ü ű ö ö ö ö ó ú ö ö ö ü Í Í Í Á ó ó ú ü ú Á ü ö Á ó ü ó

Részletesebben

A könyv tartalomjegyzéke

A könyv tartalomjegyzéke A könyv tartalomjegyzéke Elıszó Bevezetés Adatbázis-kezelı rendszerek Adatmodellezés Alapfogalmak Egyedhalmaz, egyed Kapcsolat, kapcsolat-elıfordulás, kapcsolat típusa Tulajdonság, tulajdonságérték, értékhalmaz

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el? Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í

Részletesebben

Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö

Részletesebben

ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö

Részletesebben

ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő

Részletesebben

ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó

Részletesebben

ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő

Részletesebben

Á ó Á Ü É Ú Í Á í ó ó ó ó ó ó ö őí ó ó ü ű í ó ő ú ö ő ó ó í ó í ó ó ő í í í Í ó ó ó ö ó ó í ó í ö í ó ű í Íő ó ó ó ő í ó ő í ó ó ő í ö ó ü ö ó í ü í í ű ó ö ó í ó ö ö ö í ő í ó ó É É í ő ő í í ü ö í í

Részletesebben

1002D STRUKTÚRÁJÚ, KRITIKUS ÜZEMBIZTONSÁGÚ RENDSZER (SCS 1 ) ELEMZÉSE DISZKRÉT-DISZKRÉT MARKOV MODELLEL

1002D STRUKTÚRÁJÚ, KRITIKUS ÜZEMBIZTONSÁGÚ RENDSZER (SCS 1 ) ELEMZÉSE DISZKRÉT-DISZKRÉT MARKOV MODELLEL Dr. Forgon Miklós mk. ezredes ZMNE olyai János Katonai Műszaki Kar Katonai Elektronikai Tanszék forgon.miklos@zmne.hu Neszveda József főiskolai docens, irányítástechnikai szakmérnök MF Kandó Villamosmérnöki

Részletesebben

Továbbtanulás, pályakövetés

Továbbtanulás, pályakövetés Továbbtanulás, pályakövetés 2002-2003 Gimnázium, Idegenforgalmi szakközépiskola, Vendéglátóipari 199 fő % szakközépiskola 70 43 71 44 szakképzésre 49 30 2003-2004 Gimnázium 102 fő % 51 50 49 48 szakképzésre

Részletesebben

É Á í Í í Í í ú í ű ö Í í í í ö í í ö í Í í í ü Í É í í Ű ö ü ö ö í Í ö í í ö í í í ö í ö ö ö ö ö ü ö ö í ö ö ö ű ö ú ö Í í í í ö Á Í í í í í Í ú Í í í í ö í ű ö ű ű í ű Í ú í ö í í í ö ö Í ö Í í í í í

Részletesebben

Munkapiaci áramlások Magyarországon

Munkapiaci áramlások Magyarországon Kónya István MTA-KRTK Közgazdaságtudományi Intézet és Közép-európai Egyetem 2015.11.13 MTA KRTK KTI Motiváció Munkapiaci áramlások központi szerepe Munkapiac keresési modellje Munkanélküliség és aktivitás

Részletesebben

Ensemble Kalman Filters Part 1: The basics

Ensemble Kalman Filters Part 1: The basics Ensemble Kalman Filters Part 1: The basics Peter Jan van Leeuwen Data Assimilation Research Centre DARC University of Reading p.j.vanleeuwen@reading.ac.uk Model: 10 9 unknowns P[u(x1),u(x2),T(x3),.. Observations:

Részletesebben

Mapping Sequencing Reads to a Reference Genome

Mapping Sequencing Reads to a Reference Genome Mapping Sequencing Reads to a Reference Genome High Throughput Sequencing RN Example applications: Sequencing a genome (DN) Sequencing a transcriptome and gene expression studies (RN) ChIP (chromatin immunoprecipitation)

