III. Gráfok. 1. Irányítatlan gráfok:
|
|
- Léna Faragó
- 6 évvel ezelőtt
- Látták:
Átírás
1 III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám: Egy adott pontból kiinduló (beérkező) élek számát az adott csomópont fokszámának nevezzük. Jelölése: d(x) Egy olyan csomópontot, amelynek a fokszáma 0 izolált pontnak nevezünk. Tétel: Egy gráfban a csomópontok fokszámainak összege egyenlő az élek számának kétszeresével. n csomópontok száma, m élek száma d(1)+d(2)+d(3)+...+d(n)=2m Következmény: Egy gráfban páros számú olyan csomópont van, amelynek a fokszáma páratlan. Tulajdonság: 2 n(n-1)/2 -en olyan gráf létezik, amely csomópontjainak száma n. 2. Részgráf, algráf: Egy gráfban, ha letörölünk éleket, akkor az eredeti gráf egy részgráfjához jutunk, ha csomópontokat törölünk a hozzátartozó élekkel együtt, akkor a gráf egy algráfját kapjuk. 3. Teljes gráf, kiegészítő gráf: Egy gráf akkor teljes gráf, ha bármely 2 csomópontja között van él. Egy gráfnak a kiegészítő gráfját úgy kapjuk meg, hogy megtartjuk a csomópontokat és meghúzzuk azokat az éleket, amelyek nincsenek meg az eredeti gráfban. Ha a gráfot és a kiegészítő gráfját egymásra helyeznénk, teljes gráfot kapnánk. Egy teljes gráf éleinek száma: n*(n-1)/2, mert minden csomópont fokszáma n-1, tehát ha a fenti tételbe behelyettesítünk a bal oldalon n(n-1)-et kapunk, és kifejezzük m-et. 4. Séta, vonal, út, kör: Egy gráfban élek sorozatát sétának nevezzük. Ha a séta végpontja egybeesik a kezdőpontjával, akkor zárt sétáról beszélünk. A vonal egy olyan séta, amelyben az élek egymástól különböznek. Az út egy olyan séta, amelyben minden csomópont különböző. A kör egy olyan út, amelynek kezdőpontja megegyezik a végpontjával. Az út, vonal, kör hosszán, az út alkotó élek számát értjük. 5. Összefüggő gráf: Ha egy gráf bármely két csomópontja között van út, akkor ez a gráf összefüggő. Ha egy gráf nem összefüggő, akkor több összefüggő komponensből áll.
2 6. Hamilton-gráf: Ha egy út átmegy egy gráf minden csomópontján, akkor ez az út Hamilton-út. Ha az út kör, akkor Hamiltonkörről beszélünk. Ha egy gráfban van Hamilton-kör, akkor a gráf Hamilton-gráf. Ha egy gráfban minden csomópont fokszáma nagyobb vagy egyenlő a csomópontok felénél, akkor a gráf Hamilton-gráf. Ha G egy n csomópontú gráf, és d(x) n/2, bármely x csomópontra, akkor G Hamilton-gráf. Figyelem!!! Ha nem teljesül a feltétel, nem jelenti azt, hogy nem Hamilton-gráf. Tehát elégséges, de nem szükséges feltételről van szó. 7. Euler-gráf: Egy gráf minden élét tartalmazó vonalat, Euler-vonalnak nevezünk. Ha egy gráfban van egy zárt Euler-vonal, akkor a gráf Euler-gráf. Egy gráf akkor és csak akkor Euler-gráf, ha minden csomópontjának fokszáma páros. Ez egy szükséges és elégséges feltétel, tehát ha van olyan csomópont, aminek a fokszáma páratlan, akkor a gráf nem Euler-gráf. 8. Gráfok ábrázolása a számítógép memóriájában: 1. Szomszédsági mátrix (csúcsmátrix) segítségével: a[i,j]=1, ha i-ből j-be van él a[i,j]=0, ha i-ből j-be nincs él Pl: a fenti gráf esetén: Észrevehetjük, hogy a mátrix szimmetrikus a főátlóra nézve. A mátrix 2-szer annyi 1-est tartalmaz, mint amennyi él van. 2. Éllista segítségével: minden csomópont esetén, tároljuk a szomszédos éleket Pl: a fenti gráf esetén: 1: 2,4,6 2: 1,3,5 3: 2,4,5 4: 