Részletesebben

Pletykaalapú gépi tanulás teljesen elosztott környezetben

Pletykaalapú gépi tanulás teljesen elosztott környezetben Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Jelasity Márk témavezető Szegedi Tudományegyetem MTA-SZTE Mesterséges Intelligencia Kutatócsopot Motiváció Az adat adatközpontokban

Részletesebben

I. BEVEZETÉS, MOTIVÁCIÓ, PROBLÉMAFELVETÉS

I. BEVEZETÉS, MOTIVÁCIÓ, PROBLÉMAFELVETÉS Szolnoki Tudományos Közlemények XIV. Szolnok, 1. Prof. Dr. Szabolcsi Róbert 1 MECHANIKAI LENGŐ RENDSZEREK RENDSZERDINAMIKAI IDENTIFIKÁCIÓJA I. BEVEZETÉS, MOTIVÁCIÓ, PROBLÉMAFELVETÉS A műszaki gyakorlatban

Részletesebben

A nagy teljesítõképességû vektorhajtások pontos paraméterszámításokat igényelnek

A nagy teljesítõképességû vektorhajtások pontos paraméterszámításokat igényelnek A nagy teljesítõképességû vektorhajtások pontos paraméterszámításokat igényelnek Mike Cade - Control Techniques plc A motorszabályozás algoritmusaihoz számos motorparamétere van szükség, de pontatlan értékek

Részletesebben

Kabos Sándor. Térben autokorrelált adatrendszerek

Kabos Sándor. Térben autokorrelált adatrendszerek Kabos Sándor Térben autokorrelált adatrendszerek elemzése Összefoglalás az előadás példákon szemlélteti a térben autokorrelált adatok blokkosításának és összefüggésvizsgálatának jellemző tulajdonságait.

Részletesebben

Hibrid rendszerek stabilitásvizsgálata és irányítása. PhD tézis. Írta: Rozgonyi Szabolcs. Témavezet : Prof. Hangos Katalin.

Hibrid rendszerek stabilitásvizsgálata és irányítása. PhD tézis. Írta: Rozgonyi Szabolcs. Témavezet : Prof. Hangos Katalin. Hibrid rendszerek stabilitásvizsgálata és irányítása PhD tézis Írta: Rozgonyi Szabolcs Témavezet : Prof. Hangos Katalin Pannon Egyetem Informatikai Tudományok Doktori Iskola 2011 1. Motiváció és eredmények

Részletesebben

Vasbetontartók vizsgálata az Eurocode és a hazai szabvány szerint

Vasbetontartók vizsgálata az Eurocode és a hazai szabvány szerint Vasbetontartók vizsgálata az Eurocoe és a hazai szabvány szerint Dr. Kiss Zoltán Kolozsvári Műszaki Egyetem 1. Bevezetés A méretezési előírasok betartása minenhol kötelező volt régen is, kötelező ma is.

Részletesebben

Performance Modeling of Intelligent Car Parking Systems

Performance Modeling of Intelligent Car Parking Systems Performance Modeling of Intelligent Car Parking Systems Károly Farkas Gábor Horváth András Mészáros Miklós Telek Technical University of Budapest, Hungary EPEW 2014, Florence, Italy Outline Intelligent

Részletesebben

Fizikai alapú közelítő dinamikus modellek

Fizikai alapú közelítő dinamikus modellek P C R G Fizikai alapú közelítő dinamikus modellek a Paksi Atomerőmű primerkörével kapcsolatos feladatokra Hangos Katalin Folyamatirányítási Kutató Csoport MTA SzTAKI Publikációs Díjazottak Előadása 2006

Részletesebben

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm It is like any other experiment! What is a bioinformatics experiment? You need to know your data/input sources You need to understand your methods and their assumptions You need a plan to get from point