1,3,5 5: 2,3,4,6 6: 1,5 9. Fa, gyökeres fa: A fa egy összefüggő, körmentes gráf. A fa értelmezéséből => minden n csomópontból álló fának n-1 éle van. Ha egy fában meghúzunk egy élet két nem szomszédos csomópont között, akkor kör alakul ki. Ha egy fában letörölünk egy élet, akkor nem lesz többé összefüggő, hanem két összefüggő komponensre bomlik. Egy fában két csomópont között pontosan egy út létezik. A gyökeres fa olyan fa, amelyben az egyik csomópontnak kitüntetett szerepe van, ez a gyökér, a többi csomópont szintekbe van rendezve. Pl:
3 A gyökér a 0. szinten van. Apa (közvetlen ős): 1 apja 2-nek Fiú (közvetlen leszármazott): 3 fia 1-nek Testvér: 2, 3, 4 testvérek Levél: olyan csomópontok, amelyeknek nincsen leszármazottja: 5, 6, 7 Ábrázolás: ősvektorral, minden csomópontnak megadjuk az apját: t=(0, 1, 1, 1, 2, 2, 4) 10. Sajátos gyökeres fák: Bináris fa: minden csomópontjának legtöbb 2 fia van. Teljes bináris fa: olyan bináris fa, amelyben csomópontnak pontosan 2 fia van, kivéve a leveleket. 1. Irányított gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={(1,2), (1,6), (2,3), (2,5), (3,5), (4,1), (4,2), (5,4), (6,5)} Értelmezések: 1. Kifokszám: Egy adott pontból kiinduló élek számát az adott csomópont kifokszámának nevezzük. Jelölése: d + (x). Befokszám: Egy adott pontba beérkező élek számát az adott csomópont befokszámának nevezzük. Jelölése: d - (x) 2. Részgráf, algráf: azonos az irányítatlan gráfnál megadottal 3. Teljes gráf, kiegészítő gráf: azonos az irányítatlan gráfnál megadottal 4. Séta, vonal, út, kör: azonos az irányítatlan gráfnál megadottal, csak mindenhol irányított élekről van szó
4 5. Erősen összefüggő gráf: Ha egy irányított gráf bármely két csomópontja között van irányított út, akkor ez a gráf erősen összefüggő. Ha egy gráf nem erősen összefüggő, akkor több erősen összefüggő komponensből áll. Feladatok: 1. Adott egy 12 csomópontból és 7 élből álló, irányítatlan G gráf. Legtöbb hány összefüggő komponensből épülhet fel a G gráf? (6 p) 2. Adott egy 50 csomópontból és 32 élből álló irányítatlan gráf. Legtöbb hány olyan csomópontja lehet a gráfnak, amelynek fokszáma 0? (4 p) a. 45 b. 40 c. 41 d. 50 A fenti 2 feladatot hasonlóan oldjuk meg. Mindkét feladatban arra kell törekednünk, hogy a gráfnak maximális számú izolált pontja legyen. Ehhez arra van szükségünk, hogy meghatározzuk, hogy a megadott élek számához, hány csomópontra van szükség. Ismerve a teljes gráf éleinek számát, kapjuk: 7 élhez 5 csomópontra van szükség, mert az 5 csomópont esetén meghúzható élek száma: 5*4/2= 10. Nem el;g 4 csomópont, mert 4 csomópont esetén, csak 4*3/2=6 él húzható meg. => 7 élhez szükséges 5 csomópont, tehát marad 12-5=7 izolált pont => összesen legtöbb 8 összefüggő komponensünk lesz. 32 élhez 9 csomópont szükséges, mert 9*8/2=36. => legtöbb 50-9=41 izolált pont lehet a gráfban 3. Hány levele van annak a gyökeres fának, amely esetén az apák tömbje: (6,5,5,2,0,3,3,3,8,7,7)? (4 p) a. 1 b. 2 c. 5 d. 4 Ha megszámoljuk az ősvektor elemeit, megtudjuk a fa csomópontjainak számát: 11. Tudjuk azt, hogy az ősvektorban a csomópontok apját tároljuk. => azok a csomópontok, amelyek nem jelennek meg az ősvektorban nem apák, tehát levelek => a fenti gyökeres fa levelei: 1, 4, 9, 10, 11, tehát 5 levele van a fának => a helyes válasz c. 4. Hány testvére van az 1-es csomópontnak, abban a gyökeres fában, amelynek 7 csomópontja van, csomópontjait 1-től 7-ig jelöljük, és az apák tömbje: (5,1,5,1,0,7,5)? (4 p) a. 3 b. 1 c. 0 d. 2 Az 1-es csomópont testvéreit úgy kaphatjuk meg, hogy megkeressük annak apját, majd megvizsgáljuk, hogy mely csomópontok apja egyezik meg ezzel az értékkel. Az 1-es csomópont apja: 5. Az 5-ös csomópont a 3-as és 7-es csomópontnak is apja => az 1-es csomópont testvérei: 3, 7. => a helyes válasz d. IV. Backtracking A backtrackinges feladatoknál arra kell figyelni, hogy mindig a verembe utolsónak betett értéket kell előbb módosítani, s ha ez nem lehetséges, akkor visszalépünk az előző szintre, majd itt az első lehetőséggel próbálkozunk. Klasszikus feladatoknak számítanak a permutációk, variációk illetve kombinációk generálása. Itt fontos tudni, hogy a permutáció csak az elemek sorrendjét cseréli fel. A variáció és kombináció esetén n elem közül, csak m-et választunk ki. A különbség az, hogy a variáció esetén a kiválasztási sorrend is fontos, míg a kombinációnál nem. Feladatok: 1. A backtracking módszert használva egy természetes szám összes lehetséges felbontására, mint egy, nem zéró, természetes számokból álló összeg, n=3-ra, a megoldások sorrendje: 1+1+1; 1+2; 2+1; 3. Egy felbontásban a tagok sorrendje jelentős. Hasonló módszert használva n=10-re, menyi lesz a generált megoldás mindjárt: után? (4 p) a b c d Előbb az utolsónak beírt 5-ös érték helyett próbálunk más értéket tenni, de ez nem lehetséges, ezért visszalépünk az előző szintre. Így a 3-as helyett 4-es értéket írunk és lépünk a következő szintre. Itt az első lehetséges érték az 1-es, ami megfelel, ezért ismét tovább lépünk egy szintet. Itt is az 1-es érték az első lehetőség, és így tovább. Tehát a helyes megoldás: a.
5 2. Felépítjük a c1c2c3c4 szó anagrammáit generálva a szó betűindexeinek permutációját lexikográfiai sorrendbe és a c1c2c3c4 c1c2c4c3 c1c3c2c4 c4c3c1c2 c4c3c2c1. kapjuk. A rateu szó anagrammái mindjárt raetu, raeut, raute sorozat utána következők: (4p.) a. rauet és rtaeu b. rtaeu és rtaue c. rauet és rtaue d. rtaeu és ratue Ha megszámozzuk az eredeti szó betűit, akkor: r=1, a=2, t=3, e=4, u=5. => a raute szó az az nak felel meg. Ezután következők pedig: és 13254, melyek megfelelői: rtaeu és rtaue => helyes válasz: b. 3. Egy LOTTO szelvény kitöltése esetén 6 számot kell megjelölni a szelvényen feltüntetett 49 szám közül. Egy statisztikai kimutatás szerint egy adott időszakban a leggyakrabban kihúzott számok a: 2, 20, 18, 38, 36, 42, 46, 48. Hány darab 6 számos szelvényt lehet kitölteni kizárólag a fenti számokat használva, tudva azt, hogy a 42 minden szelvényen meg lesz jelölve? (4 p) a. 21 b. 6! c. 42 d. 56 Tudjuk, hogy 6 számot kell kiválasztanunk a fentiek közül és azt is, hogy a 42 minden szelvényen be van jelölve => megmarad összesen 7 szám, amiből 5 számot kell kiválasztanunk és a kiválasztás sorrendje nem számít, tehát kombinációval tudjuk kiszámolni, 7 szám 5-önkénti kombinációja: 7! / ( 5! * (7-5)!) = (7*6*5!) /(5! * 2!) = 42/2=21.
EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
SZAMOKKAL Egy algoritmus generálja növekvő sorrendben, kizárólag a 3, 5 és 7 számjegyeket használva, az összes n számjegyű számot.