Részletesebben

A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol

A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol Attila FODOR 1), Dénes FODOR Dr. 1), Károly Bíró Dr. 2), Loránd Szabó Dr. 2) 1) Pannon Egyetem, H-8200 Veszprém Egyetem

Részletesebben

Á Ő Á Ö é í ó Á ő ő Á Á Ó Ö Őú Ó ó É ö Ű ö É Á é Ö ú ó Á Ó Ö É É É ó í É É ó ó É ö ű ö É Á ó ő ö é í ö é ű ö ő ö ő é ű ö é ö é é ű é Ő é é í é ö é é ő é é é ö é é é é í é ú ó é ű é Ó é ú ű ő é é ő é ű

Részletesebben

ü ý Ó ć Ĺ ü ü ú Ö ü ü ü ü ú ź ü ź ö ö ź ü ü Ó ö Í ö ö ý ö Í Ĺ Í ł ü ń ö ú Ö ü ü ü ý ö ö ü ú Ö ł ü ü Ö ü ú Ö É Ĺ ö ú ú ü ű ź ü ú Í Íö ú ü ű Ĺ ć Íě Ż ú Ö ü ü Í Í ú Ö ü ü Í ü ý ü ü ń ü ę ö ö ö ü ć ú Ó ú ü

Részletesebben

Cluster Analysis. Potyó László

Cluster Analysis. Potyó László Cluster Analysis Potyó László What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis

Részletesebben

: az i -ik esélyhányados, i = 2, 3,..I

: az i -ik esélyhányados, i = 2, 3,..I Kabos: Adatelemzés Ordinális logisztikus regresszió-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j +

Részletesebben

Á Á É É Í É É É ö ő ü ö ő ő ü ő í ú ó ő ő ó ó ő ú ó í ő ő ő ó ü ö ü ö ü ö ö í í ő í ő É É Á ő ő É í ó ú ó í ö í í ő É í ó í ó ó ő í í ö ő ő ő ö ő ö í ö í ő ő ő ö ó ü ő ö ő ó ó ü ő ó ő ő í ó ó ő ö í í ó

Részletesebben

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz Kvantumkapuk, áramkörök 2016. március 3. A kvantummechanika posztulátumai (1-2) 1. Állapotleírás Zárt fizikai rendszer aktuális állapota

Részletesebben

Biztosítási ügynökök teljesítményének modellezése

Biztosítási ügynökök teljesítményének modellezése Eötvös Loránd Tudományegyetem Természettudományi Kar Budapest Corvinus Egyetem Közgazdaságtudományi Kar Biztosítási ügynökök teljesítményének modellezése Szakdolgozat Írta: Balogh Teréz Biztosítási és

Részletesebben

Autópálya forgalomszabályozás felhajtókorlátozás és változtatható sebességkorlátozás összehangolásával és fejlesztési lehetőségei

Autópálya forgalomszabályozás felhajtókorlátozás és változtatható sebességkorlátozás összehangolásával és fejlesztési lehetőségei Autópálya forgalomszabályozás felhajtókorlátozás és változtatható sebességkorlátozás összehangolásával és fejlesztési lehetőségei Tettamanti Tamás, Varga István, Bokor József BME Közlekedésautomatikai

Részletesebben

A logaritmikus legkisebb négyzetek módszerének karakterizációi

A logaritmikus legkisebb négyzetek módszerének karakterizációi A logaritmikus legkisebb négyzetek módszerének karakterizációi Csató László laszlo.csato@uni-corvinus.hu MTA Számítástechnikai és Automatizálási Kutatóintézet (MTA SZTAKI) Operációkutatás és Döntési Rendszerek

Részletesebben

é ö é Á é é é ö é é ú ö é é ő é ő ő é ö é í ű ő ö ö é ü ű ő ő ő Ú É ö É Ú é é ö é ö é Íé Ú ú ö é é é ő ő é ú ö é ö é é é ú ü é ő é é ö é é Á é ű ö ű é é é ú é É Ú Á É É Á ö é Á é ő ö é ő É é ű ú é é Á