SZAMOKKAL 1. -16- Egy algoritmus generálja növekvő sorrendben, kizárólag a 3, 5 és 7 számjegyeket használva, az összes n számjegyű számot. Ha n=5 esetén az első 5 megoldás 33333, 33335, 33337, 33353, 33355,
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1. tétel - Gráfok alapfogalmai
1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési
ELTE IK Esti képzés tavaszi félév. Tartalom
Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei
Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
SzA II. gyakorlat, szeptember 18.
SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
24. tétel. Kombinatorika. A grá fok.
2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.
Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa:
1. Tétel Az állomány két sort tartalmaz. Az első sorában egy nem nulla természetes szám van, n-el jelöljük (5
Gráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
A számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
Gráfalgoritmusok ismétlés ősz
Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf
Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.
lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,
Alapfogalmak a Diszkrét matematika II. tárgyból
Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések
Adatszerkezetek II. 1. előadás
Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf
Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a
Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc
Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja
2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább
bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott
. Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel
Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá
HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út
SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp
Gráfelmélet jegyzet 2. előadás
Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!
Elemi adatszerkezetek
2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Diszkrét matematika 1.
Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék
Síkba rajzolható gráfok
Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Kombinatorika - kidolgozott típuspéldák
Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.
Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Bevezetés a számításelméletbe (MS1 BS)
Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK
Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.
Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,
Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.
9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
Diszkrét matematika II. gyakorlat
Diszkrét matematika II. gyakorlat Absztrakt algebra Bogya Norbert Bolyai Intézet 2014. április 23. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2014. április 23. 1 / 23 Tartalom 1 1.
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.
Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Adatszerkezetek II. 2. előadás
Adatszerkezetek II. 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra
Algoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
2. csoport, 8. tétel: Gráfok
Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok
Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
Gráfok bejárása. Szlávi Péter, Zsakó László: Gráfok II :17
Gráfok 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra bejárása nem
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16.
Bevezetés a Számításelméletbe II. 6. előadás Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tsz. I. B. 7/b sali@cs.bme.hu 004 március 6. A kritikus út
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása
4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános
1. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd. ; 8. (7 pont) függvényt! (9 pont)
I..negyedéves témazáró.évfolyam A csoport. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd rendezd növekvő sorrendbe: 9 ; 8 ; 8. (7 pont). Ábrázold és jellemezd az f ( )
1. Gráfelmélet alapfogalmai
1. Gráfelmélet alapfogalmai Definíció: A gráf pontok és az őket összekötő élek együttese. Megjegyzés: A gráf pontjait szögpontoknak, illetve csúcsoknak is nevezzük. Ha a gráf élei irányítottak, irányított
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation
Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation
Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük.
Alapfogalmak A gráfelmélet a matematika tudományának viszonylag fiatal részterülete. Az első gráfelméleti probléma a XVIII. sz. elején lépett fel ennek megoldása Euler nevéhez fűződik. A Königsberg (mai
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Diszkrét matematika alapfogalmak
2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix
Elektromosságtan. I. Egyenáramú hálózatok általános számítási módszerei. Magyar Attila
Elektromosságtan I. Egyenáramú hálózatok általános számítási módszerei Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010.
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Gráfelméleti feladatok programozóknak
Gráfelméleti feladatok programozóknak Nagy-György Judit 1. Lehet-e egy gráf fokszámsorozata 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6? 2. Lehet-e egyszer gráf fokszámsorozata (a) 3, 3, 4, 4, 6? (b) 0, 1, 2, 2, 2,
7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:
Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika
Algoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
Algoritmusok és adatszerkezetek I. 1. előadás
Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási
Hasonlósági keresés molekulagráfokon: legnagyobb közös részgráf keresése
Hasonlósági keresés molekulagráfokon: legnagyobb közös részgráf keresése Kovács Péter ChemAxon Kft., ELTE IK kpeter@inf.elte.hu Budapest, 2018.11.06. Bevezetés Feladat: két molekulagráf legnagyobb közös
Gráfelméleti alapfogalmak-1
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
Síkbarajzolható gráfok Április 26.
Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok
2018, Diszkre t matematika. 10. elo ada s
Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
Gráfelmélet Megoldások
Gráfelmélet Megoldások 1) a) Döntse el az alábbi négy állítás közül melyik igaz és melyik hamis! Válaszát írja a táblázatba! A: Egy 6 pontot tartalmazó teljes gráfnak 15 éle van B: Ha egy teljes gráfnak
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,