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

FATERMÉSI FOK MEGHATÁROZÁSA AZ EGÉSZÁLLOMÁNY ÁTLAGNÖVEDÉKE ALAPJÁN

FATERMÉSI FOK MEGHATÁROZÁSA AZ EGÉSZÁLLOMÁNY ÁTLAGNÖVEDÉKE ALAPJÁN 4. évfolyam 2. szám 2 0 1 4 101 107. oldal FATERMÉSI FOK MEGHATÁROZÁSA AZ EGÉSZÁLLOMÁNY ÁTLAGNÖVEDÉKE ALAPJÁN Veperdi Gábor Nyugat-magyarországi Egyetem, Erdômérnöki Kar Kivonat A fatermési fok meghatározása

Részletesebben

Megerősítéses tanulás

Megerősítéses tanulás Megerősítéses tanulás 2 Múltbeli események Tudás A világ tanult szabályosságai Tudatosság? A konkrét megfigyelésből kikövetkeztetett információ Döntéshozás Érzékelés Izomvezérlés How to build a decision

Részletesebben

Széchenyi István Egyetem www.sze.hu/~herno

Széchenyi István Egyetem www.sze.hu/~herno Oldal: 1/6 A feladat során megismerkedünk a C# és a LabVIEW összekapcsolásának egy lehetőségével, pontosabban nagyon egyszerű C#- ban írt kódból fordítunk DLL-t, amit meghívunk LabVIEW-ból. Az eljárás

Részletesebben

Biztonságos PHP a gyakorlatban

Biztonságos PHP a gyakorlatban Biztonságos PHP a gyakorlatban Ahhoz, hogy meg tudjuk védeni PHP alkalmazásainkat, az elsõ és legfontosabb lépés a biztonsági veszélyek felismerése és megértése. Az elmúlt két évben a PHP magfejlesztõi

Részletesebben

Mérnök informatikus MSc levelező tagozat tanterve

Mérnök informatikus MSc levelező tagozat tanterve Mérnök informatikus MSc levelező tagozat tanterve Elfogadta a MIK Kari Tanácsa a 2011. április 5-i ülésén Érvényes A 2011/12-es tanévtől kezdve, a képzésben részt vevő összes hallgatókra vonatkozóan azonnali

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Választási modellek 3

Választási modellek 3 Választási modellek 3 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department

Részletesebben

Kezdőlap > Termékek > Szabályozó rendszerek > EASYLAB és TCU-LON-II szabályozó rendszer LABCONTROL > Érzékelő rendszerek > Típus DS-TRD-01

Kezdőlap > Termékek > Szabályozó rendszerek > EASYLAB és TCU-LON-II szabályozó rendszer LABCONTROL > Érzékelő rendszerek > Típus DS-TRD-01 Típus DS-TRD FOR EASYLAB FUME CUPBOARD CONTROLLERS Sash distance sensor for the variable, demand-based control of extract air flows in fume cupboards Sash distance measurement For fume cupboards with vertical

Részletesebben

OTKA nyilvántartási szám: T047198 ZÁRÓJELENTÉS

OTKA nyilvántartási szám: T047198 ZÁRÓJELENTÉS MESTERSÉGES INTELLIGENCIA MÓDSZEREK ALKALMAZÁSA A FOLYAMATMODELLEZÉSBEN című OTKA pályázatról 2004. jan. 01 2007. dec. 31. (Vezető kutató: Piglerné dr. Lakner Rozália) A mesterséges intelligencia eszközök

Részletesebben

Searching in an Unsorted Database

Searching in an Unsorted Database Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching

Részletesebben

ö É ü ő ő É Á ö ö Á ö ö ö Í ú Í ö ű ö ö ő ú ő ú ú ő ü ő ö Á ú Í É ü ö ü ö ö ő ö ő ö ő ő ö ő ö ő ö ö úö Í ö ü ő ü ö ő ö ű ö ő ü ű Í ö É ő Ó É Í Í É Á ú Í Ú Í Íö Í Á É ö ú Á Á Á Í Ú Á ű É ö ÍÉ É É É Ü Í

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS Correlation & Linear Regression in SPSS Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise 1 - Correlation File / Open

Részletesebben

ATOMI ERŐ MIKROSZKÓP OKTATÁSI MODELL ATOMIC FORCE MICROSCOPE MODEL IN SCHOOL

ATOMI ERŐ MIKROSZKÓP OKTATÁSI MODELL ATOMIC FORCE MICROSCOPE MODEL IN SCHOOL ATOMI ERŐ MIKROSZKÓP OKTATÁSI MODELL ATOMIC FORCE MICROSCOPE MODEL IN SCHOOL Hajdú Csaba, Papp Katalin SZTE TTIK Kísérleti Fizika Tanszék ÖSSZEFOGLALÁS A modern fizika oktatásakor gyakran találkozunk olyan

Részletesebben

ő ö Á Í ü ű í ü ú Ö ő ö í ö í Ó ú í ő ú ő Í ú ő Ó í ú í ő ú í Ó í í ö ő ő í í Á ü ö í ő Ó ö ő ú í ő ö ü ö ö Í ü ö ü ő ú í ú Ü ö í ő ő ú Ó í ö ö ö í ö Á É ú ú Ó ö Á ö ő ö ö ö ö ú ű ö ő ő ü ö ö ö ú í Ó Ú

Részletesebben

Feszített vasbeton gerendatartó tervezése költségoptimumra

Feszített vasbeton gerendatartó tervezése költségoptimumra newton Dr. Szalai Kálmán "Vasbetonelmélet" c. tárgya keretében elhangzott előadások alapján k 1000 km k m meter m Ft 1 1 1000 Feszített vasbeton gerendatartó tervezése költségoptimumra deg A következőkben

Részletesebben

Emberi ízületek tribológiája

Emberi ízületek tribológiája FOGLALKOZÁS-EGÉSZSÉGÜGY 3.2 Emberi ízületek tribológiája Tárgyszavak: ízület; kenés; mágneses tér; orvostudomány; szinoviális folyadék; ízületnedv; ízületi gyulladás; arthritis; arthrosis; terhelhetőség;

Részletesebben

Á é ó ö ó é é é é ö é é ó é é ó ö ö ő é é é ó é é é é ü é ö é é ó é ő ú ó é ü é é ó é í ü ő é ö í é é ü ő é ö ű ú é é é é ü é ű ü ö ö ó ő ú ó é é ő é é é é ö é ü É é ű é é í ö é ü é ü ő í é ó é ő ó é é

Részletesebben

Kálmán-szűrés. Korszerű matematikai módszerek a geodéziában 2014.03.10.

Kálmán-szűrés. Korszerű matematikai módszerek a geodéziában 2014.03.10. Kálmánzűré Korzerű matemata módzere a geodézában 4.3.. A Kálmánzűré defnícója Olyan algortmu, amely valamely lneár dnamu rendzerben egzat övetezetét tez lehetővé, amely a rejtett Marovmodellhez haonló

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics. Hypothesis Testing Petra Petrovics PhD Student Inference from the Sample to the Population Estimation Hypothesis Testing Estimation: how can we determine the value of an unknown parameter of a population

Részletesebben

A troposzférikus szcintilláció hatása a mûholdas távközlésre

A troposzférikus szcintilláció hatása a mûholdas távközlésre A troposzférikus szcintilláció hatása a mûholdas távközlésre BAKKI PÉTER BME Villamosmérnöki és Informatika Kar, Szélessávú Hírközlô rendszerek és Villamosságtan tanszék bakki@mht.bme.hu Reviewed Kulcsszavak:

Részletesebben